Evaluating the Influence of Water Scarcity on the Host Response of Garlic to the Stem and Bulb Nematode Ditylenchus dipsaci
Abstract
:1. Introduction
2. Results
2.1. Effect of Water Stress on Nematode Infestation
2.2. Effect of Water Stress on Physiological Response of Garlic
2.3. Effect of Discontinuous Water Stress on Nematode Infestation
2.4. Effect of Water Stress on Bulb and Root Development
3. Discussion
4. Materials and Methods
4.1. Plant Material and Garlic Germination
4.2. Initial Conditions for the Growth Chamber Assays
4.3. Initial Conditions for the Shade House Assays
4.4. Water Treatments
4.5. D. dipsaci Infestation
4.6. Nematode Extraction and Counting
4.7. Plant Physiology Parameters
4.7.1. Total Chlorophyll Determination
4.7.2. Proline Concentration
4.8. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Etoh, T.; Simon, P.W. Diversity, Fertility and Seed Production of Garlic. In Allium Crop Science: Recent Advances; CABI Publishing: Wallingford, UK, 2002; pp. 101–118. [Google Scholar]
- Ipek, M.; Ipek, A.; Almquist, S.G.; Simon, P.W. Demonstration of Linkage and Development of the First Low-Density Genetic Map of Garlic, Based on AFLP Markers. Theor. Appl. Genet. 2005, 110, 228–236. [Google Scholar] [CrossRef] [PubMed]
- El-Saber Batiha, G.; Magdy Beshbishy, A.; Wasef, L.G.; Elewa, Y.H.A.; Al-Sagan, A.A.; Abd El-Hack, M.E.; Taha, A.E.; Abd-Elhakim, Y.M.; Prasad Devkota, H. Chemical Constituents and Pharmacological Activities of Garlic (Allium sativum L.): A Review. Nutrients 2020, 12, 872. [Google Scholar] [CrossRef] [PubMed]
- Singh, V.; Singh, D. Pharmacological Effects of Garlic (Allium sativum L.). Annu. Rev. Biomed. Sci. 2008, 10, 6–26. [Google Scholar] [CrossRef]
- FAOSTAT Crops and Livestock Products (Garlic). Available online: https://www.fao.org/faostat/en/#data/QCL/visualize (accessed on 10 March 2023).
- MAPA. Avances de Superficies y Producciones de Cultivos; AJO: Avances de Superficie y Producción; Ministerio de Agricultura, Pesca y Alimentación: Madrid, Spain, 2022. [Google Scholar]
- Japón Quintero, J. El Cultivo del Ajo. Hojas Divulg.-Minist. Agric. Pesca Aliment. Esp. 1984, 1, 1–16. [Google Scholar]
- Brewster, J.L.; Rabinowitch, H.D. Garlic Agronomy. In Onions and Allied Crops. Biochemistry, Food Science and Minor Crops; CRC Press: Boca Raton, FL, USA, 1990; Volume III, pp. 147–157. [Google Scholar]
- Mishra, R.K.; Jaiswal, R.K.; Kumar, D.; Saabale, P.R.; Singh, A. Management of Major Diseases and Insect Pests of Onion and Garlic: A Comprehensive Review. J. Plant Breed. Crop Sci. 2014, 6, 160–170. [Google Scholar]
- McDonald, M.R.; Ives, L.; Adusei-Fosu, K.; Jordan, K.S. Ditylenchus dipsaci and Fusarium oxysporum on Garlic: One plus One Does Not Equal Two. Can. J. Plant Pathol. 2021, 43, 749–759. [Google Scholar] [CrossRef]
- Greco, N. Reviews: Epidemiology and Management of Ditylenchus dipsaci on Vegetable Crops in Southern Italy. Nematropica 1993, 23, 247–251. [Google Scholar]
- Jones, J.T.; Haegeman, A.; Danchin, E.G.J.; Gaur, H.S.; Helder, J.; Jones, M.G.K.; Kikuchi, T.; Manzanilla-López, R.; Palomares-Rius, J.E.; Wesemael, W.M.L.; et al. Top 10 Plant-Parasitic Nematodes in Molecular Plant Pathology. Mol. Plant Pathol. 2013, 14, 946–961. [Google Scholar] [CrossRef]
