Molecular Basis of Crops and Fruit Plants in Response to Stress
Abstract
:1. Introduction
2. Overview of SI
2.1. Exploring the Function of Transcription Factors in Plant Stress Resistance
2.2. Endophytic Interaction Promoting Plant Stress Resistance
2.3. Different Approaches Covering Molecular Mechanisms Involved in Stress Tolerance
3. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Su, A.; Ge, S.; Zhou, B.; Wang, Z.; Zhou, L.; Zhang, Z.; Yan, X.; Wang, Y.; Li, D.; Zhang, H.; et al. Analysis of the Tomato mTERF Gene Family and Study of the Stress Resistance Function of SLmTERF-13. Plants 2023, 12, 2862. [Google Scholar] [CrossRef] [PubMed]
- Filyushin, M.A.; Kochieva, E.Z.; Shchennikova, A.V. ZmDREB2.9 Gene in Maize (Zea mays L.): Genome-Wide Identification, Characterization, Expression, and Stress Response. Plants 2022, 11, 3060. [Google Scholar] [CrossRef] [PubMed]
- Jiang, D.; Xia, M.; Xing, H.; Gong, M.; Jiang, Y.; Liu, H.; Li, H.-L. Exploring the Heat Shock Transcription Factor (HSF) Gene Family in Ginger: A Genome-Wide Investigation on Evolution, Expression Profiling, and Response to Developmental and Abiotic Stresses. Plants 2023, 12, 2999. [Google Scholar] [CrossRef] [PubMed]
- Samaniego-Gámez, B.Y.; Valle-Gough, R.E.; Garruña-Hernández, R.; Reyes-Ramírez, A.; Latournerie-Moreno, L.; Tun-Suárez, J.M.; Villanueva-Alonzo, H.d.J.; Nuñez-Ramírez, F.; Diaz, L.C.; Samaniego-Gámez, S.U.; et al. Induced Systemic Resistance in the Bacillus spp.—Capsicum chinense Jacq.—PepGMV Interaction, Elicited by Defense-Related Gene Expression. Plants 2023, 12, 2069. [Google Scholar] [CrossRef] [PubMed]
- Badawy, I.H.; Hmed, A.A.; Sofy, M.R.; Al-Mokadem, A.Z. Alleviation of Cadmium and Nickel Toxicity and Phyto-Stimulation of Tomato Plant L. by Endophytic Micrococcus luteus and Enterobacter cloacae. Plants 2022, 11, 2018. [Google Scholar] [CrossRef] [PubMed]
- Miranda, R.d.S.; Fonseca, B.S.F.d.; Pinho, D.S.; Batista, J.Y.N.; Brito, R.R.d.; Silva, E.M.d.; Ferreira, W.S.; Costa, J.H.; Lopes, M.d.S.; Sousa, R.H.B.d.; et al. Selection of Soybean and Cowpea Cultivars with Superior Performance under Drought Using Growth and Biochemical Aspects. Plants 2023, 12, 3134. [Google Scholar] [CrossRef] [PubMed]
- Aziz, S.; Germano, T.A.; Thiers, K.L.L.; Batista, M.C.; de Souza Miranda, R.; Arnholdt-Schmitt, B.; Costa, J.H. Transcriptome Analyses in a Selected Gene Set Indicate Alternative Oxidase (AOX) and Early Enhanced Fermentation as Critical for Salinity Tolerance in Rice. Plants 2022, 11, 2145. [Google Scholar] [CrossRef] [PubMed]
- Solar, A.; Medic, A.; Slatnar, A.; Mikulic-Petkovsek, M.; Botta, R.; Rovira, M.; Sarraquigne, J.-P.; Silva, A.P.; Veberic, R.; Stampar, F.; et al. The Effects of the Cultivar and Environment on the Phenolic Contents of Hazelnut Kernels. Plants 2022, 11, 3051. [Google Scholar] [CrossRef] [PubMed]
- de Aguiar, É.S.; Dias, A.N.; Sousa, R.M.; Germano, T.A.; de Sousa, R.O.; Miranda, R.d.S.; Costa, J.H.; dos Santos, C.P. Genome and Transcriptome Analyses of Genes Involved in Ascorbate Biosynthesis in Pepper Indicate Key Genes Related to Fruit Development, Stresses, and Phytohormone Exposures. Plants 2023, 12, 3367. [Google Scholar] [CrossRef] [PubMed]
- Setubal, I.S.; Andrade Júnior, A.S.d.; Silva, S.P.d.; Rodrigues, A.C.; Bonifácio, A.; Silva, E.H.F.M.d.; Vieira, P.F.d.M.J.; Miranda, R.d.S.; Cafaro La Menza, N.; Souza, H.A.d. Macro and Micro-Nutrient Accumulation and Partitioning in Soybean Affected by Water and Nitrogen Supply. Plants 2023, 12, 1898. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhu, Q.; Jiao, F.; Yan, Z.; Zhang, H.; Zhang, Y.; Ding, Z.; Mu, C.; Liu, X.; Li, Y.; et al. Research Progress on the Mechanism of Salt Tolerance in Maize: A Classic Field That Needs New Efforts. Plants 2023, 12, 2356. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Costa, J.H.; Miranda, R.d.S. Molecular Basis of Crops and Fruit Plants in Response to Stress. Plants 2023, 12, 3813. https://doi.org/10.3390/plants12223813
Costa JH, Miranda RdS. Molecular Basis of Crops and Fruit Plants in Response to Stress. Plants. 2023; 12(22):3813. https://doi.org/10.3390/plants12223813
Chicago/Turabian StyleCosta, Jose Helio, and Rafael de Souza Miranda. 2023. "Molecular Basis of Crops and Fruit Plants in Response to Stress" Plants 12, no. 22: 3813. https://doi.org/10.3390/plants12223813
APA StyleCosta, J. H., & Miranda, R. d. S. (2023). Molecular Basis of Crops and Fruit Plants in Response to Stress. Plants, 12(22), 3813. https://doi.org/10.3390/plants12223813