Biostimulatory Effects of Chlorella fusca CHK0059 on Plant Growth and Fruit Quality of Strawberry
Abstract
:1. Introduction
2. Results
2.1. Plant Characteristics
2.1.1. Plant Biomass and Nutrient Content
2.1.2. Photosynthetic Rate and Pigments
2.2. Fruit Characteristics during the Monitoring Period
2.2.1. Hardness, Soluble Solids Content, and Biomass
2.2.2. Nutrients
2.2.3. Sugars
2.2.4. Organic Acids
2.2.5. Fruit Flavor Quality
2.2.6. Correlations of Fruit Properties
2.3. Anthocyanin Content
2.4. Postharvest Disease Incidence
2.5. Principal Component Analysis
3. Discussion
4. Materials and Methods
4.1. Chlorella Inoculation
4.2. Plant Cultivation and Chlorella Treatment
4.3. Fruit and Plant Collection
4.4. Grey Mold Incidence during Postharvest Storage
4.5. Analytical
4.6. Fruit Quality Index
4.7. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kim, Y.-N.; Cho, Y.-S.; Lee, J.-H.; Seo, H.-R.; Kim, B.-H.; Lee, D.-B.; Lee, Y.B.; Kim, K.-H. Short-Term Responses of Soil Organic Carbon Pool and Crop Performance to Different Fertilizer Applications. Agronomy 2022, 12, 1106. [Google Scholar] [CrossRef]
- Daniel, A.I.; Fadaka, A.O.; Gokul, A.; Bakare, O.O.; Aina, O.; Fisher, S.; Burt, A.F.; Mavumengwana, V.; Keyster, M.; Klein, A. Biofertilizer: The Future of Food Security and Food Safety. Microorganisms 2022, 10, 1220. [Google Scholar] [CrossRef]
- Kim, Y.-N.; Lee, J.-H.; Seo, H.-R.; Kim, J.-W.; Cho, Y.-S.; Lee, D.; Kim, B.-H.; Yoon, J.-H.; Choe, H.; Lee, Y.B.; et al. Co-Responses of Soil Organic Carbon Pool and Biogeochemistry to Different Long-Term Fertilization Practices in Paddy Fields. Plants 2022, 11, 3195. [Google Scholar] [CrossRef] [PubMed]
- Mącik, M.; Gryta, A.; Frąc, M. Biofertilizers in Agriculture: An Overview on Concepts, Strategies and Effects on Soil Microorganisms. Adv. Agron. 2020, 162, 31–87. [Google Scholar] [CrossRef]
- Savci, S. An Agricultural Pollutant: Chemical Fertilizer. Int. J. Environ. Sci. Dev. 2012, 3, 73. [Google Scholar] [CrossRef]
- Liu, Y.; Pan, X.; Li, J. Current Agricultural Practices Threaten Future Global Food Production. J. Agric. Environ. Ethics 2015, 28, 203–216. [Google Scholar] [CrossRef]
- Kim, Y.-N.; Choi, J.H.; Kim, S.Y.; Choe, H.; Shin, Y.; Yoon, Y.-E.; Lee, K.-A.; Kim, M.-J.; Lee, Y.B. Application Effect of Chlorella Fusca CHK0059 as a Biofertilizer for Strawberry Cultivation. Korean J. Environ. Agric. 2022, 41, 282–287. [Google Scholar] [CrossRef]
- Singh, D.; Thapa, S.; Geat, N.; Mehriya, M.L.; Rajawat, M.V.S. Biofertilizers: Mechanisms and Application. In Biofertilizers; Rakshit, A., Meena, V.S., Parihar, M., Singh, H.B., Singh, A.K., Eds.; Woodhead Publishing: Cambridge, UK, 2021; Chapter 12; pp. 151–166. [Google Scholar] [CrossRef]
- Wu, H.; Zhang, Z.; Wang, J.; Qin, X.; Chen, J.; Wu, L.; Lin, S.; Rensing, C.; Lin, W. Bio-Fertilizer Amendment Alleviates the Replanting Disease under Consecutive Monoculture Regimes by Reshaping Leaf and Root Microbiome. Microb. Ecol. 2022, 84, 425–464. [Google Scholar] [CrossRef]
- Sun, W.; Shahrajabian, M.H.; Petropoulos, S.A.; Shahrajabian, N. Developing Sustainable Agriculture Systems in Medicinal and Aromatic Plant Production by Using Chitosan and Chitin-Based Biostimulants. Plants 2023, 12, 2469. [Google Scholar] [CrossRef]
- Chatterjee, A.; Singh, S.; Agrawal, C.; Yadav, S.; Rai, R.; Rai, L.C. Role of Algae as a Biofertilizer. In Algal Green Chemistry; Rastogi, R.P., Madamwar, D., Pandey, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; Chapter 10; pp. 189–200. [Google Scholar] [CrossRef]
- Precedence Research. Biofertilizers Market Size to Hit USD 9.14 Bn by 2032. Available online: https://www.precedenceresearch.com/biofertilizers-market (accessed on 21 September 2023).