- Sturhan, D.; Brzeski, M.W. Stem and Bulb Nematodes, Ditylenchus spp. In Manual of Agricultural Nematology; CRC Press: Boca Raton, FL, USA, 1991; ISBN 978-1-00-306657-6. [Google Scholar]
- Blauel, T.; Celetti, M.J.; Jordan, K.S.; Mcdonald, M.R. Optimizing Methods to Sample and Quantify Stem and Bulb Nematode, Ditylenchus dipsaci, in Garlic, Allium sativum, Field Soil. Can. J. Plant Pathol. 2021, 43, 820–826. [Google Scholar] [CrossRef]
- Bridge, J.; Starr, J.L. Plant Nematode Biology and Parasitism. In Plant Nematodes of Agricultural Importance: A Color Handbook; CRC Press: Boca Raton, FL, USA, 2007; pp. 5–18. ISBN 0-12-373673-0. [Google Scholar]
- Duncan, L.W.; Moens, M. Migratory Endoparasitic Nematodes. In CABI Books; CABI Publishing: Wallingford, UK, 2013; pp. 123–152. [Google Scholar]
- Qiao, Y.; Zaidi, M.; Badiss, A.; Hughes, B.; Celetti, M.J.; Yu, Q. Intra-Racial Genetic Variation of Ditylenchus dipsaci Isolated from Garlic in Ontario as Revealed by Random Amplified Polymorphic DNA Analysis. Can. J. Plant Pathol. 2013, 35, 346–353. [Google Scholar] [CrossRef]
- Subbotin, S.A.; Madani, M.; Krall, E.; Sturhan, D.; Moens, M. Molecular Diagnostics, Taxonomy, and Phylogeny of the Stem Nematode Ditylenchus dipsaci Species Complex Based on the Sequences of the Internal Transcribed Spacer-RDNA. Phytopathology 2005, 95, 1308–1315. [Google Scholar] [CrossRef] [PubMed]
- Tenente, R. Nematode Problems of Bulbs, with Special Reference to Ditylenchus dipsaci. Nematropica 1996, 26, 91–99. [Google Scholar]
- Bello, A.; Arias, M.; Nombela, G. El Nematodo de Los Tallos, Ditylenchus dipsaci (Kühn, 1857) Filipjev, 1936, Un Patógeno de Las Plantas Hortícolas. Phytoma España 1988, 23–25. [Google Scholar]
- EPPO. PM 7/87 (2) Ditylenchus destructor and Ditylenchus dipsaci. EPPO Bull. 2017, 47, 401–419. [Google Scholar] [CrossRef]
- Navas, A.; Nombela, G.; Pérez, A.B. Ditylenchus dipsaci En Los Cultivos de Leguminosas y Cereales de La Región Central. Bol. Sanid. Veg. Plagas 1985, 11, 205–216. [Google Scholar]
- Escuer, M. Nematodos Del Género Ditylenchus de Interés Fitopatológico. Boletin Sanid. Veg. Plagas 1998, 24, 773–786. [Google Scholar]
- IPCC. Diagnostic Protocols for Regulated Pests; PD 8: Ditylenchus dipsaci y Ditylenchus destructor; ISPM 27; IPPC & FAO: Rome, Italy, 2017. [Google Scholar]
- Moens, M.; Perry, R. Migratory Plant Endoparasitic Nematodes: A Group Rich in Contrasts and Divergence. Annu. Rev. Phytopathol. 2009, 47, 313–332. [Google Scholar] [CrossRef]
- Sánchez-Virosta, Á.; Sánchez-Gómez, D. Thermography as a Tool to Assess Inter-Cultivar Variability in Garlic Performance along Variations of Soil Water Availability. Remote Sens. 2020, 12, 2990. [Google Scholar] [CrossRef]
- Cramer, W.; Guiot, J.; Fader, M.; Garrabou, J.; Gattuso, J.-P.; Iglesias, A.; Lange, M.A.; Lionello, P.; Llasat, M.C.; Paz, S.; et al. Climate Change and Interconnected Risks to Sustainable Development in the Mediterranean. Nat. Clim. Chang. 2018, 8, 972–980. [Google Scholar] [CrossRef]
- Meehl, G.A.; Stocker, T.F. Chapter 10. Global Climate Projections. In Climate Change 2007: The Physical Science Basis; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007; pp. 747–846. [Google Scholar]
- Le Gall, H.; Philippe, F.; Domon, J.-M.; Gillet, F.; Pelloux, J.; Rayon, C. Cell Wall Metabolism in Response to Abiotic Stress. Plants 2015, 4, 112–166. [Google Scholar] [CrossRef]
