Post-Emergence Water-Dispersal Application Provides Equal Herbicidal Activity against Echinochloa crus-galli and Rice Safety as Foliar Spraying of Penoxsulam
Abstract
:1. Introduction
2. Results
2.1. Dose–Response Experiments to Penoxsulam by PFS and PWD Application
2.2. Effects of Two Application Methods on Growth of Rice
2.3. Differences in Residues of Penoxsulam in Rice and E. Crus-Galli after PFS and PWD Treatments
2.4. Acetolactate Synthase (ALS), Cytochrome P450s (P450), and Glutathione S-Transferases (GST) Activity Assay
2.5. Expression Analysis of ALS Gene and Metabolism-Related Genes
3. Discussion
4. Materials and Methods
4.1. Plant Materials and Growth Conditions
4.2. Dose–Response Experiments to Penoxsulam by PFS and PWD Application
4.3. Penoxsulam Absorption in E. crus-galli Using HPLC-Q-TOF-MS
4.4. In Vitro Assay of ALS, GST, and Cytochrome P450 Activities in E. crus-galli
4.5. ALS, GST, and Cytochrome P450 Gene Expression Analysis in E. crus-galli
4.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jabusch, T.W.; Tjeerdema, R.S. Partitioning of penoxsulam, a new sulfonamide herbicide. J. Agric. Food Chem. 2005, 53, 7179–7183. [Google Scholar] [CrossRef] [PubMed]
- Willingham, S.D.; Mccauley, G.N.; Senseman, S.A.; Chandler, J.M.; Richburg, J.S.; Lassiter, R.B.; Mann, R.K. Influence of flood interval and cultivar on rice tolerance to penoxsulam. Weed Technol. 2008, 1, 114–118. [Google Scholar] [CrossRef]
- Wang, G.; Han, Y.; Li, X.; Andaloro, J.; Chen, P.; Hoffmann, W.C.; Han, X.; Chen, S.; Lan, Y. Field evaluation of spray drift and environmental impact using an agricultural unmanned aerial vehicle (UAV) sprayer. Sci. Total Environ. 2020, 737, 139793. [Google Scholar] [CrossRef] [PubMed]
- Benedetti, L.; Rangani, G.; Ebeling Viana, V.; Carvalho-Moore, P.; Merotto, A., Jr.; Rabaioli Camargo, E.; Antonio de Avila, L.; Roma-Burgos, N. Rapid Reduction of Herbicide Susceptibility in Junglerice by Recurrent Selection with Sublethal Dose of Herbicides and Heat Stress. Agronomy 2020, 10, 1761. [Google Scholar] [CrossRef]
- Busi, R.; Neve, P.; Powles, S. Evolved polygenic herbicide resistance in Lolium rigidum by low-dose herbicide selection within standing genetic variation. Evol. Appl. 2013, 6, 231–242. [Google Scholar] [CrossRef]
- Busi, R.; Powles, S.B. Evolution of glyphosate resistance in a Lolium rigidum population by glyphosate selection at sublethal doses. Heredity 2009, 103, 318–325. [Google Scholar] [CrossRef]
- Neve, P.; Powles, S. High survival frequencies at low herbicide use rates in populations of Lolium rigidum result in rapid evolution of herbicide resistance. Heredity 2005, 95, 485–492. [Google Scholar] [CrossRef]
- Ashworth, M.B.; Walsh, M.J.; Flower, K.C.; Powles, S.B. Recurrent selection with reduced 2,4-D amine doses results in the rapid evolution of 2,4-D herbicide resistance in wild radish (Raphanus raphanistrum L.). Pest Manag. Sci. 2016, 72, 2091–2098. [Google Scholar] [CrossRef]
- Tehranchian, P.; Norsworthy, J.K.; Powles, S.; Bararpour, M.T.; Bagavathiannan, M.V.; Barber, T.; Scott, R.C. Recurrent Sublethal-Dose Selection for Reduced Susceptibility of Palmer Amaranth (Amaranthus palmeri) to Dicamba. Weed Sci. 2017, 65, 206–212. [Google Scholar] [CrossRef]