- Thomas, L.; Singh, I. Microbial Biofertilizers: Types and Applications. In Biofertilizers for Sustainable Agriculture and Environment; Giri, B., Prasad, R., Wu, Q.-S., Varma, A., Eds.; Soil Biology; Springer International Publishing: Cham, Switzerland, 2019; Volume 55, pp. 1–19. [Google Scholar] [CrossRef]
- Sun, W.; Shahrajabian, M.H. The Application of Arbuscular Mycorrhizal Fungi as Microbial Biostimulant, Sustainable Approaches in Modern Agriculture. Plants 2023, 12, 3101. [Google Scholar] [CrossRef]
- Nosheen, S.; Ajmal, I.; Song, Y. Microbes as Biofertilizers, a Potential Approach for Sustainable Crop Production. Sustainability 2021, 13, 1868. [Google Scholar] [CrossRef]
- Raimi, A.; Roopnarain, A.; Adeleke, R. Biofertilizer Production in Africa: Current Status, Factors Impeding Adoption and Strategies for Success. Sci. Afr. 2021, 11, e00694. [Google Scholar] [CrossRef]
- Ann, S.-W.; Lee, J.-M.; Cho, Y.-K. Perilla Leaf Fertilization Effect of Fertilizer by Chlorella and Seafood By-product Fermentation. J. Environ. Sci. Int. 2020, 29, 423–434. [Google Scholar] [CrossRef]
- Dineshkumar, R.; Subramanian, J.; Gopalsamy, J.; Jayasingam, P.; Arumugam, A.; Kannadasan, S.; Sampathkumar, P. The Impact of Using Microalgae as Biofertilizer in Maize (Zea Mays L.). Waste Biomass Valor. 2019, 10, 1101–1110. [Google Scholar] [CrossRef]
- El-Sharony, T.F.; El-Gioushy, S.F.; Amin, O.A. Effect of Foliar Application with Algae and Plant Extracts on Growth, Yield and Fruit Quality of Fruitful Mango Trees Cv. Fagri Kalan. J. Hortic. 2015, 2, 1000162. [Google Scholar] [CrossRef]
- Faheed, F.A.; Fattah, Z.A. Effect of Chlorella Vulgaris as Bio-Fertilizer on Growth Parameters and Metabolic Aspects of Lettuce Plant. J. Agric. Soc. Sci. 2008, 4, 165–169. [Google Scholar]
- Garcia-Gonzalez, J.; Sommerfeld, M. Biofertilizer and Biostimulant Properties of the Microalga Acutodesmus Dimorphus. J. Appl. Phycol. 2016, 28, 1051–1061. [Google Scholar] [CrossRef]
- Kim, M.-J.; Shim, C.-K.; Kim, Y.-K.; Ko, B.-G.; Park, J.-H.; Hwang, S.-G.; Kim, B.-H. Effect of Biostimulator Chlorella Fusca on Improving Growth and Qualities of Chinese Chives and Spinach in Organic Farm. Plant Pathol. J. 2018, 34, 567–574. [Google Scholar] [CrossRef]
- Lee, S.-M.; Ryu, C.-M. Algae as New Kids in the Beneficial Plant Microbiome. Front. Plant Sci. 2021, 12, 599742. [Google Scholar] [CrossRef]
- RDA. Chlorella, Crops Are Growing Rapidly and Farm Income Is also Rapidly (in Korean). Available online: http://www.rda.go.kr/board/board.do?boardId=farmprmninfo&prgId=day_farmprmninfoEntry&dataNo=100000771576&mode=updateCnt (accessed on 21 November 2023).