- Anjum, S.A.; Xie, X.; Wang, L.C.; Saleem, M.F.; Man, C.; Lei, W. Morphological, Physiological and Biochemical Responses of Plants to Drought Stress. Afr. J. Agric. Res. 2011, 6, 2026–2032. [Google Scholar]
- Basu, S.; Ramegowda, V.; Kumar, A.; Pereira, A. Plant Adaptation to Drought Stress. F1000Research 2016, 5, 1554. [Google Scholar] [CrossRef] [PubMed]
- Farooq, M.; Hussain, M.; Wahid, A.; Siddique, K.H.M. Drought Stress in Plants: An Overview. In Plant Responses to Drought Stress: From Morphological to Molecular Features; Aroca, R., Ed.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 1–33. ISBN 978-3-642-32653-0. [Google Scholar]
- Prasad, P.V.V.; Pisipati, S.R.; Momčilović, I.; Ristic, Z. Independent and Combined Effects of High Temperature and Drought Stress during Grain Filling on Plant Yield and Chloroplast EF-Tu Expression in Spring Wheat. J. Agron. Crop Sci. 2011, 197, 430–441. [Google Scholar] [CrossRef]
- Blum, A. Osmotic Adjustment Is a Prime Drought Stress Adaptive Engine in Support of Plant Production. Plant Cell Environ. 2017, 40, 4–10. [Google Scholar] [CrossRef]
- Ashraf, M.; Foolad, M.R. Roles of Glycine Betaine and Proline in Improving Plant Abiotic Stress Resistance. Environ. Exp. Bot. 2007, 59, 206–216. [Google Scholar] [CrossRef]
- Lamers, J.; Van Der Meer, T.; Testerink, C. How Plants Sense and Respond to Stressful Environments. Plant Physiol. 2020, 182, 1624–1635. [Google Scholar] [CrossRef]
- Atkinson, N.J.; Urwin, P.E. The Interaction of Plant Biotic and Abiotic Stresses: From Genes to the Field. J. Exp. Bot. 2012, 63, 3523–3543. [Google Scholar] [CrossRef]
- Ramegowda, V.; Senthil-Kumar, M. The Interactive Effects of Simultaneous Biotic and Abiotic Stresses on Plants: Mechanistic Understanding from Drought and Pathogen Combination. J. Plant Physiol. 2015, 176, 47–54. [Google Scholar] [CrossRef]
- Atkinson, N.J.; Lilley, C.J.; Urwin, P.E. Identification of Genes Involved in the Response of Arabidopsis to Simultaneous Biotic and Abiotic Stresses. Plant Physiol. 2013, 162, 2028–2041. [Google Scholar] [CrossRef]
- Atkinson, N.J.; Dew, T.P.; Orfila, C.; Urwin, P.E. Influence of Combined Biotic and Abiotic Stress on Nutritional Quality Parameters in Tomato (Solanum lycopersicum). J. Agric. Food Chem. 2011, 59, 9673–9682. [Google Scholar] [CrossRef]
- Kagoda, F.; Hearne, S.; Adewuyi, O.; Coyne, D.L. Response of Drought Tolerant Maize Inbreds to Water Stress under Nematode Infested Conditions. Euphytica 2015, 206, 77–87. [Google Scholar] [CrossRef]
- Kirkpatrick, T.L.; Oosterhuis, D.M.; Wullschleger, S.D. Interaction of Meloidogyne Incognita and Water Stress in Two Cotton Cultivars. J. Nematol. 1991, 23, 462–467. [Google Scholar]
- Santos, H.R.B.; Pedrosa, E.M.R.; Nogueira, R.; Rolim, M.M.; Maranhão, S.; Medeiros, D.B. Growth of Three Varieties of Sugarcane under Water Stress Associated with Meloidogyne incognita. Rev. Bras. Ciênc. Agrár. Agrár. 2013, 8, 547–554. [Google Scholar]
- Audebert, A.; Coyne, D.L.; Dingkuhn, M.; Plowright, R.A. The Influence of Cyst Nematodes (Heterodera sacchari) and Drought on Water Relations and Growth of Upland Rice in Côte d’Ivoire. Plant Soil 2000, 220, 235–242. [Google Scholar] [CrossRef]