- Strandberg, B.; Sørensen, P.B.; Bruus, M.; Bossi, R.; Dupont, Y.; Link, M.; Damgaard, C. Effects of glyphosate spray-drift on plant flowering. Environ. Pollut. 2021, 280, 116953. [Google Scholar] [CrossRef]
- Watanabe, H. Development of lowland weed management and weed succession in Japan. Weed Biol. Manag. 2011, 11, 175–189. [Google Scholar] [CrossRef]
- Wang, C.; Zeng, A.; He, X.; Song, J.; Herbst, A.; Gao, W. Spray drift characteristics test of unmanned aerial vehicle spray unit under wind tunnel conditions. Int. J. Agric. Biol. Eng. 2020, 13, 13–21. [Google Scholar] [CrossRef]
- Butler Ellis, M.; Webb, D.A.; Western, N.M. The effect of different spray liquids on the foliar retention of agricultural sprays by wheat plants in a canopy. Pest Manag. Sci. 2004, 60, 786–794. [Google Scholar] [CrossRef] [PubMed]
- Song, M.; Hu, D.; Zheng, X.; Wang, L.; Yu, Z.; An, W.; Na, R.; Li, C.; Li, N.; Lu, Z.; et al. Enhancing Droplet Deposition on Wired and Curved Superhydrophobic Leaves. ACS Nano 2019, 13, 7966–7974. [Google Scholar] [CrossRef] [PubMed]
- Fang, H.; Zhang, Z.; Xiao, S.; Liu, Y. Influence of leaf surface wettability on droplet deposition effect of rape leaves and their correlation. J. Agric. Food Res. 2019, 1, 100011. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, X.; Wang, Y.; Zheng, Z.; Zhang, C.; Wu, T.; Wu, Y.; Gao, Y.; Du, F. Improved Method to Characterize Leaf Surfaces, Guide Adjuvant Selection, and Improve Glyphosate Efficacy. J. Agric. Food Chem. 2023, 71, 1348–1359. [Google Scholar] [CrossRef] [PubMed]
- Sanyal, D.; Bhowmik, P.C.; Reddy, K.N. Influence of leaf surface micromorphology, wax content, and surfactant on primisulfur on droplet spread on barnyardgrass (Echinochloa crusgalli) and green foxtail (Setaria viridis). Weed Sci. 2006, 54, 62–633. [Google Scholar] [CrossRef]
- Kraehmer, H.; Jabran, K.; Mennan, H.; Chauhan, B.S. Global distribution of rice weeds—A review. Crop Prot. 2016, 80, 73–86. [Google Scholar] [CrossRef]
- Liu, T.; Yu, J.; Fang, J.; Dong, L. Rice safety and control of penoxsulam resistant and susceptible barnyardgrass (Echinochloa crusgalli) populations with soil-applied herbicides. Weed Technol. 2021, 35, 492–500. [Google Scholar] [CrossRef]
- Ye, C.Y.; Tang, W.; Wu, D.; Jia, L.; Qiu, J.; Chen, M.; Mao, L.; Lin, F.; Xu, H.; Yu, X.; et al. Genomic evidence of human selection on Vavilovian mimicry. Nat. Ecol. Evol. 2019, 3, 1474–1482. [Google Scholar] [CrossRef]
- Saudy, H.S.; El Metwally, I.M.; Shahin, M.G. Co–application effect of herbicides and micronutrients on weeds and nutrient uptake in flooded irrigated rice: Does it have a synergistic or an antagonistic effect? Crop Prot. 2021, 149, 105755. [Google Scholar] [CrossRef]
- El-Metwally, I.M.; Saudy, H.S. Interactive Application of Zinc and Herbicides Affects Broad-leaved Weeds, Nutrient Uptake, and Yield in Rice. J. Soil Sci. Plant Nutr. 2021, 21, 238–248. [Google Scholar] [CrossRef]
- Saudy, H.S. Chlorophyll meter as a tool for forecasting wheat nitrogen requirements after application of herbicides. Arch. Agron. Soil Sci. 2014, 60, 1077–1090. [Google Scholar] [CrossRef]
