Neem Oil to Reduce Zeatin Use and Optimize the Rooting Phase in Olea europaea L. Micropropagation
Abstract
:1. Introduction
2. Results
2.1. Proliferation Phase Experiment
2.2. Rooting Phase Experiment
3. Discussion
4. Materials and Methods
4.1. Proliferation Phase Experiment
- -
- viability (%): incidence of green and viable explants;
- -
- shoots (n): average number of shoots developed from each initial explant;
- -
- shoot length (mm): average length of developed shoots;
- -
- nodes (n): average number of nodes developed by each initial explant, reusable for further proliferation subculture (multiplication rate);
- -
- leaves (n): average number of leaves;
- -
- callus (%): incidence of explants that produced basal callus;
- -
- fresh weight (mg): average fresh weight per explant of developed vegetative organs (leaves, stems, buds) and callus;
- -
- dry weight (mg): average dry weight per explant of the vegetative organs and callus, obtained by keeping the plant material in an oven for three days at 105 °C.
4.2. Rooting Phase Experiment
- -
- viability (%): incidence of green and viable explants;
- -
- rooting (%): incidence of explants that develop roots;
- -
- roots (n): average number of roots developed by each explant;
- -
- roots length (mm): average length of developed roots;
- -
- callus (%): incidence of explants that produced basal callus;
4.3. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bayraktar, M.; Hayta-Smedley, S.; Unal, S.; Varol, N.; Gurel, A. Micropropagation and Prevention of Hyperhydricity in Olive (Olea europaea L.) Cultivar ‘Gemlik’. South Afr. J. Bot. 2020, 128, 264–273. [Google Scholar]
- Bradaï, F.; Pliego-Alfaro, F.; Sánchez-Romero, C. Long-Term Somatic Embryogenesis in Olive (Olea europaea L.): Influence on Regeneration Capability and Quality of Regenerated Plants. Sci. Hortic. 2016, 199, 23–31. [Google Scholar] [CrossRef]
- FAOSTAT. Available online: https://www.fao.org/faostat/en/#data/QCL/visualize (accessed on 25 January 2023).
- Camposeo, S.; Stellacci, A.M.; Romero Trigueros, C.; Alhajj Ali, S.; Vivaldi, G.A. Different Suitability of Olive Cultivars Resistant to Xylella fastidiosa to the Super-Intensive Planting System. Agronomy 2022, 12, 3157. [Google Scholar] [CrossRef]
- Lambardi, M.; Ozudogru, E.A.; Roncasaglia, R. In Vitro Propagation of Olive (Olea europaea L.) by Nodal Segmentation of Elongated Shoots. Methods Mol. Biol. 2013, 11013, 33–44. [Google Scholar] [CrossRef]
- Fabbri, A.; Lambardi, M.; Ozden-Tokatli, Y. Olive Breeding. In Breeding Plantation Tree Crops: Tropical Species; Jain, S.M., Priyadarshan, P.M., Eds.; Springer: New York, NY, USA, 2009; pp. 423–465. ISBN 978-0-387-71201-7. [Google Scholar]
- Lambardi, M.; Rugini, E. Micropropagation of Olive (Olea europaea L.). In Micropropagation of Woody Trees and Fruits; Jain, S.M., Ishii, K., Eds.; Forestry Sciences; Springer Netherlands: Dordrecht, The Netherlands, 2003; pp. 621–646. ISBN 978-94-010-0125-0. [Google Scholar]
- Neri, D.; Cioccolanti, T.; Zuccherelli, G.; Navacchi, O.; Giorgi, V.; Lodolini, E.M. Micropropagation Effects on Juvenile Traits, Flower Differentiation, and Tree Architecture in Young Olive Trees. Agronomy 2020, 10, 1742. [Google Scholar] [CrossRef]
- Cardoso, J.C.; Sheng Gerald, L.T.; Teixeira da Silva, J.A. Micropropagation in the Twenty-First Century. In Plant Cell Culture Protocols; Springer: Berlin/Heidelberg, Germany, 2018; pp. 17–46. [Google Scholar]