- Kim, M.-J.; Shim, C.-K.; Kim, Y.-K.; Park, J.-H.; Hong, S.-J.; Ji, H.-J.; Han, E.-J.; Yoon, J.-C. Effect of Chlorella vulgaris CHK0008 Fertilization on Enhancement of Storage and Freshness in Organic Strawberry and Leaf Vegetables. Hortic. Sci. Technol. 2014, 32, 872–878. [Google Scholar] [CrossRef]
- Kim, M.-J.; Shim, C.-K.; Ko, B.-G.; Kim, J. Effect of the Microalga Chlorella Fusca CHK0059 on Strawberry PGPR and Biological Control of Fusarium Wilt Disease in Non-Pesticide Hydroponic Strawberry Cultivation. J. Microbiol. Biotechnol. 2020, 30, 708–716. [Google Scholar] [CrossRef] [PubMed]
- El-Ghanam, A.A.; Farfour, S.; Ragab, S. Bio-Suppression of Strawberry Fruit Rot Disease Caused by Botrytis Cinerea. J. Plant Pathol. Microbiol. 2015, S3, 5. [Google Scholar] [CrossRef]
- Liu, M.; Wang, G.; Xiao, L.; Xu, X.; Liu, X.; Xu, P.; Lin, X. Bis(2,3-Dibromo-4,5-Dihydroxybenzyl) Ether, a Marine Algae Derived Bromophenol, Inhibits the Growth of Botrytis Cinerea and Interacts with DNA Molecules. Mar. Drugs 2014, 12, 3838–3851. [Google Scholar] [CrossRef]
- Gigliotti, G. Effect of Microalgal Biomass on the Strawberry (Fragaria x Ananassa) Yield and Quality. Master’s Thesis, Universidade do Algarve, Faro, Portugal, 2022. [Google Scholar]
- Keutgen, A.; Pawelzik, E. Modifications of Taste-Relevant Compounds in Strawberry Fruit under NaCl Salinity. Food Chem. 2007, 105, 1487–1494. [Google Scholar] [CrossRef]
- Gonçalves, A.L. The Use of Microalgae and Cyanobacteria in the Improvement of Agricultural Practices: A Review on Their Biofertilising, Biostimulating and Biopesticide Roles. Appl. Sci. 2021, 11, 871. [Google Scholar] [CrossRef]
- Hu, H.-J.; Xu, K.; He, L.-C.; Wang, G.-X. A Model for the Relationship between Plant Biomass and Photosynthetic Rate Based on Nutrient Effects. Ecosphere 2021, 12, e03678. [Google Scholar] [CrossRef]
- Lee, K.-A.; Kim, Y.-N.; Kantharaj, V.; Lee, Y.B.; Woo, S.Y. Seedling Growth and Photosynthetic Response of Pterocarpus Indicus L. to Shading Stress. Plant Signal. Behav. 2023, 18, 2245625. [Google Scholar] [CrossRef]
- Çakirsoy, I.; Miyamoto, T.; Ohtake, N. Physiology of Microalgae and Their Application to Sustainable Agriculture: A Mini-Review. Front. Plant Sci. 2022, 13, 1005991. [Google Scholar] [CrossRef]
- Liu, Z.; Liang, T.; Kang, C. Molecular Bases of Strawberry Fruit Quality Traits: Advances, Challenges, and Opportunities. Plant Physiol. 2023, 193, 900–914. [Google Scholar] [CrossRef]
- Cao, F.; Guan, C.; Dai, H.; Li, X.; Zhang, Z. Soluble Solids Content Is Positively Correlated with Phosphorus Content in Ripening Strawberry Fruits. Sci. Hortic. 2015, 195, 183–187. [Google Scholar] [CrossRef]
- Del Olmo, I.; Blanch, M.; Romero, I.; Vazquez-Hernandez, M.; Sanchez-Ballesta, M.T.; Escribano, M.I.; Merodio, C. Involvement of Oligosaccharides and Sucrose-Related Genes on Sucrose Retention in Strawberries from Ripening to Shelf-Life. Postharvest Biol. Technol. 2020, 169, 111301. [Google Scholar] [CrossRef]
