Rosmarinic Acid and Flavonoids of the Seagrass Zostera noltei: New Aspects on Their Quantification and Their Correlation with Sunlight Exposure
Abstract
:1. Introduction
2. Results
2.1. Analysis of Phenolic Secondary Metabolites in Fresh, Dried, and Frozen Leaves of Z. noltei
2.2. Phenolic Secondary Metabolites in Z. noltei Leaves Periodically Emerged during Low Tides vs. Leaves Permanently Submerged
2.3. Phenolic Secondary Metabolites in Z. noltei Plants Shaded with UV Filters
2.4. UV Spectra and Antioxidant Activity of Extracts
3. Discussion
3.1. Influence of Drying and Freezing on the RA and Flavonoid Content of Z. noltei Leaves
3.2. RA and Flavonoid Content in the Leaves of Z. noltei Plants Subjected to Different Sunlight Exposure
4. Materials and Methods
4.1. Sampling Sites and Plant Materials
4.1.1. Zostera noltei Hornemann
4.1.2. Samples for the Study of Phenolic Profile in Fresh, Dried, and Frozen Leaves
4.1.3. Samples for the Study of Phenolic Profile in Leaves Periodically Emerged vs. Leaves Permanently Submerged
4.2. Experimental Design and Sampling for the Experiment In Situ on the Influence of Exposure to Sunlight
4.3. Extraction
4.4. Quantitative Analyses by UPLC–MS
4.5. UV Spectra
4.6. Antioxidant Activity
4.7. Statistical Analyses
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Short, F.; Carruthers, T.; Dennison, W.; Waycott, M. Global seagrass distribution and diversity: A bioregional model. J. Exp. Mar. Biol. Ecol. 2007, 350, 3–20. [Google Scholar] [CrossRef]
- Short, F.T.; Short, C.A.; Novak, A.B. Seagrasses. In The Wetland Book; Finlayson, C., Milton, G., Prentice, R., Davidson, N., Eds.; Springer: Dordrecht, The Netherlands, 2016; pp. 1–19. [Google Scholar]
- Duarte, C.M. Reviews and syntheses: Hidden forests, the role of vegetated coastal habitats in the ocean carbon budget. Biogeosciences 2017, 14, 301–310. [Google Scholar] [CrossRef]
- Sousa, A.I.; Figuereido da Silva, J.; Azevedo, A.; Lillebo, A.I. Blue carbon stock in Zostera noltei meadows at Ria de Aveiro coastal lagoon (Portugal) over a decade. Sci. Rep. 2019, 9, 14387. [Google Scholar] [CrossRef] [PubMed]
- Silva, J.; Santos, R. Daily variation patterns in seagrass photosynthesis along a vertical gradient. Mar. Ecol. Prog. Ser. 2003, 257, 37–44. [Google Scholar] [CrossRef]
- Kono, M.; Terashima, I. Long-term and short-term responses of photosynthetic electron transport to fluctuating light. J. Photoch. Photobio. B 2014, 137, 89–99. [Google Scholar] [CrossRef] [PubMed]
- Park, S.R.; Kim, S.; Kim, Y.K.; Kang, C.-K.; Lee, K.-S. Photoacclimatory responses of Zostera marina in the intertidal and subtidal zones. PLoS ONE 2016, 11, e0156214. [Google Scholar] [CrossRef] [PubMed]
- Kohlmeier, D.; Pilditch, C.A.; Bornman, J.F.; Bischof, K. Adjustment of photoprotection to tidal conditions in intertidal seagrasses. J. Mar. Biol. Assoc. UK 2017, 97, 571–579. [Google Scholar] [CrossRef]