- Lupo, M.; Bashir, M.A.; Silvestri, C.; Brunori, E.; Pica, A.L.; Cristofori, V. LED Lighting Effects on Plant Growth and Quality of Pyrus communis L. Propagated In Vitro. Agronomy 2022, 12, 2531. [Google Scholar] [CrossRef]
- Miler, N.; Kulus, D.; Woźny, A.; Rymarz, D.; Hajzer, M.; Wierzbowski, K.; Nelke, R.; Szeffs, L. Application of Wide-Spectrum Light-Emitting Diodes in Micropropagation of Popular Ornamental Plant Species: A Study on Plant Quality and Cost Reduction. Vitr. Cell. Dev. Biol. Plant 2019, 55, 99–108. [Google Scholar] [CrossRef] [Green Version]
- Leva, A. Innovative Protocol for “Ex Vitro Rooting” on Olive Micropropagation. Cent. Eur. J. Biol. 2011, 6, 352–358. [Google Scholar] [CrossRef]
- Sghir, S.; Chatelet, P.; Ouazzani, N.; Dosba, F.; Belkoura, I. Micropropagation of Eight Moroccan and French Olive Cultivars. HortScience 2005, 40, 193–196. [Google Scholar] [CrossRef]
- Mendoza-de Gyves, E.; Rosana Mira, F.; Ruiu, F.; Rugini, E. Stimulation of Node and Lateral Shoot Formation in Micropropagation of Olive (Olea europaea L.) by Using Dikegulac. Plant Cell Tissue Organ Cult. 2008, 92, 233–238. [Google Scholar] [CrossRef]
- Haq, I.U.; Umar, H.; Akhtar, N.; Iqbal, M.A.; Ijaz, M. Techniques for Micropropagation of Olive (Olea europaea L.): A Systematic Review. Pak. J. Agric. Res. 2021, 34, 184. [Google Scholar] [CrossRef]
- Benelli, C.; De Carlo, A. In Vitro Multiplication and Growth Improvement of Olea europaea L. Cv Canino with Temporary Immersion System (PlantformTM). 3 Biotech 2018, 8, 317. [Google Scholar] [CrossRef]
- Lambardi, M.; Benelli, C.; Ozden-Tokatli, Y.; Ozudogru, E.A.; Gumusel, F. A Novel Approach to Olive Micropropagation: The Temporary Immersion System. In Proceedings of the OLIVEBIOTEQ Second International Seminar, Mazara Del Vallo, Italy, 5–10 November 2006; Volume 1, pp. 319–326. [Google Scholar]
- Gentile, A.; Jàquez Gutiérrez, M.; Martinez, J.; Frattarelli, A.; Nota, P.; Caboni, E. Effect of Meta-Topolin on Micropropagation and Adventitious Shoot Regeneration in Prunus Rootstocks. Plant Cell Tissue Organ Cult. 2014, 118, 373–381. [Google Scholar]
- Moradnezhad, M.; Hosseini, R.; Zarrabi, M.M.; Golmohammadi, F.G. A New Approach for Olive (Arbequina cv.) Micropropagation: Effect of Dikegulac, Light and Carbon Source. Int. J. Hortic. Sci. Technol. 2017, 4, 79–87. [Google Scholar]
- Antonopoulou, C.; Dimassi, K.D.; Therios, I.T.; Chatzissavvidis, C. Does Dikegulac Affect in Vitro Shoot Proliferation and Hyperhydricity Incidence in Olive Explants? Hort. Sci. 2018, 45, 125–130. [Google Scholar] [CrossRef] [Green Version]
- Mencuccini, M.; Rugini, E. In Vitro Shoot Regeneration from Olive Cultivar Tissues. Plant Cell Tissue Organ Cult. 1993, 32, 283–288. [Google Scholar] [CrossRef]
- Ali, A.; Ahmad, T.; Abbasi, N.A.; Hafiz, I.A. Effect of Different Media and Growth Regulators on in Vitro Shoot Proliferation of Olive Cultivar ‘Moraiolo’. Pak. J. Bot. 2009, 41, 783–795. [Google Scholar]
- Khatoon, S.; Liu, W.; Ding, C.; Liu, X.; Zheng, Y.; Zhang, Y.; Chen, X.; Rauf, M.; Alghabari, F.; Shah, Z.H. In Vitro Evaluation of the Effects of BAP Concentration and Pre-Cooling Treatments on Morphological, Physiological, and Biochemical Traits of Different Olive (Olea euorpea L.) Cultivars. Horticulturae 2022, 8, 1108. [Google Scholar] [CrossRef]
- Mishra, S.; Kumar, S.; Vala, Y. Effects of Coconut Water, Plant Growth Regulators and Light Intensity on Shoot Bud Proliferation and Direct Regeneration in Olives (Olea europaea L.). J. Pharmacogn. Phytochem. 2019, 8, 846–850. [Google Scholar]