- Ribeiro, L.M.; Campos, H.D.; Dias-Arieira, C.R.; Neves, D.L.; Ribeiro, G.C. Effect of Soybean Seed Treatment on the Population Dynamics of Pratylenchus brachyurus under Water Stress Conditions. Biosci. J. 2014, 30, 616–622. [Google Scholar]
- Veronico, P.; Rosso, L.C.; Melillo, M.T.; Fanelli, E.; De Luca, F.; Ciancio, A.; Colagiero, M.; Pentimone, I. Water Stress Differentially Modulates the Expression of Tomato Cell Wall Metabolism-Related Genes in Meloidogyne incognita Feeding Sites. Front. Plant Sci. 2022, 13, 817185. [Google Scholar] [CrossRef]
- Smiley, R.W.; Ingham, R.E.; Uddin, W.; Cook, G.H. Crop Sequences for Managing Cereal Cyst Nematode and Fungal Pathogens of Winter Wheat. Plant Dis. 1994, 78, 1142–1149. [Google Scholar] [CrossRef]
- Dababat, A.A.; Imren, M.; Erginbas-Orakci, G.; Ashrafi, S.; Yavuzaslanoglu, E.; Toktay, H.; Pariyar, S.R.; Elekcioglu, H.I.; Morgounov, A.; Mekete, T. The Importance and Management Strategies of Cereal Cyst Nematodes, Heterodera spp., in Turkey. Euphytica 2015, 202, 173–188. [Google Scholar] [CrossRef]
- Kalwa, U.; Legner, C.; Wlezien, E.; Tylka, G.; Pandey, S. New Methods of Removing Debris and High-Throughput Counting of Cyst Nematode Eggs Extracted from Field Soil. PLoS ONE 2019, 14, e0223386. [Google Scholar] [CrossRef]
- Fabeiro Cortés, C.; Martín de Santa Olalla, F.; López Urrea, R. Production of Garlic (Allium sativum L.) under Controlled Deficit Irrigation in a Semi-Arid Climate. Agric. Water Manag. 2003, 59, 155–167. [Google Scholar] [CrossRef]
- Ayars, J.E. Water Requirement of Irrigated Garlic. Trans. ASABE 2008, 51, 1683–1688. [Google Scholar] [CrossRef]
- Taha, N.M.; Abd-Elrahman, S.H.; Hashem, F.A. Improving Yield and Quality of Garlic (Allium sativum L.) under Water Stress Conditions. Middle East J. Agric. Res. 2019, 8, 330–346. [Google Scholar]
- Sánchez-Virosta, A.; Sánchez-Gómez, D. Inter-Cultivar Variability in the Functional and Biomass Response of Garlic (Allium sativum L.) to Water Availability. Sci. Hortic. 2019, 252, 243–251. [Google Scholar] [CrossRef]
- Tchorzewska, D.; Bocianowski, J.; Najda, A.; Dąbrowska, A.; Winiarczyk, K. Effect of Environment Fluctuations on Biomass and Allicin Level in Allium sativum (cv. Harnas, Arkus) and Allium ampeloprasum var. ampeloprasum (GHG-L). J. Appl. Bot. Food Qual. 2017, 90, 106–114. [Google Scholar] [CrossRef]
- Morison, J.I.L.; Baker, N.R.; Mullineaux, P.M.; Davies, W.J. Improving Water Use in Crop Production. Philos. Trans. R. Soc. B Biol. Sci. 2008, 363, 639–658. [Google Scholar] [CrossRef]
- Cattivelli, L.; Rizza, F.; Badeck, F.-W.; Mazzucotelli, E.; Mastrangelo, A.M.; Francia, E.; Marè, C.; Tondelli, A.; Stanca, A.M. Drought Tolerance Improvement in Crop Plants: An Integrated View from Breeding to Genomics. Field Crops Res. 2008, 105, 1–14. [Google Scholar] [CrossRef]
- Fadda, C.; Mengistu, D.K.; Kidane, Y.G.; Dell’Acqua, M.; Pè, M.E.; Van Etten, J. Integrating Conventional and Participatory Crop Improvement for Smallholder Agriculture Using the Seeds for Needs Approach: A Review. Front. Plant Sci. 2020, 11, 559515. [Google Scholar] [CrossRef]
- FAO. Voluntary Guidelines for the Conservation and Sustainable Use of Farmers’ Varieties/Landraces; FAO: Rome, Italy, 2019. [Google Scholar]
