Coupling and Slips in Photosynthetic Reactions—From Femtoseconds to Eons
Abstract
:1. Introduction
2. Femtosecond to Millisecond Coupling and Slips
3. The Biochemical Domain of Microsecond-to-Second Coupling and Slips
4. Second-to-Minute Coupling and Slips
5. Minute-to-Eon Coupling and Slips
6. Harnessing Sunlight and Photosynthesis to Tip the Balance
Funding
Conflicts of Interest
References
- Fleming, G.R.; van Grondelle, R. Femtosecond spectroscopy of photosynthetic light-harvesting systems. Curr. Opin. Struct. Biol. 1997, 7, 738–748. [Google Scholar] [CrossRef] [PubMed]
- Brixner, T.; Stenger, J.; Vaswani, H.M.; Cho, M.; Blankenship, R.E.; Fleming, G.R. Two-dimensional spectroscopy of electronic couplings in photosynthesis. Nature 2005, 434, 625–628. [Google Scholar] [CrossRef] [PubMed]
- Shuvalov, V.A. Electron and nuclear dynamics in many-electron atoms, molecules and chlorophyll-protein complexes: A review. Biochim. Biophys. Acta. 2007, 1767, 422–433. [Google Scholar] [CrossRef] [PubMed]
- Shelaev, I.V.; Gostev, F.E.; Mamedov, M.D.; Sarkisov, O.M.; Nadtochenko, V.A.; Shuvalov, V.A.; Semenov, A.Y. Femtosecond primary charge separation in Synechocystis sp. PCC 6803 photosystem I. Biochim. Biophys. Acta Bioenerg. 2010, 1797, 1410–1420. [Google Scholar] [CrossRef]
- Cherepanov, D.A.; Shelaev, I.V.; Gostev, F.E.; Mamedov, M.D.; Petrova, A.A.; Aybush, A.V.; Shuvalov, V.A.; Semenov, A.Y.; Nadtochenko, V.A. Mechanism of adiabatic primary electron transfer in photosystem I: Femtosecond spectroscopy upon excitation of reaction center in the far-red edge of the QY band. Biochim. Biophys. Acta Bioenerg. 2017, 1858, 895–905. [Google Scholar] [CrossRef] [PubMed]
- Akhtar, P.; Caspy, I.; Nowakowski, P.; Malavath, T.; Nelson, N.; Tan, H.-S.; Lambrev, P. Two-dimensional electronic spectroscopy of a minimal Photosystem I complex reveals the rate of primary charge separation. JACS 2021, 143, 14601–14612. [Google Scholar] [CrossRef] [PubMed]
- Nelson, N.; Sacher, A.; Nelson, H. The significance of molecular slips in transport systems. Nat. Rev. Mol. Cell Biol. 2002, 3, 876–881. [Google Scholar] [CrossRef]
- Lechelon, M.; Meriguet, Y.; Gori, M.; Ruffenach, S.; Nardecchia, I.; Floriani, E.; Coquillat, D.; Teppe, F.; Mailfert, S.; Marguet, D.; et al. Experimental evidence for long-distance electrodynamic intermolecular forces. Sci. Adv. 2022, 8, eabl5855. [Google Scholar] [CrossRef]
- Chin, A.W.; Huelga, S.F.; Plenio, M.B. Coherence and decoherence in biological systems: Principles of noise-assisted transport and the origin of long-lived coherences. Philos. Trans. A Math. Phys. Eng. Sci. 2012, 370, 3638–3657. [Google Scholar] [CrossRef]
- Shuvalov, V.A.; Parson, W.W. Energies and kinetics of radical pairs involving bacteriochlorophyll and bacteriopheophytin in bacterial reaction centers. Proc. Natl. Acad. Sci. USA 1981, 78, 957–961. [Google Scholar] [CrossRef]
- Agarwal, G.S. Control of Decoherence and Relaxation by Frequency Modulation of Heat Bath. arXiv 1999, arXiv:quant-ph/9904087. [Google Scholar] [CrossRef]
- Seifert, U.; Speck, T. Fluctuation-dissipation theorem in nonequilibrium steady states. EPL 2010, 89, 10007. [Google Scholar] [CrossRef]