- Pan, L.; Guo, Q.; Wang, J.; Shi, L.; Yang, X.; Zhou, Y.; Yu, Q.; Bai, L. CYP81A68 confers metabolic resistance to ALS and ACCase-inhibiting herbicides and its epigenetic regulation in Echinochloa crusgalli. J. Hazard. Mater. 2022, 428, 128225. [Google Scholar] [CrossRef] [PubMed]
- Iwakami, S.; Uchino, A.; Kataoka, Y.; Shibaike, H.; Watanabe, H.; Inamura, T. Cytochrome P450 genes induced by bispyribac-sodium treatment in a multiple-herbicide-resistant biotype of Echinochloa phyllopogon. Pest Manag. Sci. 2014, 70, 549–558. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Zhao, H.; Zhao, L.; Hou, J. Synergistic effect and field efficacy of penoxsulam mixed with diflufenican against weeds in transplanted rice. Chin. J. Pestic. Sci. 2022, 24, 812–818. [Google Scholar] [CrossRef]
- Fang, J.; Yang, D.; Zhao, Z.; Chen, J.; Dong, L. A novel Phe-206-Leu mutation in acetolactate synthase confers resistance to penoxsulam in barnyardgrass (Echinochloa crusgalli (L.) P. Beauv). Pest Manag. Sci. 2022, 78, 2560–2570. [Google Scholar] [CrossRef]
- Yu, X.; Ma, H.; Yang, X.; Zhang, J.; Lu, X.; Tang, W. Resistance mechanism of Echinochloa crusgalli to penoxsulam in the rice field in Ningxia province. Plant Prot. Sci. 2022, 48, 196–202. [Google Scholar] [CrossRef]
- Fang, J.; Liu, T.; Zhang, Y.; Li, J.; Dong, L. Target Site–Based Penoxsulam Resistance in Barnyardgrass (Echinochloa crusgalli) from China. Weed Sci. 2019, 67, 281–287. [Google Scholar] [CrossRef]
- Li, D.; Zhang, J.; Cheng, C.; Hou, K.; Wang, X.; Zhu, L.; Li, B.; Du, Z.; Wang, J.; Wang, J. Effects of ecotoxicity of penoxsulam single and co-exposure with AgNPs on Eisenia fetida. Chemosphere 2022, 307, 136134. [Google Scholar] [CrossRef]
- Stagnari, F. A review of the factors influencing the absorption and efficacy of lipophilic and highly water-soluble post-emergence herbicides. Eur. J. Plant Sci. Biotechnol. 2007, 1, 22–35. [Google Scholar]
- Alister, C.A.; Araya, M.A.; Kogan, M. Adsorption and desorption variability of four herbicides used in paddy rice production. J. Environ. Sci. Health B 2011, 46, 62–68. [Google Scholar] [CrossRef] [PubMed]
- Jabusch, T.W.; Tjeerdema, R.S. Microbial degradation of penoxsulam in flooded rice field soils. J. Agric. Food Chem. 2006, 54, 5962–5967. [Google Scholar] [CrossRef] [PubMed]
- Kogan, M.; Araya, M.; Alister, C. Water and sediment dynamics of penoxsulam and molinate in paddy fields: Field and lysimeter studies. Pest Manag. Sci. 2012, 68, 399–403. [Google Scholar] [CrossRef]
- Tsochatzis, E.D.; Tzimou-Tsitouridou, R.; Menkissoglu-Spiroudi, U.; Karpouzas, D.; Katsantonis, D. Laboratory and field dissipation of penoxsulam, tricyclazole and profoxydim in rice paddy systems. Chemosphere 2013, 91, 1049–1057. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Zhu, H.; Ozkan, H.E.; Bagley, W.E.; Krause, C.R. Droplet evaporation and spread on waxy and hairy leaves associated with type and concentration of adjuvants. Pest Manag. Sci. 2011, 67, 842–851. [Google Scholar] [CrossRef] [PubMed]
- Liao, H.; Chen, Y.; Shen, X. Difference and cause of appressorium formation of Exserohilum monoceras on epicuticular wax from Oryza sativa. J. Nanjing Agric. Univ. 2015, 38, 727–734. [Google Scholar] [CrossRef]
- Siminszky, B. Plant cytochrome P450-mediated herbicide metabolism. Phytochem. Rev. 2006, 5, 445–458. [Google Scholar] [CrossRef]