- Ralph, P.J.; Polk, S.M.; Moore, K.A.; Orth, R.J.; Smith, W.O., Jr. Operation of the xanthophyll cycle in the seagrass Zostera marina in response to variable irradiance. J. Exp. Mar. Biol. Ecol. 2002, 271, 189–207. [Google Scholar] [CrossRef]
- Marín-Guirao, L.; Ruiz, J.M.; Sandoval-Gil, J.M.; Bernardeau-Esteller, J.; Stinco, C.M.; Melendez-Martínez, A. Xanthophyll cycle-related photoprotective mechanism in the Mediterranean seagrasses Posidonia oceanica and Cymodocea nodosa under normal and stressful hypersaline conditions. Aquat. Bot. 2013, 109, 14–24. [Google Scholar] [CrossRef]
- Zidorn, C. Secondary metabolites of seagrasses (Alismatales and Potamogetonales; Alismatidae): Chemical diversity, bioactivity, and ecological function. Phytochemistry 2016, 124, 5–28. [Google Scholar] [CrossRef]
- Sieg, R.D.; Kubanek, J. Chemical ecology of marine angiosperms: Opportunities at the interface of marine and terrestrial systems. J. Chem. Ecol. 2013, 39, 687–711. [Google Scholar] [CrossRef] [PubMed]
- Stelzner, J.; Roemhild, R.; Garibay-Hernández, A.; Harbaum-Piayda, B.; Mock, H.-P.; Bilger, W. Hydroxycinnamic acids in sunflower leaves serve as UV-A screening pigments. Photochem. Photobiol. Sci. 2019, 18, 1649–1659. [Google Scholar] [CrossRef]
- Ferreyra, M.L.F.; Serra, P.; Casati, P. Recent advances on the roles of flavonoids as plant protective molecules after UV and high light exposure. Physiol. Plantarum 2021, 173, 736–749. [Google Scholar] [CrossRef] [PubMed]
- Agati, G.; Brunetti, C.; Di Ferdinando, M.; Ferrini, F.; Pollastri, S.; Tattini, M. Functional roles of flavonoids in photoprotection: New evidence, lessons from the past. Plant. Physiol. Biochem. 2013, 72, 35–45. [Google Scholar] [CrossRef] [PubMed]
- Zapata, O.; McMillan, C. Phenolic acids in seagrasses. Aquat. Bot. 1979, 7, 307–317. [Google Scholar] [CrossRef]
- McMillan, C.; Zapata, O.; Escobar, L. Sulphated phenolic compounds in seagrasses. Aquat. Bot. 1980, 8, 267–278. [Google Scholar] [CrossRef]
- Grignon-Dubois, M.; Rezzonico, B.; Alcoverro, T. Regional scale patterns in seagrass defences: Phenolic acid content in Zostera noltii. Estuar. Coast. Shelf Sci. 2012, 114, 18–22. [Google Scholar] [CrossRef]
- Grignon-Dubois, M.; Rezzonico, B. First phytochemical evidence of chemotypes for the seagrass Zostera noltii. Plants 2012, 1, 27–38. [Google Scholar] [CrossRef]
- Manck, L.; Quintana, E.; Suárez, R.; Brun, F.G.; Hernández, I.; Ortega, M.J.; Zubía, E. Profiling of phenolic natural products in the seagrass Zostera noltei by UPLC-MS. Nat. Prod. Commun. 2017, 12, 687–690. [Google Scholar] [CrossRef]
- Enerstvedt, K.H.; Lundberg, A.; Sjotun, I.K.; Fadnes, P.; Jordheim, M. Characterization of seasonal variation of individual flavonoids in Zostera marina and Zostera noltii from Norwegian coastal waters. Biochem. Syst. Ecol. 2017, 74, 42–50. [Google Scholar] [CrossRef]
- Grignon-Dubois, M.; Rezzonico, B. Phenolic chemistry of the seagrass Zostera noltei Hornem. Part 1: First evidence of three intraspecific flavonoid chemotypes in three distinctive geographical regions. Phytochemistry 2018, 146, 91–101. [Google Scholar] [CrossRef]