- Schwieterman, M.L.; Colquhoun, T.A.; Jaworski, E.A.; Bartoshuk, L.M.; Gilbert, J.L.; Tieman, D.M.; Odabasi, A.Z.; Moskowitz, H.R.; Folta, K.M.; Klee, H.J. Strawberry Flavor: Diverse Chemical Compositions, a Seasonal Influence, and Effects on Sensory Perception. PLoS ONE 2014, 9, e88446. [Google Scholar] [CrossRef]
- Osorio, S.; Ruan, Y.-L.; Fernie, A.R. An Update on Source-to-Sink Carbon Partitioning in Tomato. Front. Plant Sci. 2014, 5, 516. [Google Scholar] [CrossRef] [PubMed]
- Lemoine, R.; Camera, S.L.; Atanassova, R.; Dédaldéchamp, F.; Allario, T.; Pourtau, N.; Bonnemain, J.-L.; Laloi, M.; Coutos-Thévenot, P.; Maurousset, L. Source-to-Sink Transport of Sugar and Regulation by Environmental Factors. Front. Plant Sci. 2013, 4, 272. [Google Scholar] [CrossRef]
- Aluko, O.O.; Li, C.; Wang, Q.; Liu, H. Sucrose Utilization for Improved Crop Yields: A Review Article. Int. J. Mol. Sci. 2021, 22, 4704. [Google Scholar] [CrossRef]
- Batista-Silva, W.; Nascimento, V.L.; Medeiros, D.B.; Nunes-Nesi, A.; Ribeiro, D.M.; Zsögön, A.; Araújo, W.L. Modifications in Organic Acid Profiles during Fruit Development and Ripening: Correlation or Causation? Front. Plant Sci. 2018, 9, 1689. [Google Scholar] [CrossRef] [PubMed]
- Zell, M.B.; Fahnenstich, H.; Maier, A.; Saigo, M.; Voznesenskaya, E.V.; Edwards, G.E.; Andreo, C.; Schleifenbaum, F.; Zell, C.; Drincovich, M.F. Analysis of Arabidopsis with Highly Reduced Levels of Malate and Fumarate Sheds Light on the Role of These Organic Acids as Storage Carbon Molecules. Plant Physiol. 2010, 152, 1251–1262. [Google Scholar] [CrossRef] [PubMed]
- Cordenunsi, B.R.; Oliveira do Nascimento, J.R.; Genovese, M.I.; Lajolo, F.M. Influence of Cultivar on Quality Parameters and Chemical Composition of Strawberry Fruits Grown in Brazil. J. Agric. Food Chem. 2002, 50, 2581–2586. [Google Scholar] [CrossRef] [PubMed]
- Wanpeng, X.; Zheng, Q.; Juanfang, L.; Junping, Q. Comparative Analysis of Three Types of Peaches: Identification of the Key Individual Characteristic Flavor Compounds by Integrating Consumers’ Acceptability with Flavor Quality. Hortic. Plant J. 2017, 3, 1–12. [Google Scholar] [CrossRef]
- Etienne, A.; Génard, M.; Lobit, P.; Mbeguié-A-Mbéguié, D.; Bugaud, C. What Controls Fleshy Fruit Acidity? A Review of Malate and Citrate Accumulation in Fruit Cells. J. Exp. Bot. 2013, 64, 1451–1469. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Asghari, M.; Zahedipour-Sheshgelani, P. Foliar Spray with 24-Epibrassinolide Enhanced Strawberry Fruit Quality, Phytochemical Content, and Postharvest Life. J. Plant Growth Regul. 2020, 39, 920–929. [Google Scholar] [CrossRef]
- Roussos, P.; Denaxa, N.; Damvakaris, T. Strawberry Fruit Quality Attributes after Application of Plant Growth Stimulating Compounds. Sci. Hortic. 2009, 119, 138–146. [Google Scholar] [CrossRef]
- Jia, H.; Wang, Y.; Sun, M.; Li, B.; Han, Y.; Zhao, Y.; Li, X.; Ding, N.; Li, C.; Ji, W. Sucrose Functions as a Signal Involved in the Regulation of Strawberry Fruit Development and Ripening. New Phytol. 2013, 198, 453–465. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Wei, Y.; Xu, Y.; Han, P.; Jiang, S.; Xu, F.; Wang, H.; Tao, N.; Shao, X. Terpinen-4-Ol Treatment Maintains Quality of Strawberry Fruit during Storage by Regulating Sucrose-Induced Anthocyanin Accumulation. Postharvest Biol. Technol. 2021, 174, 111461. [Google Scholar] [CrossRef]