- Feng, T.; Peng, Q.; Wang, L.; Xie, Y.; Ouyang, K.; Li, F.; Zhou, H.; Ma, H. Multiple resistance mechanisms to penoxsulam in Echinochloa crusgalli from China. Pestic. Biochem. Phys. 2022, 187, 105211. [Google Scholar] [CrossRef]
- Fang, J.; Zhang, Y.; Liu, T.; Yan, B.; Li, J.; Dong, L. Target-Site and Metabolic Resistance Mechanisms to Penoxsulam in Barnyardgrass (Echinochloa crusgalli (L.) P. Beauv). J. Agric. Food Chem. 2019, 67, 8085–8095. [Google Scholar] [CrossRef]
- Zhao, N.; Yan, Y.; Luo, Y.; Zou, N.; Liu, W.; Wang, J. Unravelling mesosulfuron-methyl phytotoxicity and metabolism-based herbicide resistance in Alopecurus aequalis: Insight into regulatory mechanisms using proteomics. Sci. Total Environ. 2019, 670, 486–497. [Google Scholar] [CrossRef] [PubMed]
- Bai, S.; Liu, W.; Wang, H.; Zhao, N.; Jia, S.; Zou, N.; Guo, W.; Wang, J. Enhanced Herbicide Metabolism and Metabolic Resistance Genes Identified in Tribenuron-Methyl Resistant Myosoton aquaticum L. J. Agric. Food Chem. 2018, 66, 9850–9857. [Google Scholar] [CrossRef] [PubMed]
- Nelson, D.; Werck Reichhart, D. A P450-centric view of plant evolution. Plant J. Cell Mol. Biol. 2011, 66, 194–211. [Google Scholar] [CrossRef] [PubMed]
- Höfer, R.; Boachon, B.; Renault, H.; Gavira, C.; Miesch, L.; Iglesias, J.; Ginglinger, J.-F.; Allouche, L.; Miesch, M.; Grec, S.; et al. Dual Function of the Cytochrome P450 CYP76 Family from Arabidopsis thaliana in the Metabolism of Monoterpenols and Phenylurea Herbicides. Plant Physiol. (Bethesda) 2014, 166, 1149–1161. [Google Scholar] [CrossRef] [PubMed]
- Iwakami, S.; Endo, M.; Saika, H.; Okuno, J.; Nakamura, N.; Yokoyama, M.; Watanabe, H.; Toki, S.; Uchino, A.; Inamura, T. Cytochrome P450 CYP81A12 and CYP81A21 Are Associated with Resistance to Two Acetolactate Synthase Inhibitors in Echinochloa phyllopogon. Plant Physiol. 2014, 165, 618–629. [Google Scholar] [CrossRef] [PubMed]
- Dimaano, N.G.; Yamaguchi, T.; Fukunishi, K.; Tominaga, T.; Iwakami, S. Functional characterization of cytochrome P450 CYP81A subfamily to disclose the pattern of cross-resistance in Echinochloa phyllopogon. Plant Mol. Biol. 2020, 102, 403–416. [Google Scholar] [CrossRef]
- Zeng, N.; Yang, Z.; Zhang, Z.; Hu, L.; Chen, L. Comparative Transcriptome Combined with Proteome Analyses Revealed Key Factors Involved in Alfalfa (Medicago sativa) Response to Waterlogging Stress. Int. J. Mol. Sci. 2019, 20, 1359. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Chen, M.; Ji, J.; Xu, Q.; Qi, X.; Chen, X. Comparative RNA-seq based transcriptome profiling of waterlogging response in cucumber hypocotyls reveals novel insights into the de novo adventitious root primordia initiation. BMC Plant Biol. 2017, 17, 129. [Google Scholar] [CrossRef]
- Yasuor, H.; Osuna, M.D.; Ortiz, A.; Saldaín, N.E.; Eckert, J.W.; Fischer, A.J. Mechanism of Resistance to Penoxsulam in Late Watergrass [Echinochloa phyllopogon (Stapf) Koss.]. J. Agric. Food Chem. 2009, 57, 3653–3660. [Google Scholar] [CrossRef]
- Liu, J.; Fang, J.; Dong, L. Analysis of the resistance level and its mechanism of barnyard grass Echinochloa oryzoides population HJHL-715 to penoxsulam. J. Plant Prot. 2020, 47, 197–204. [Google Scholar]