- Molnár, Z.; Virág, E.; Ördög, V. Natural Substances in Tissue Culture Media of Higher Plants. Acta Biol. Szeged. 2011, 55, 123–127. [Google Scholar]
- de Araújo Amatuzzi, J.C.; do Nascimento Vieira, L.; Sant’Anna-Santos, B.F.; Noseda, M.D.; Pacheco de Freitas Fraga, H. Improved in Vitro Development of Epidendrum secundum (Orchidaceae) by Using Aqueous Extract of the Seaweed Kappaphycus alvarezii (Rhodophyta, Solieriaceae). Acta Physiol. Plant 2020, 42, 136. [Google Scholar] [CrossRef]
- Kannan, S.; Sownthariya, S.; Anbazhakan, S. In Vitro Mass Propagation of Withania somnifera Dunal Using Seaweed Extract. Int. Lett. Nat. Sci. 2014, 19, 8–14. [Google Scholar] [CrossRef]
- Campos, E.V.R.; de Oliveira, J.L.; Pascoli, M.; de Lima, R.; Fraceto, L.F. Neem Oil and Crop Protection: From Now to the Future. Front. Plant Sci. 2016, 7, 1494. [Google Scholar]
- Lokanadhan, S.; Muthukrishnan, P.; Jeyaraman, S. Neem Products and Their Agricultural Applications. J. Biopestic. 2012, 5, 72. [Google Scholar]
- Brahmachari, G. Neem—An Omnipotent Plant: A Retrospection. Chembiochem 2004, 5, 408–421. [Google Scholar] [CrossRef]
- Krishnan, N.; Ravi, D.; Gajapathy, M.K. Effect of Neem Litter Addition in Free Nitrogen Fixers and Fungi in Soil and on Plant (Fenugreek) Growth. Adv. Plant Sci. 1995, 8, 65–70. [Google Scholar]
- Micheli, M.; da Silva, D.F.; Farinelli, D.; Agate, G.; Pio, R.; Famiani, F. Neem Oil Used as a “Complex Mixture” to Improve In Vitro Shoot Proliferation in Olive. HortScience 2018, 53, 531–534. [Google Scholar] [CrossRef] [Green Version]
- Rugini, E. In Vitro Propagation of Some Olive (Olea europaea Sativa L.) Cultivars with Different Root-Ability, and Medium Development Using Analytical Data from Developing Shoots and Embryos. Sci. Hortic. 1984, 24, 123–134. [Google Scholar] [CrossRef]
- Garcia, J.L.; Troncoso, J.; Sarmiento, R.; Troncoso, A. Influence of Carbon Source and Concentration on the in Vitro Development of Olive Zygotic Embryos and Explants Raised from Them. Plant Cell Tissue Organ Cult. 2002, 69, 95–100. [Google Scholar] [CrossRef]
- Regni, L.; Del Buono, D.; Micheli, M.; Facchin, S.L.; Tolisano, C.; Proietti, P. Effects of Biogenic ZnO Nanoparticles on Growth, Physiological, Biochemical Traits and Antioxidants on Olive Tree In Vitro. Horticulturae 2022, 8, 161. [Google Scholar] [CrossRef]
- Peixe, A.; Raposo, A.; Lourenço, R.; Cardoso, H.; Macedo, E. Coconut Water and BAP Successfully Replaced Zeatin in Olive (Olea europaea L.) Micropropagation. Sci. Hortic. 2007, 113, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Hall, R.M.; Drew, R.A.; Higgins, C.M.; Dietzgen, R.G. Efficient Organogenesis of an Australian Passionfruit Hybrid (Passiflora edulis x Passiflora edulis var. flavicarpa) Suitable for Gene Delivery. Aust. J. Bot. 2000, 48, 673–680. [Google Scholar] [CrossRef]
- Santos-Hernández, L.; Martínez-García, M.; Campos, J.E.; Aguirre-León, E. In Vitro Propagation of Laelia albida (Orchidaceae) for Conservation and Ornamental Purposes in Mexico. HortScience 2005, 40, 439–442. [Google Scholar] [CrossRef]
Treatment | Shoot Length (mm) | Leaves (n) |
---|---|---|
Z1 n.o. | 37.7 Aa | 17.6 Ac |
Z1 | 27.3 Bc | 11.6 Be |
Z2 n.o. | 31.0 Ac | 21.7 Ab |
Z2 | 31.5 Ab | 13.7 Bd |
Z4 n.o. | 24.4 Bd | 27.8 Aa |
Z4 | 39.7 Aa | 19.7 Bb |