- Negulescu, C. Decoherence rhapsody in the photosynthesis process. CMS (Commun. Math. Sci.) 2021, 19, 947–975. [Google Scholar] [CrossRef]
- Ishizaki, A.; Fleming, G.R. Quantum coherence in photo- synthetic light harvesting. Annu. Rev. Condens. Matter Phys. 2012, 3, 333–361. [Google Scholar] [CrossRef]
- Romero, E.; Novoderezhkin, V.I.; van Grondelle, R. Quantum design of photosynthesis for bio-inspired solar-energy conversion. Nature 2017, 543, 355. [Google Scholar] [CrossRef]
- Akhtar, P.; Biswas, A.; Kovács, L.; Nelson, N.; Lambrev, P.H. Excitation energy transfer kinetics of trimeric, monomeric and subunit-depleted Photosystem I from Synechocystis PCC 6803. Biochem. J. 2021, 478, 1333–1346. [Google Scholar] [CrossRef] [PubMed]
- Ben-Shem, A.; Frolow, F.; Nelson, N. Evolution of photosystem I—From symmetry through pseu-dosymmetry to assymmetry. FEBS Lett. 2004, 564, 274–280. [Google Scholar] [CrossRef]
- Büttner, M.; Xie, D.-L.; Nelson, H.; Pinther, W.; Hauska, G.; Nelson, N. Photosynthetic reaction center genes in green sulfur bacteria and in Photosystem 1 are related. Proc. Natl. Acad. Sci. USA 1992, 89, 8135–8139. [Google Scholar] [CrossRef]
- Büttner, M.; Xie, D.-L.; Nelson, H.; Pinther, W.; Hauska, G.; Nelson, N. The photosystem I-like P840-reaction center of green S-bacteria is a homodimer. Biochim. Biophys. Acta 1992, 1101, 154–156. [Google Scholar] [CrossRef] [PubMed]
- Gisriel, C.; Sarrou, I.; Ferlez, B.; Golbeck, J.H.; Redding, K.E.; Fromme, R. Structure of a symmetric photosynthetic reaction center-photosystem. Science 2017, 357, 1021–1025. [Google Scholar] [CrossRef] [PubMed]
- Caspy, I.; Schwartz, T.; Bayro-Kaiser, V.; Fadeeva, M.; Kessel, A.; Ben-Tal, N.; Nelson, N. Dimeric and high-resolution structures of Chlamydomonas Photosystem I from a temperature-sensitive Photosystem II mutant. Commun. Biol. 2021, 4, 1380. [Google Scholar] [CrossRef] [PubMed]
- Hauska, G.; Schoedl, T.; Remigy, H.; Tsiotis, G. The reaction center of green sulfur bacteria. Biochim. Biophys. Acta. 2001, 1507, 260–277. [Google Scholar] [CrossRef] [PubMed]
- Joliot, P.; Joliot, A. In vivo analysis of the electron transfer within photosystem I: Are the two phylloquinones involved. Biochemistry 1999, 38, 11130–11136. [Google Scholar] [CrossRef] [PubMed]
- de Wijn, R.; van Gorkom, H.J. Kinetics of electron transfer from Q(a) to Q(b) in photosystem II. Biochemistry 2001, 40, 11912–11922. [Google Scholar] [CrossRef] [PubMed]
- Nelson, N.; Yocum, C. Structure and Function of Photosystems I and II. Annu. Rev. Plant Biol. 2006, 57, 521–565. [Google Scholar] [CrossRef]
- Nelson, N.; Junge, W. Structure and Energy Transfer in Photosystems of Oxygenic Photosynthesis. Annu. Rev. Biochem. 2015, 84, 659–683. [Google Scholar] [CrossRef]
- Guergova-Kuras, M.; Boudreaux, B.; Joliot, A.; Joliot, P.; Redding, K. Evidence for two active branches for electron transfer in photosystem I. Proc. Natl. Acad. Sci. USA 2001, 98, 4437–4442. [Google Scholar] [CrossRef]
- Caspy, I.; Neumann, E.; Fadeeva1, M.; Liveanu, V.; Savitsky, A.; Frank, A.; Kalisman, Y.L.; Shkolnisky, Y.; Murik, O.; Treves, H.; et al. Cryo-EM photosystem I structure reveals adaptation mechanisms to extreme high light in Chlorella ohadii. Nature Plants 2021, 7, 1314–1322. [Google Scholar] [CrossRef] [PubMed]