- Livak, K.J.; Schmittgen, T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Seefeldt, S.S.; Jensen, J.E.; Fuerst, E.P. Log-logistic analysis of herbicide dose-response relationships. Weed Technol. 1995, 9, 218–227. [Google Scholar] [CrossRef]
Treat Target | Dose (g a.i.ha−1) | Inhibition Rate of Rice Fresh Weight ± SE(%) | p-Value | |
---|---|---|---|---|
PFS | PWD | |||
1-leaf-stage rice | 15 | 38.3 ± 7.3 | 28.0 ± 6.5 | 0.299 |
30 | 50.4 ± 0.9 | 42.7 ± 7.0 | 0.313 | |
3-leaf-stage rice | 15 | 31.5 ± 9.0 | 23.5 ± 6.0 | 0.424 |
30 | 47.0 ± 2.7 | 36.5 ± 3.2 | 0.024 | |
5-leaf-stage rice | 15 | 29.0 ± 5.6 | 17.1 ± 4.6 | 0.150 |
30 | 31.6 ± 4.9 | 27.6 ± 1.3 | 0.454 |
Target | Dose (g a.i.ha−1) | Method | Remaining Penoxsulam (µg/kg) | |||
---|---|---|---|---|---|---|
12 h | 24 h | 72 h | 120 h | |||
Rice | 7.5 | PFS | 17.0 ± 5.7 a | 4.0 ± 5.7 b | 4.0 ± 5.7 b | 0.0 ± 0.0 b |
PWD | ND | ND | ND | ND | ||
30 | PFS | 59.0 ± 5.7 a | 39.5 ± 2.5 b | 39.0 ± 6.0 b | 20.5 ± 3.5 c | |
PWD | ND | ND | ND | ND | ||
E.crus-galli | 7.5 | PFS | 21.5 ± 2.5 a | 20.0 ± 0.6 a | 13.5 ± 1.5 b | 0.0 ± 0.0 c |
PWD | ND | ND | ND | ND | ||
30 | PFS | 320.0 ± 20.0 a | 76.0 ± 9.1 b | 34.0 ± 4.2 c | 29.7 ± 4.4 c | |
PWD | 10.3 ± 0.3 c | 11.7 ± 0.9 c | 16.5 ± 1.5 b | 20.3 ± 1.2 a |
Primer | Sequence (5′–3′) | References |
---|---|---|
β-actin-F | TTGCCTACATTGCCCTTGACTA | (Iwakami et al. 2014 [25]) |
β-actin-S | GAACCACCACTGAGGACGACA | |
ALS-F | TGGGGCTATGGGATTTGGTT | GenBank, KY071206.1 |
ALS-R | GCACAAAGACCTTCACTGGG | |
GST1-F | AACGCAATGGCAGGTCTGAA | GenBank, JX122857.1 |
GST1-R | TACCGTTGTGGATGAGCACG | |
CYP81A12-F | CACCCGGAGAAGCTCAAAAG | GenBank, AB818461 |
CYP81A12-R | ATGATGCTCTGGAGGTAGCC | |
CYP81A14-F | AAGAACGACCTCCCCCATCT | GenBank, AB733994 |
CYP81A14-R | GGATGGCATACGCATTGACG | |
CYP81A18-F | ATGCCATTCGGGATGGGAAG | GenBank, AB733996 |
CYP81A18-R | AGAGCTTCCAAAGGGACGAC | |
CYP81A21-F | CAACCTGTGGGACTACCTGC | GenBank, AB818462 |
CYP81A21-R | GCACGGCAATCATGCTCTTC |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, J.; Yu, X.; Xu, H.; Yang, Y.; Liu, M.; Zhang, Y.; Lu, Y.; Tang, W. Post-Emergence Water-Dispersal Application Provides Equal Herbicidal Activity against Echinochloa crus-galli and Rice Safety as Foliar Spraying of Penoxsulam. Plants 2023, 12, 4061. https://doi.org/10.3390/plants12234061
Sun J, Yu X, Xu H, Yang Y, Liu M, Zhang Y, Lu Y, Tang W. Post-Emergence Water-Dispersal Application Provides Equal Herbicidal Activity against Echinochloa crus-galli and Rice Safety as Foliar Spraying of Penoxsulam. Plants. 2023; 12(23):4061. https://doi.org/10.3390/plants12234061
Chicago/Turabian StyleSun, Jinqiu, Xiaoyue Yu, Hongxing Xu, Yongjie Yang, Mengjie Liu, Yanchao Zhang, Yongliang Lu, and Wei Tang. 2023. "Post-Emergence Water-Dispersal Application Provides Equal Herbicidal Activity against Echinochloa crus-galli and Rice Safety as Foliar Spraying of Penoxsulam" Plants 12, no. 23: 4061. https://doi.org/10.3390/plants12234061
APA StyleSun, J., Yu, X., Xu, H., Yang, Y., Liu, M., Zhang, Y., Lu, Y., & Tang, W. (2023). Post-Emergence Water-Dispersal Application Provides Equal Herbicidal Activity against Echinochloa crus-galli and Rice Safety as Foliar Spraying of Penoxsulam. Plants, 12(23), 4061. https://doi.org/10.3390/plants12234061