- Ruiz-Aceituno, L.; Lázaro, A. Physicochemical and Textural Properties of a Spanish Traditional Garlic (Allium sativum L.) Variety: Characterizing Distinctive Properties of “Fino de Chinchón” Garlic. Eur. Food Res. Technol. 2021, 247, 2399–2408. [Google Scholar] [CrossRef]
- Commission of European Communities. Commission Regulation (EC) No 676/2008 of 16 July 2008 Registering Certain Names in the Register of Protected Designations of Origin and Protected Geographical Indications; Commission of European Communities: Brussels, Belgium, 2008. [Google Scholar]
- Lallemand, J.; Messian, C.M.; Briand, F.; Etoh, T. Delimitation of Varietal Groups in Garlic (Allium sativum L.) by Morphologigal, Physiological and Biochemical. Characters. In Proceedings of the Acta Horticulturae; International Society for Horticultural Science (ISHS), Leuven, Belgium, 1 May 1997; pp. 123–132. [Google Scholar]
- Nombela, G.; Bello, A. Modificaciones al Método de Extracción de Nematodos Fitoparásitos por Centrifugación en Azúcar. Bol. Serv. Plagas 1983, 9, 183–189. [Google Scholar]
- Arnon, D.I. Copper Enzymes in Isolated Chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol. 1949, 24, 1–15. [Google Scholar] [CrossRef]
- Armengaud, P.; Thiery, L.; Buhot, N.; Grenier-de March, G.; Savouré, A. Transcriptional Regulation of Proline Biosynthesis in Medicago truncatula Reveals Developmental and Environmental Specific Features. Physiol. Plant. 2004, 120, 442–450. [Google Scholar] [CrossRef] [PubMed]
Cultivar * | Nematodes/Plant | F or U ** | p | |
---|---|---|---|---|
Control | Stress | |||
GA | 6176.15 ± 920.66 a | 616.46 ± 151.28 b | U = 0.000 | <0.01 |
MP | 2510.00 ± 385.85 a | 166.80 ± 108.67 b | U = 1.000 | <0.001 |
FC | 18,060.42 ± 5111.20 a | 8800.00 ± 4206.20 b | U = 31.000 | 0.032 |
VS | 3592.47 ± 276.16 a | 2051.10 ± 165.19 b | F = 20.485 | <0.001 |
Cultivar * | Nematodes/Plant | F or U ** | p | |
---|---|---|---|---|
Control | Stress | |||
GA | 2186.63 ± 291.71 a | 2635.56 ± 450.11 a | F = 0.662 | 0.958 |
MP | 1913.33 ± 302.75 a | 3937.08 ± 744.72 b | U = 38.000 | 0.520 |
FC | 5722.25 ± 789.53 a | 5642.67 ± 1090.45 a | F = 0.003 | 0.954 |
VS | 75,995.96 ± 15,452.28 a | 90,303.96 ± 20,533.42 a | F = 0.322 | 0.584 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lorenzo, C.; Ramos, F.; Casado, A.; Gálvez, A.-M.; Sanz-Alférez, S.; Nombela, G. Evaluating the Influence of Water Scarcity on the Host Response of Garlic to the Stem and Bulb Nematode Ditylenchus dipsaci. Plants 2023, 12, 3845. https://doi.org/10.3390/plants12223845
Lorenzo C, Ramos F, Casado A, Gálvez A-M, Sanz-Alférez S, Nombela G. Evaluating the Influence of Water Scarcity on the Host Response of Garlic to the Stem and Bulb Nematode Ditylenchus dipsaci. Plants. 2023; 12(22):3845. https://doi.org/10.3390/plants12223845
Chicago/Turabian StyleLorenzo, Carmen, Fabio Ramos, Andrés Casado, Ana-María Gálvez, Soledad Sanz-Alférez, and Gloria Nombela. 2023. "Evaluating the Influence of Water Scarcity on the Host Response of Garlic to the Stem and Bulb Nematode Ditylenchus dipsaci" Plants 12, no. 22: 3845. https://doi.org/10.3390/plants12223845
APA StyleLorenzo, C., Ramos, F., Casado, A., Gálvez, A. -M., Sanz-Alférez, S., & Nombela, G. (2023). Evaluating the Influence of Water Scarcity on the Host Response of Garlic to the Stem and Bulb Nematode Ditylenchus dipsaci. Plants, 12(22), 3845. https://doi.org/10.3390/plants12223845