Response of Maize Varieties (Zea mays L.) to the Application of Classic and Stabilized Nitrogen Fertilizers—Nitrogen as a Predictor of Generative Yield
Abstract
:1. Introduction
2. Results
2.1. Maize Grain Yield Components
2.2. Grain Yield and Its Moisture Content
2.3. Nitrogen Application Efficiency Indicators
3. Discussion
4. Materials and Methods
4.1. Experimental Field
4.2. Determination of Grain Moisture Content and Yield Components
- Number of ears [ears·m−2]: all fully formed ears were counted in the two middle rows of each plot. Their number was divided by the size of plot to be harvested;
- Number of kernels in ear [kernels]: the number of kernels in a row and the number of rows were calculated on each of 10 randomly selected ears. The number of kernels in an ear was obtained from the product of these two values;
- 1000 seed weight (TSW) [g]: this value was calculated by adding the results for two randomly collected samples containing 500 seeds each.
4.3. Assay Methods
- In the present research, nitrogen content in grain was assessed using the Kjeldahl method with the device KjeltecTM 2200 FOSS;
- The use of nitrogen per dose of the mineral fertilizer was calculated with the equation:
- N—use of nitrogen (%);
- Nf—nitrogen uptake by fertilized plants (kg·ha−1);
- Nc—nitrogen uptake by plants in the control (unfertilized) plot (kg·ha−1);
- D—nitrogen rate (150 kg·ha−1).
- Partial factor productivity of fertilizer nitrogen (PFPN) [31]:
- P—grain yield;
- Nr—nitrogen rate.
- The uptake of nitrogen in the grain yield was calculated with the following formula:
- Uptake—in kg·ha−1;
- Grain yield—in kg·ha−1;
- Content of nutrients—in %.
4.4. Soil Conditions
4.5. Thermal and Moisture Conditions
4.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Szulc, P.; Waligóra, H.; Michalski, T.; Rybus-Zając, M.; Olejarski, P. Efficiency of nitrogen fertilization based on the fertilizer application method and type of maize cultivar (Zea mays L.). Plant Soil Environ. 2016, 62, 135–142. [Google Scholar] [CrossRef] [Green Version]
- Mendes Bastos, L. Evaluation of stabilized fertilizer and crop canopy sensors as next-generation nitrogen management technologies in irrigated corn. Theses Diss. Stud. Res. Agron. Hortic. 2019, 165, 13862522. [Google Scholar]
- Szulc, P.; Barłóg, P.; Ambroży-Deręgowska, K.; Mejza, I.; Kobus-Cisowska, J. In-soil application of NP mineral fertilizer as a method of improving nitrogen yielding efficiency. Agronomy 2020, 10, 1488. [Google Scholar] [CrossRef]
- Gastal, F.; Lemaire, G. N uptake and distribution in crops: An agronomical and ecophysiological perspective. J. Exp. Bot. 2002, 53, 789–799. [Google Scholar] [CrossRef] [Green Version]
- Modolo, L.V.; Da-Silva, C.J.; Brandão, D.S.; Chaves, I.S. A mini review on what we have learned about urease inhibitors of agricultural interest science mid-2000s. J. Adv. Res. 2018, 13, 29–37. [Google Scholar] [CrossRef]
- Asibi, A.E.; Chai, Q.; Coulter, J.A. Mechanisms of nitrogen use in maize. Agronomy 2019, 9, 775. [Google Scholar] [CrossRef] [Green Version]
- Fan, X.H.; Li, Y.C. Nitrogen release from slow-release fertilizers as affected by soil type and temperature. Soil Sci. Soc. Am. J. 2010, 74, 1635–1641. [Google Scholar] [CrossRef]