- Perez-Boerema, A.; Klaiman, D.; Caspy, I.; Netzer-El, S.; Amunts, A.; Nelson, N. Structure of a minimal photosystem I from a green alga. Nature Plants 2020, 6, 321–327. [Google Scholar] [CrossRef]
- Mäusle, S.M.; Agarwala, N.; Eichmann, V.G.; Dau, H.; Nürnberg, D.J.; Hastings, G. Nanosecond time-resolved infrared spectroscopy for the study of electron transfer in photosystem I. Photosynth. Res. 2023. [Google Scholar] [CrossRef]
- Naschberger, A.; Fadeeva, M.; Klaiman, D.; Borovikova-Sheinker, A.; Caspy, I.; Nelson, N.; Amunts, A. Structure of plant Photosystem I in a native assembly state. Res. Sq. 2023. [Google Scholar] [CrossRef]
- Yocum, C.F. Photosystem 2 and the oxygen evolving complex: A brief overview. Photosynth. Res. 2022, 152, 97–105. [Google Scholar] [CrossRef] [PubMed]
- Romero, E.; Prior, J.; Chin, A.W.; Morgan, S.E.; Novoderezhkin, V.I.; Plenio, M.B.; van Grondelle, R. Quantum—Coherent dynamics in photosynthetic charge separation revealed by wavelet analysis. Sci. Rep. 2017, 7, 2890. [Google Scholar] [CrossRef] [PubMed]
- Fadeeva, M.; Klaiman, D.; Caspy, I.; Nelson, N. Structure of Chlorella ohadii Photosystem II Reveals Protective Mechanisms against Environmental Stress. Cells 2023, 12, 1971. [Google Scholar] [CrossRef] [PubMed]
- Ratherford, A.W.; Govindjee; Inoue, Y. Charge accumulation and photochemistry in leaves studied by thermoluminescence and delayed light emission. Proc. Natl. Acad. Sci. USA 1984, 81, 1107–1111. [Google Scholar] [CrossRef] [PubMed]
- Ohad, I.; Kyle, D.J.; Arntzen, C.J. Membrane protein damage and repair: Removal and replacement of inactivated 32-kilodalton polypeptides in chloroplast membranes. J. Cell Biol. 1984, 99, 481–485. [Google Scholar] [CrossRef]
- Edelman, M.; Reisfeld, A. Characterization, translocation and control of the 32,000 dalton chloroplast membrane protein in Spirodella. In Chloroplast Development; Akoyunoglou, G., Argyroudi-Akoyunoglou, J.H., Eds.; Elsevier: Amsterdam, The Netherlands, 1978; pp. 641–652. [Google Scholar]
- Jahns, P.; Holzwarth, A.R. The role of the xanthophyll cycle and of lutein in photoprotection of photosystem II. Biochim. Biophys. Acta. 2012, 1817, 182–193. [Google Scholar] [CrossRef]
- Nelson, N. Photosystems and global effects of oxygenic photosynthesis. Biochim. Biophys. Acta 2011, 1807, 856–863. [Google Scholar] [CrossRef]
- Nelson, N. Evolution of photosystem I and the control of global enthalpy in an oxidizing world. Photosynth. Res. 2013, 116, 145–151. [Google Scholar] [CrossRef]
- Niyogi, K.K. Photoprotection revisited: Genetic and molecular approaches. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1999, 50, 333–359. [Google Scholar] [CrossRef]
- Bassi, R.; Dall’Osto, L. Dissipation of Light Energy Absorbed in Excess: The Molecular Mechanisms. Annu. Rev. Plant Biol. 2021, 72, 47–76. [Google Scholar] [CrossRef] [PubMed]
- Tikkanen, M.; Aro, E.M. Integrative regulatory network of plant thylakoid energy transduction. Trends Plant Sci. 2014, 19, 10–17. [Google Scholar] [CrossRef] [PubMed]
- Vass, I. Molecular mechanisms of photodamage in the Photosystem II complex. Biochim. Biophys. Acta (BBA)-Bioenerg. 2012, 1817, 209–217. [Google Scholar] [CrossRef] [PubMed]
- Junge, W.; Nelson, N. ATP Synthase. Annu. Rev. Biochem. 2015, 84, 631–657. [Google Scholar] [CrossRef]