- Casal-Porras, I.; Jiménez-Ramos, R.; Zubía, E.; Brun, F.G. Importance of the chemical defenses and sugars in the feeding preference of Paracentrotus lividus over two sympatric template seagrass species. Estuar. Coast. Shelf Sci. 2021, 259, 107466. [Google Scholar] [CrossRef]
- Waterman, P.G.; Mole, S. Analysis of Phenolic Plant Metabolites; Blackwell Scientific Publications: Oxford, England, 1994; pp. 66–73. [Google Scholar]
- Blaschek, L.; Pesquet, E. Phenoloxidases in plants-How structural diversity enables functional specifity. Front. Plant Sci. 2021, 12, 754601. [Google Scholar] [CrossRef] [PubMed]
- Yoruk, R.; Marshall, M.R. Physicochemical properties and function of plant polyphenol oxidase: A review. J. Food. Biochem. 2003, 27, 361–422. [Google Scholar] [CrossRef]
- Keinänen, M.; Julkunen-Tiitto, R. Effect of sample preparation method on birch (Betula pendula Roth) leaf phenolics. J. Agric. Food Chem. 1996, 44, 2724–2727. [Google Scholar] [CrossRef]
- Julkunen-Tiitto, R.; Sorsa, S. Testing the effects of drying methods on willow flavonoids, tannins, and salicylates. J. Chem. Ecol. 2001, 27, 779–789. [Google Scholar] [CrossRef] [PubMed]
- Mulinacci, N.; Innocenti, M.; Bellumori, M.; Giaccherini, C.; Martini, V.; Michelozzi, M. Storage method, drying processes and extraction procedures strongly affect the phenolic fraction of rosemary leaves: An HPLC/DAD/MS study. Talanta 2011, 85, 167–176. [Google Scholar] [CrossRef]
- De Torres, C.; Díaz-Maroto, M.C.; Hermosín-Gutiérrez, I.; Pérez-Coello, M.S. Effect of freeze-drying and oven-drying on volatiles and phenolics composition of grape skin. Anal. Chim. Acta 2010, 660, 177–182. [Google Scholar] [CrossRef]
- Wojdylo, A.; Figiel, A.; Lech, K.; Nowicka, P.; Oszmianski, J. Effect of convective and vacuum-microwave drying on the bioactive compounds, color, and antioxidant capacity of sour cherries. Food Bioprocess Technol. 2014, 7, 829–841. [Google Scholar] [CrossRef]
- Wojdylo, A.; Figiel, A.; Oszmianski, J. Effect of drying methods with the application of vacuum microwaves on the bioactive compounds, color, and antioxidant activity of strawberry fruits. J. Agric. Food Chem. 2009, 57, 1337–1343. [Google Scholar] [CrossRef]
- Marston, A.; Hostettmann, K. Separation and quantification of flavonoids. In Flavonoids-Chemistry, Biochemistry and Applications; Andersen, Ø.M., Markham, K.R., Eds.; CRC: Boca Raton, FL, USA, 2006; pp. 1–3. [Google Scholar]
- Suhaj, M. Spice antioxidants isolation and their antiradical activity: A review. J. Food Compos. Anal. 2006, 19, 531–537. [Google Scholar] [CrossRef]