- Sharma, L.K.; Bali, S.K. A review of methods to improve nitrogen use efficiency in agriculture. Sustainability 2018, 10, 51. [Google Scholar] [CrossRef] [Green Version]
- Grzebisz, W.; Łukowiak, R. Nitrogen gap amelioration is core for sustainable intensification of agriculture—A concept. Agronomy 2021, 11, 419. [Google Scholar] [CrossRef]
- Bocianowski, J.; Szulc, P.; Tratwal, A.; Nowosad, K.; Piesik, D. The influence of potassium to mineral fertilizers on the maize health. J. Integr. Agric. 2016, 15, 1286–1292. [Google Scholar] [CrossRef] [Green Version]
- Grzebisz, W. Site-Specific nutrient management. Agronomy 2021, 11, 752. [Google Scholar] [CrossRef]
- Sharifi, M.; Zebarth, B.J.; Burton, D.L.; Rodd, V.; Grant, C.A. Long-term effects of semisolid beef manure application to forage grass on soil mineralizable nitrogen. Soil Sci. Soc. Am. J. 2011, 75, 649–658. [Google Scholar] [CrossRef]
- Szulc, P.; Bocianowski, J.; Rybus-Zając, M. Accumulation of N, P, K and Mg nutrient elements and nutrient remobilization indices in the biomass of two contrasting maize (Zea mays L.) hybrids. Fresenius Environ. Bull. 2012, 21, 2062–2071. [Google Scholar]
- Drury, C.F.; Yang, W.D.; Reynolds, W.; Calder, T.O.; Oloya, T.O. Combining urease and nitrification inhibitors with incorporation reduces ammonia and nitrous oxide emissions and increases corn yields. J. Environ. Qual. 2017, 46, 939. [Google Scholar] [CrossRef]
- Uzun, S.; Özaktan, H.; Uzun, O. Effects of different nitrogen dose and sources as top-dressing on yield and silage quality attributes of silage maize. An. Acad. Bras. Cienc. 2020, 92 (Suppl. S1), 1–10. [Google Scholar] [CrossRef]
- Potarzycki, J. Improving nitrogen use efficiency of maize by Belter fertilizing practices. Review paper. Nawoz. Fertil. 2010, 39, 5–24. [Google Scholar]
- Potarzycki, J. Influence of balanced fertilization on nutritional status of maize at anthesis. Nawoz. Fertil. 2010, 39, 90–108. [Google Scholar]
- Szulc, P. Effects of differentiated levels of nitrogen fertilization and the method of magnesium application on the utilization of nitrogen by two different maize cultivars for grain. Pol. J. Environ. Stud. 2010, 19, 407–412. [Google Scholar]
- Szulc, P.; Waligóra, H.; Michalski, T.; Bocianowski, J.; Rybus-Zając, M.; Wilczewska, W. The size of the Nmin soil pool as a factor impacting nitrogen utilization efficiency in maize (Zea mays L.). Pak. J. Bot. 2018, 50, 189–198. [Google Scholar]
- Szulc, P.; Bocianowski, J. The effect of soil supplementation with different forms of nitrogen fertiliser on modification of generative yield in two different types of maize (Zea mays L.) hybrids. Pol. J. Agron. 2012, 11, 52–64. [Google Scholar]
- Hopkins, A. Potential impacts of climate change for grassland: Farming industry perceptions, adaptations and mitigation options. Grassl. Sci. Eur. 2003, 8, 483–486. [Google Scholar]
- Szulc, P.; Bocianowski, J. Quantitative relationships between dry matter production and N, P, K and Mg contents, and plant nutrition indices, depending on maize hybrids (Zea mays L.). Fresenius Environ. Bull. 2012, 21, 1740–1751. [Google Scholar]
- Drulis, P.; Kriauciûniene, Z.; Liakas, V. The influence of different nitrogen fertilizer rates, urease inhibitors and biological preparations in maize grain yield and yield structure elements. Agronomy 2022, 12, 741. [Google Scholar] [CrossRef]