- Ruban, A.V.; Johnson, M.P. Dynamics of higher plant photosystem cross-section associated with state transitions. Photosynth. Res. 2010, 106, 141–150. [Google Scholar] [CrossRef]
- Rochaix, J.-D.; Bassi, R. LHC-like proteins involved in stress responses and biogenesis/repair of the photosynthetic apparatus. Biochem. J. 2019, 476, 581–593. [Google Scholar] [CrossRef]
- Rochaix, J.-D. Regulation and dynamics of the light-harvesting system. Annu. Rev. Plant Biol. 2014, 65, 287–309. [Google Scholar] [CrossRef]
- Ananyev, G.; Gates, C.; Kaplan, A.; Dismukes, G.C. Photosystem II-cyclic electron flow powers exceptional photoprotection and record growth in the microalga Chlorella ohadii. Biochim. Biophys. Acta (BBA)-Bioenerg. 2017, 1858, 873–883. [Google Scholar] [CrossRef]
- Li, L.; Aro, E.-M.; Millar, A.H. Mechanisms of Photodamage and Protein Turnover in Photoinhibition. Trends Plant Sci. 2018, 23, 667–676. [Google Scholar] [CrossRef]
- Lempiäinen, T.; Rintamäki, E.; Aro, E.M.; Tikkanen, M. Plants acclimate to Photosystem I photoinhibition by readjusting the photosynthetic machinery. Plant Cell Environ. 2022, 45, 2954–2971. [Google Scholar] [CrossRef]
- Kim, E.; Yokono, M.; Tsugane, K.; Ishii, A.; Noda, C.; Minagawa, J. Formation of a stable PSI–PSII megacomplex in rice that conducts energy spillover. Plant Cell Physiol. 2023. Online ahead of print. [Google Scholar] [CrossRef]
- Kondepudi, D.; Prigogine, I. Modern Thermodynamics: From Heat Engines to Dissipative Structures; John Wiley & Sons: New York, NY, USA, 1998. [Google Scholar]
- Rouxel, O.J.; Bekker, A.; Edwards, K.J. Iron isotope constraints on the Archean and Paleoproterozoic ocean redox state. Science 2005, 307, 1088–1091. [Google Scholar] [CrossRef] [PubMed]
- Bayro-Kaiser, V.; Nelson, N. Microalgal hydrogen production: Prospects of an essential technology for a clean and sustainable energy economy. Photosynth. Res. 2017. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Happe, T.; Melis, A. Biotechnological approaches to improve biological hydrogen production systems. J. Biotechnol. 2020, 308, 59–70. [Google Scholar]
- Mazor, Y.; Toporik, H.; Nelson, N. Temperature-sensitive PSII and promiscuous PSI as a possible solution for sustainable photosynthetic hydrogen production. Biochim. Biophys. Acta 2012, 1817, 1122–1126. [Google Scholar] [CrossRef] [PubMed]
- Bayro-Kaiser, V.; Nelson, N. Temperature-sensitive PSII: A novel approach for sustained photosynthetic hydrogen production. Photosynth Res. 2016, 130, 113–121. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nelson, N. Coupling and Slips in Photosynthetic Reactions—From Femtoseconds to Eons. Plants 2023, 12, 3878. https://doi.org/10.3390/plants12223878
Nelson N. Coupling and Slips in Photosynthetic Reactions—From Femtoseconds to Eons. Plants. 2023; 12(22):3878. https://doi.org/10.3390/plants12223878
Chicago/Turabian StyleNelson, Nathan. 2023. "Coupling and Slips in Photosynthetic Reactions—From Femtoseconds to Eons" Plants 12, no. 22: 3878. https://doi.org/10.3390/plants12223878
APA StyleNelson, N. (2023). Coupling and Slips in Photosynthetic Reactions—From Femtoseconds to Eons. Plants, 12(22), 3878. https://doi.org/10.3390/plants12223878