- Guo, R.; Yuan, G.; Wang, Q. Sucrose Enhances the Accumulation of Anthocyanins and Glucosinolates in Broccoli Sprouts. Food Chem. 2011, 129, 1080–1087. [Google Scholar] [CrossRef] [PubMed]
- Olivares, D.; Contreras, C.; Muñoz, V.; Rivera, S.; González-Agüero, M.; Retamales, J.; Defilippi, B.G. Relationship among Color Development, Anthocyanin and Pigment-Related Gene Expression in ‘Crimson Seedless’ Grapes Treated with Abscisic Acid and Sucrose. Plant Physiol. Biochem. 2017, 115, 286–297. [Google Scholar] [CrossRef] [PubMed]
- Petrasch, S.; Knapp, S.J.; Van Kan, J.A.; Blanco-Ulate, B. Grey Mould of Strawberry, a Devastating Disease Caused by the Ubiquitous Necrotrophic Fungal Pathogen Botrytis Cinerea. Mol. Plant Pathol. 2019, 20, 877–892. [Google Scholar] [CrossRef]
- Schaefer, H.M.; Rentzsch, M.; Breuer, M. Anthocyanins Reduce Fungal Growth in Fruits. Nat. Prod. Commun. 2008, 3, 1934578X0800300808. [Google Scholar] [CrossRef]
- Sivankalyani, V.; Feygenberg, O.; Diskin, S.; Wright, B.; Alkan, N. Increased Anthocyanin and Flavonoids in Mango Fruit Peel Are Associated with Cold and Pathogen Resistance. Postharvest Biol. Technol. 2016, 111, 132–139. [Google Scholar] [CrossRef]
- Zhang, Y.; Butelli, E.; De Stefano, R.; Schoonbeek, H.; Magusin, A.; Pagliarani, C.; Wellner, N.; Hill, L.; Orzaez, D.; Granell, A. Anthocyanins Double the Shelf Life of Tomatoes by Delaying Overripening and Reducing Susceptibility to Gray Mold. Curr. Biol. 2013, 23, 1094–1100. [Google Scholar] [CrossRef]
- Schaefer, H.M.; Rolshausen, G. Plants on Red Alert: Do Insects Pay Attention? Bioessays 2006, 28, 65–71. [Google Scholar] [CrossRef] [PubMed]
- Peters, D.J.; Constabel, C.P. Molecular Analysis of Herbivore-induced Condensed Tannin Synthesis: Cloning and Expression of Dihydroflavonol Reductase from Trembling Aspen (Populus Tremuloides). Plant J. 2002, 32, 701–712. [Google Scholar] [CrossRef] [PubMed]
- RDA. Manual for Strawberry Cultivation; RDA: Wanju, Republic of Korea, 2019. [Google Scholar]
- NAAS. Chlorella Culture Method and Agricultural Application; RDA: Wanju, Republic of Korea, 2015. [Google Scholar]
- Lichtenthaler, H.K. Chlorophylls and Carotenoids: Pigments of Photosynthetic Biomembranes. Meth. Enzymol. 1987, 148, 350–382. [Google Scholar]
- NIAST. Methods of Analysis of Soil and Plant; RDA: Suwon, Republic of Korea, 2000. [Google Scholar]
- Lee, J.; Durst, R.W.; Wrolstad, R.E. Collaborators: Determination of Total Monomeric Anthocyanin Pigment Content of Fruit Juices, Beverages, Natural Colorants, and Wines by the pH Differential Method: Collaborative Study. J. AOAC Int. 2005, 88, 1269–1278. [Google Scholar] [CrossRef] [PubMed]
- Montero, T.M.; Mollá, E.M.; Esteban, R.M.; López-Andréu, F.J. Quality Attributes of Strawberry during Ripening. Sci. Hortic. 1996, 65, 239–250. [Google Scholar] [CrossRef]
Treatment (% OCD) | Fv/Fm | Chlorophyll a (mg 100 g−1) | Chlorophyll b (mg 100 g−1) | Total Chlorophyll (mg 100 g−1) | Carotenoids (mg 100 g−1) |