- Li, R.; Shang, H.; Wu, H.; Wang, M.; Duan, M.; Yang, J. Thermal inactivation kinetics and effects of drying methods on the phenolic profile and antioxidant activities of chicory (Cichorium intybus L.) leaves. Sci. Rep. 2018, 8, 9529. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Lei, F.; Sun, D.-W.; Dong, Y.; Yang, B.; Zhao, M. Thermal inactivation kinetics of Rabdosia serra (Maxim.) Hara leaf peroxidase and polyphenol oxidase and comparative evaluation of drying methods on leaf phenolic profile and bioactivities. Food Chem. 2012, 134, 2021–2029. [Google Scholar] [CrossRef] [PubMed]
- Periche, A.; Castelló, M.L.; Heredia, A.; Escriche, I. Effect of different drying methods on the phenolic, flavonoid, and volatile compounds of Stevia rebaudiana leaves. Flavour Frag. J. 2016, 31, 173–177. [Google Scholar] [CrossRef]
- Rickman, J.C.; Barret, D.M.; Bruhn, C.M. Nutritional comparison of fresh, frozen and canned fruits and vegetables, Part 1. Vitamins C and B and phenolic compounds. J. Sci. Food Agric. 2007, 87, 930–944. [Google Scholar] [CrossRef]
- De Ancos, B.; González, E.M.; Cano, M.P. Ellagic acid, vitamin C, and total phenolic contents and radical scavenging capacity affected by freezing and frozen storage in raspberry fruit. J. Agric. Food Chem. 2000, 48, 4565–4570. [Google Scholar] [CrossRef] [PubMed]
- Cannac, M.; Ferrat, L.; Barboni, T.; Pergent, G.; Pasqualini, V. The influence of tissue handling on the flavonoid content of the aquatic plant Posidonia oceanica. J. Chem. Ecol. 2007, 33, 1083–1088. [Google Scholar] [CrossRef]
- Iwai, M.; Ohta, M.; Tsuchiya, H.; Suzuki, T. Enhanced accumulation of caffeic acid, rosmarinic acid and luteolin-glucoside in red perilla cultivated under red diode laser and blue LED illumination followed by UV-A irradiation. J. Funct. Foods 2010, 2, 66–70. [Google Scholar] [CrossRef]
- Luis, J.C.; Pérez, R.M.; González, F.V. UV-B radiation effects on foliar concentrations of rosmarinic acid and carnosic acid in rosemary plants. Food Chem. 2007, 101, 1211–1215. [Google Scholar] [CrossRef]
- Nadeem, M.; Abbasi, B.H.; Younas, M.; Ahmad, W.; Zahir, A.; Hano, C. LED-enhanced biosynthesis of biologically active ingredients in callus cultures of Ocimum basilicum. J. Photochem. Photobiol. B 2019, 190, 172–178. [Google Scholar] [CrossRef]
- Chen, I.-G.; Lee, M.-S.; Lin, M.-K.; Ko, C.-Y.; Chang, W.-T. Blue light decreases tanshinone IIA content in Salvia miltiorrhiza hairy roots via genes regulation. J. Photochem. Photobiol. B 2018, 183, 164–171. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Zhang, X.; Guo, Q.; Liu, L.; Li, C.; Cao, L.; Qin, Q.; Zhao, M.; Wang, W. Effects of UV-B radiation on the content of bioactive components and the antioxidant activity of Prunella vulgaris L. spica during development. Molecules 2018, 23, 989. [Google Scholar] [CrossRef] [PubMed]
- Agati, G.; Tattini, M. Multiple functional roles of flavonoids in photoprotection. New Phytol. 2010, 186, 786–793. [Google Scholar] [CrossRef] [PubMed]
- Mierziak, J.; Kostyn, K.; Kulma, A. Flavonoids as important molecules of plant interactions with the environment. Molecules 2014, 19, 16240–16265. [Google Scholar] [CrossRef] [PubMed]