Treatment | Provenience Substrate of Shoots | Rooting (%) | Roots Number (n) | Roots Length (mm) |
---|---|---|---|---|
W n.o. | Z2 n.o. | 86.6 c | 2.5 c | 32.1 b |
W | Z2 n.o. | 83.3 d | 2.1 e | 34.5 a |
B n.o. | Z2 n.o. | 85.0 e | 2.6 c | 13.5 f |
B | Z2 n.o. | 96.7 a | 3.0 b | 20.6 d |
P n.o. | Z2 n.o. | 80.0 e | 1.9 f | 12.1 g |
P | Z2 n.o. | 100.0 a | 3.8 a | 14.6 e |
w n.o. | Z4 | 40.0 f | 1.7 g | 19.3 d |
w | Z4 | 40.0 f | 1.3 h | 14.5 e |
b n.o. | Z4 | 96.7 a | 2.3 d | 20.5 d |
b | Z4 | 100.0 a | 3.0 b | 19.3 d |
p n.o. | Z4 | 95.0 b | 2.0 e | 15.7 e |
p | Z4 | 100.0 a | 2.3 d | 22.6 c |
Macroelements | mg L−1 | mM |
CaCl2 | 332.16 | 2.99 |
Ca(NO3)2 | 416.92 | 2.54 |
KCl | 500.00 | 6.71 |
KH2PO4 | 340.00 | 2.50 |
KNO3 | 1100.00 | 10.88 |
MgSO4 | 732.60 | 6.09 |
NH4NO3 | 412.00 | 5.15 |
Microelements | mg L−1 | μM |
CoCl2.6H2O | 0.025 | 0.11 |
CuSO4.5H2O | 0.25 | 1.00 |
FeNaEDTA | 36.70 | 100.00 |
H3BO3 | 12.40 | 200.55 |
KI | 0.83 | 5.00 |
MnSO4.2H2O | 16.90 | 100.00 |
NaMoO4.2H2O | 0.25 | 1.03 |
ZnSO4.7H2O | 14.30 | 49.75 |
Vitamins | mg L−1 | μM |
Biotin | 0.05 | 0.20 |
Folic acid | 0.50 | 1.13 |
Glycine | 2.00 | 26.64 |
myo-Inositol | 100.00 | 554.94 |
Nicotinic acid | 5.00 | 40.62 |
Pyridoxine HCl | 0.50 | 2.43 |
Thiamine HCl | 0.50 | 1.48 |
Treatment | Substrate | Zeatin (Z) Concentration (mg L−1) | Neem Oil (n.o.) Concentration (mL L−1) |
---|---|---|---|
Z0 n.o. | OM | 0 | 0.1 |
Z0 | OM | 0 | 0 |
Z1 n.o. | OM | 1 | 0.1 |
Z1 | OM | 1 | 0 |
Z2 n.o. | OM | 2 | 0.1 |
Z2 | OM | 2 | 0 |
Z4 n.o. | OM | 4 | 0.1 |
Z4 | OM | 4 | 0 |
Treatment | Proliferation Substrate | Rooting Substrate | IBA Concentration (mg L−1) | n.o. Concentration (mL L−1) |
---|---|---|---|---|
W n.o. | Z2 n.o. | OM/2 white | 2 | 0.1 |
W | Z2 n.o. | OM/2 white | 2 | 0 |
B n.o. | Z2 n.o. | OM/2 black | 2 | 0.1 |
B | Z2 n.o. | OM/2 black | 2 | 0 |
P n.o. | Z2 n.o. | potting substrate | 5 | 0.1 |
P | Z2 n.o. | potting substrate | 5 | 0 |
w n.o. | Z4 | OM/2 white | 2 | 0.1 |
w | Z4 | OM/2 white | 2 | 0 |
b n.o. | Z4 | OM/2 black | 2 | 0.1 |
b | Z4 | OM/2 black | 2 | 0 |
p n.o. | Z4 | potting substrate | 5 | 0.1 |
p | Z4 | potting substrate | 5 | 0 |
Physico-Chemical Characteristics | |
---|---|
pH | 7.5 |
Electrical conductivity | 0.44 dS m−1 |
Bulk density | 949 kg m−3 |
Total porosity | 62% (v:v) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Regni, L.; Facchin, S.L.; da Silva, D.F.; De Cesaris, M.; Famiani, F.; Proietti, P.; Micheli, M. Neem Oil to Reduce Zeatin Use and Optimize the Rooting Phase in Olea europaea L. Micropropagation. Plants 2023, 12, 576. https://doi.org/10.3390/plants12030576
Regni L, Facchin SL, da Silva DF, De Cesaris M, Famiani F, Proietti P, Micheli M. Neem Oil to Reduce Zeatin Use and Optimize the Rooting Phase in Olea europaea L. Micropropagation. Plants. 2023; 12(3):576. https://doi.org/10.3390/plants12030576
Chicago/Turabian StyleRegni, Luca, Simona Lucia Facchin, Daniel Fernandes da Silva, Michele De Cesaris, Franco Famiani, Primo Proietti, and Maurizio Micheli. 2023. "Neem Oil to Reduce Zeatin Use and Optimize the Rooting Phase in Olea europaea L. Micropropagation" Plants 12, no. 3: 576. https://doi.org/10.3390/plants12030576
APA StyleRegni, L., Facchin, S. L., da Silva, D. F., De Cesaris, M., Famiani, F., Proietti, P., & Micheli, M. (2023). Neem Oil to Reduce Zeatin Use and Optimize the Rooting Phase in Olea europaea L. Micropropagation. Plants, 12(3), 576. https://doi.org/10.3390/plants12030576