---|---|---|---|---|---|
Control | 0.813 b | 0.580 b | 0.195 b | 0.777 b | 1.923 b |
0.1% | 0.813 b | 0.628 ab | 0.205 ab | 0.843 ab | 2.257 a |
0.2% | 0.834 a | 0.656 ab | 0.208 ab | 0.865 ab | 2.406 a |
0.4% | 0.840 a | 0.683 a | 0.235 a | 0.920 a | 2.338 a |
Element | Treatment (% OCD) | Sampling Time | ||||
---|---|---|---|---|---|---|
21.12 | 22.01 | 22.02 | 22.03 | 22.04 | ||
P (g kg−1) | Control | 3.61 c | 3.81 c | 3.51 c | 3.70 c | 5.09 b |
0.1% | 5.62 b | 5.57 b | 5.39 b | 4.99 b | 6.14 ab | |
0.2% | 6.25 ab | 6.03 b | 4.74 bc | 5.69 b | 6.32 ab | |
0.4% | 6.97 a | 8.04 a | 7.44 a | 7.15 a | 7.64 a | |
Mg (g kg−1) | Control | 1.62 a | 1.45 a | 1.51 ab | 1.62 a | 1.81 a |
0.1% | 1.63 a | 1.50 a | 1.55 ab | 1.57 a | 1.69 a | |
0.2% | 1.49 a | 1.41 a | 1.34 b | 1.47 a | 1.56 a | |
0.4% | 1.37 a | 1.53 a | 1.65 a | 1.58 a | 1.71 a | |
Ca (g kg−1) | Control | 3.29 a | 3.70 a | 2.99 a | 3.26 a | 2.61 a |
0.1% | 3.19 a | 2.54 ab | 2.57 a | 3.14 ab | 2.75 a | |
0.2% | 2.59 ab | 2.67 b | 2.52 a | 2.35 ab | 1.89 b | |
0.4% | 1.85 b | 2.07 b | 2.18 a | 2.26 b | 2.01 b | |
K (g kg−1) | Control | 15.4 a | 12.4 b | 11.1 b | 12.3 b | 17.0 a |
0.1% | 14.8 a | 13.9 ab | 13.5 ab | 13.2 ab | 16.1 a | |
0.2% | 14.2 a | 12.3 b | 11.4 b | 13.4 ab | 15.0 a | |
0.4% | 14.1 a | 15.2 a | 16.6 a | 15.3 a | 16.7 a |
Quality Index | Treatment (% OCD) | Sampling Time | ||||
---|---|---|---|---|---|---|
21.12 | 22.01 | 22.02 | 22.03 | 22.04 | ||
S:A ratio | Control | 5.26 b | 7.49 b | 7.61 ab | 7.92 ab | 5.61 c |
0.1% | 8.38 a | 7.76 b | 7.96 a | 8.39 ab | 7.30 b | |
0.2% | 9.36 a | 9.99 a | 8.81 a | 9.58 a | 8.47 a | |
0.4% | 7.77 a | 7.76 b | 5.77 b | 6.83 b | 7.12 b | |
SI | Control | 4.59 c | 6.85 b | 9.41 a | 9.97 a | 8.75 b |
0.1% | 8.53 a | 8.16 ab | 9.33 a | 8.90 b | 9.14 ab | |
0.2% | 8.76 a | 9.95 a | 10.0 a | 9.37 ab | 10.0 a | |
0.4% | 6.83 b | 7.81 b | 7.38 b | 7.64 c | 7.18 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, Y.-N.; Choi, J.H.; Kim, S.Y.; Yoon, Y.-E.; Choe, H.; Lee, K.-A.; Kantharaj, V.; Kim, M.-J.; Lee, Y.B. Biostimulatory Effects of Chlorella fusca CHK0059 on Plant Growth and Fruit Quality of Strawberry. Plants 2023, 12, 4132. https://doi.org/10.3390/plants12244132
Kim Y-N, Choi JH, Kim SY, Yoon Y-E, Choe H, Lee K-A, Kantharaj V, Kim M-J, Lee YB. Biostimulatory Effects of Chlorella fusca CHK0059 on Plant Growth and Fruit Quality of Strawberry. Plants. 2023; 12(24):4132. https://doi.org/10.3390/plants12244132
Chicago/Turabian StyleKim, Young-Nam, Jun Hyeok Choi, Song Yeob Kim, Young-Eun Yoon, Hyeonji Choe, Keum-Ah Lee, Vimalraj Kantharaj, Min-Jeong Kim, and Yong Bok Lee. 2023. "Biostimulatory Effects of Chlorella fusca CHK0059 on Plant Growth and Fruit Quality of Strawberry" Plants 12, no. 24: 4132. https://doi.org/10.3390/plants12244132
APA StyleKim, Y. -N., Choi, J. H., Kim, S. Y., Yoon, Y. -E., Choe, H., Lee, K. -A., Kantharaj, V., Kim, M. -J., & Lee, Y. B. (2023). Biostimulatory Effects of Chlorella fusca CHK0059 on Plant Growth and Fruit Quality of Strawberry. Plants, 12(24), 4132. https://doi.org/10.3390/plants12244132