- Agati, G.; Azzarello, E.; Pollastri, S.; Tattini, M. Flavonoids as antioxidants in plants: Location and functional significance. Plant Sci. 2012, 196, 67–76. [Google Scholar] [CrossRef]
- Agati, G.; Stefano, G.; Biricolti, S.; Tattini, M. Mesophyll distribution of “antioxidant” flavonoid glycosides in Ligustrum vulgare leaves under contrasting sunlight irradiance. Ann. Bot. 2009, 104, 853–861. [Google Scholar] [CrossRef]
- Tattini, M.; Galardi, C.; Pinelli, P.; Massai, R.; Remorini, D.; Agati, G. Differential accumulation of flavonoids and hydroxycinnamates in leaves of Ligustrum vulgare under excess light and drought stress. New Phytol. 2004, 163, 547–561. [Google Scholar] [CrossRef]
- Tattini, M.; Gravano, E.; Pinelli, P.; Mulinacci, N.; Romani, A. Flavonoids accumulate in leaves and glandular trichomes of Phillyrea latifolia exposed to excess solar radiation. New Phytol. 2000, 148, 69–77. [Google Scholar] [CrossRef]
- Van de Staaij, J.; de Bakker, N.V.J.; Oosthoek, A.; Broekman, R.; van Beem, A.; Stroetenga, M.; Aerts, R.; Rozema, J. Flavonoid concentrations in three grass species and sedge grown in the field and under controlled environment conditions in response to enhanced UV-B radiation. J. Photochem. Photobiol. B 2002, 66, 21–29. [Google Scholar] [CrossRef]
- Jang, H.-J.; Lee, S.-J.; Kim, C.Y.; Hwang, J.T.; Choi, J.H.; Park, J.H.; Lee, S.W.; Rho, M.-C. Effect of sunlight radiation on the growth and chemical constituents of Salvia plebeia R.Br. Molecules 2017, 22, 1279. [Google Scholar] [CrossRef]
- Dybsland, C.S.; Bekkby, T.; Enerstvedt, K.H.; Kvalheim, O.M.; Rinde, E.; Jordheim, M. Variation in phenolic chemistry in Zostera marina seagrass along environmental gradients. Plants 2021, 10, 334. [Google Scholar] [CrossRef] [PubMed]
- Papazian, S.; Parrot, D.; Burýšková, B.; Weinberger, F.; Tasdemir, D. Surface chemical defence of the eelgrass Zostera marina against microbial foulers. Sci. Rep. 2019, 9, 3323. [Google Scholar] [CrossRef] [PubMed]
- Guan, C.; Parrot, D.; Wiese, J.; Sönnichsen, F.D.; Saha, M.; Tasdemir, D. Identification of rosmarinic acid and sulfated flavonoids as inhibitors of microfouling on the surface of eelgrass Zostera marina. Biofouling 2017, 33, 867–880. [Google Scholar] [CrossRef] [PubMed]
- Barron, D.; Varin, L.; Ibrahim, R.K.; Harborne, J.B.; Williams, C.A. Sulphated flavonoids-an update. Phytochemistry 1988, 27, 2375–2395. [Google Scholar] [CrossRef]
- Brun, F.G.; Vergara, J.J.; Peralta, G.; García-Sánchez, M.P.; Hernández, I.; Pérez-Lloréns, J.L. Clonal building, simple growth rules and phylloclimate as key steps to develop functional–structural seagrass models. Mar. Ecol. Progr. Ser. 2006, 323, 133–148. [Google Scholar] [CrossRef]
- Brun, F.G.; Pérez-Lloréns, J.L.; Hernández, I.; Vergara, J.J. Patch distribution and within-patch dynamics of the seagrass Zostera noltii Hornem. in los Toruños Salt-Marsh, Cádiz Bay, Natural Park, Spain. Bot. Mar. 2003, 46, 513–524. [Google Scholar] [CrossRef]
- Brun, F.G.; Cummaudo, F.; Olivé, I.; Vergara, J.J.; Pérez-Lloréns, J.L. Clonal extent, apical dominance and networking features in the phalanx angiosperm Zostera noltii Hornem. Mar. Biol. 2007, 151, 1917–1927. [Google Scholar] [CrossRef] [PubMed]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
Site 1 | Site 1 | Site 2 | Site 3 | Site 3 | |
---|---|---|---|---|---|
Compound | January | March | March | May | June |
RA | 29.99 ± 1.59 | 30.12 ± 0.40 | 24.75 ± 1.72 | 22.29 ± 1.73 | 41.58 ± 1.87 |
APS | 12.98 ± 1.46 | 11.74 ± 1.42 | 16.49 ± 0.71 | 12.38 ± 0.29 | 16.09 ± 1.26 |
LS | 5.51 ± 0.36 | 3.88 ± 0.62 | 6.72 ± 0.61 | 4.40 ± 1.23 | 3.77 ± 0.96 |
DS | 3.93 ± 0.20 | 2.92 ± 0.20 | 4.00 ± 0.43 | 1.72 ± 0.89 | 1.12 ± 0.61 |
APG | 1.26 ± 0.04 | 1.33 ± 0.20 | 1.78 ± 0.28 | 0.75 ± 0.11 | 1.19 ± 0.38 |
LG | 0.53 ± 0.03 | 0.45 ± 0.03 | 0.54 ± 0.02 | 0.23 ± 0.11 | 0.24 ± 0.12 |
Total flavonoids | 24.22 ± 1.96 | 20.31 ± 2.11 | 29.51 ± 1.76 | 19.48 ± 2.01 | 22.41 ± 1.20 |
Compound | Zone I | Zone S | |
---|---|---|---|
March | RA | 41.78 ± 1.59 a | 24.65 ± 1.16 b |
APS | 22.00 ± 1.16 a | 16.27 ± 0.81 b | |
LS | 7.65 ± 0.27 a | 6.96 ± 0.36 a | |
DS | 7.35 ± 0.21 a | 3.96 ± 0.26 b | |
APG | 4.59 ± 0.40 a | 1.94 ± 0.16 b | |
LG | 1.49 ± 0.06 | nq | |
Total flavonoids | 43.08 ± 1.83 a | 29.13 ± 1.38 b | |
April | RA | 47.55 ± 0.66 a | 37.92 ± 1.80 b |
APS | 21.80 ± 0.41 a | 20.66 ± 1.15 a | |
LS | 7.28 ± 0.42 a | 5.84 ± 0.40 b | |
DS | 4.30 ± 0.09 a | 3.67 ± 0.33 a | |
APG | 4.85 ± 0.26 a | 3.63 ± 0.25 b | |
LG | 1.64 ± 0.11 a | 0.80 ± 0.03 b | |
Total flavonoids | 39.88 ± 0.42 a | 34.60 ± 1.73 b |
Zone I | Zone S | Control | UV Filter | RA | Trolox | |
---|---|---|---|---|---|---|
EC50 (μg/mL) | 11.69 ± 0.03 * | 27.54 ± 2.66 | 17.84 ± 3.49 # | 31.19 ± 2.83 | 2.44 ± 0.01 | 2.45 ± 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Casal-Porras, I.; Muñoz, K.; Ortega, M.J.; Brun, F.G.; Zubía, E. Rosmarinic Acid and Flavonoids of the Seagrass Zostera noltei: New Aspects on Their Quantification and Their Correlation with Sunlight Exposure. Plants 2023, 12, 4078. https://doi.org/10.3390/plants12244078
Casal-Porras I, Muñoz K, Ortega MJ, Brun FG, Zubía E. Rosmarinic Acid and Flavonoids of the Seagrass Zostera noltei: New Aspects on Their Quantification and Their Correlation with Sunlight Exposure. Plants. 2023; 12(24):4078. https://doi.org/10.3390/plants12244078
Chicago/Turabian StyleCasal-Porras, Isabel, Kimberly Muñoz, María J. Ortega, Fernando G. Brun, and Eva Zubía. 2023. "Rosmarinic Acid and Flavonoids of the Seagrass Zostera noltei: New Aspects on Their Quantification and Their Correlation with Sunlight Exposure" Plants 12, no. 24: 4078. https://doi.org/10.3390/plants12244078
APA StyleCasal-Porras, I., Muñoz, K., Ortega, M. J., Brun, F. G., & Zubía, E. (2023). Rosmarinic Acid and Flavonoids of the Seagrass Zostera noltei: New Aspects on Their Quantification and Their Correlation with Sunlight Exposure. Plants, 12(24), 4078. https://doi.org/10.3390/plants12244078