- Silva, A.G.B.; Sequeira, C.H.; Sermarini, R.A.; Otto, R. Urease inhibitor NBPT on ammonia volatilization and crop productivity: A meta-analysis. Agron. J. 2017, 109, 636–645. [Google Scholar] [CrossRef]
- Gaj, R.; Szulc, P.; Siatkowski, I.; Waligóra, H. Assessment of the effect of the mineral fertilization system on the nutritional status of maize plants and grain yield prediction. Agriculture 2020, 10, 404. [Google Scholar] [CrossRef]
- Szulc, P.; Ambroży-Deręgowska, K.; Mejza, I.; Szymanowska, D.; Kobus-Cisowska, J.; Grześ, S. Impact of agrotechnical factors on maize root system development and growth stimulation of indicator microorganisms. Pol. J. Environ. Stud. 2020, 29, 3813–3819. [Google Scholar] [CrossRef]
- Księżak, J.; Bojarszczuk, J.; Staniak, M. The productivity of maize and sorghum yields of according level of nitrogen fertilization. Pol. J. Agron. 2012, 8, 20–28. (In Polish) [Google Scholar]
- Zielewicz, W.; Wróbel, B.; Szulc, P.; Bujak, H.; Stachowiak, B. By-plant prediction of dry matter yields at various growth stages of maize plants (Zea mays L.) using leaf greenness indicator in climatic conditions of Poland. Appl. Sci. 2021, 11, 9513. [Google Scholar] [CrossRef]
- Presterl, T.; Groh, S. Bedeutung der Stickstoof-Aufnahme und Verwertungsefficienz fur die Anpassung von Mais an unterschiedliche Dungungsniveau. Vortr. Pflanzenzucht. 1994, 28, 208–210. [Google Scholar]
- Ciu, Z.; Zhang, F.; Mi, G.; Chen, F.; Li, F.; Chen, X.; Li, J.; Shi, L. Interaction between genotypic difference and nitrogen management strategy in determining nitrogen use efficiency of summer maize. Plant Soil 2009, 317, 267–276. [Google Scholar]
- Szczepaniak, W.; Grzebisz, W.; Potarzycki, J. An assessment of the effect of potassium fertilizing systems on maize nutritional status in critical stages of growth by plant analysis. J. Elem. 2014, 538–548. [Google Scholar] [CrossRef] [Green Version]
- Molga, M. Basics of Agricultural Climatology; PWRiL: Warszawa, Poland, 1986. (In Polish) [Google Scholar]
- Szulc, P.; Mejza, I.; Ambroży-Deręgowska, K.; Nowosad, K.; Bocianowski, J. The comparison of three models applied to the analysis of a three-factor trial on hybrid maize (Zea mays L.) cultivars. Biom. Lett. 2016, 53, 47–57. [Google Scholar] [CrossRef]
Factors | Levels of Factors | Number of Ear [pcs·m−2] | TSW [g] | Number of Grains per Ear [pcs.] |
---|---|---|---|---|
A | A1 | 8.48 ns | 287.80 b | 402.82 ns |
A2 | 8.55 ns | 302.37 a | 408.39 ns | |
A3 | 8.60 ns | 305.54 a | 407.14 ns | |
B | B1 | 8.51 ab | 269.02 e | 373.06 c |
B2 | 8.51 ab | 282.13 e | 375.65 c | |
B3 | 8.43 b | 286.73 de | 404.31 abc | |
B4 | 8.51 ab | 300.66 cd | 399.57 bc | |
B5 | 8.81 a | 304.64 bc | 403.07 abc | |
B6 | 8.56 ab | 320.78 ab | 444.58 a | |
B7 | 8.46 b | 326.06 a | 442.57 ab |
Factors | Levels of Factors | Grain Moisture [%] | Grain Yield [t⋅ha−1] |
---|---|---|---|
Y | 2017 | 16.47 ns | 9.73 a |
2018 | 17.64 ns | 7.77 b | |
2019 | 15.91 ns | 5.71 c | |
A | A1 | 15.95 b | 7.08 c |
A2 | 16.69 ab | 7.66 b | |
A3 | 17.38 a | 8.46 a | |
B | B1 | 16.83 ns | 6.95 d |
B2 | 16.49 ns | 7.37 cd | |
B3 | 16.51 ns | 7.48 c | |
B4 | 16.54 ns | 7.75 bc | |
B5 | 16.58 ns | 8.03 ab | |
B6 | 17.00 ns | 8.23 a | |
B7 | 16.74 ns | 8.34 a |
Factors | Levels of Factors | Content of N in the Grain [%] | Uptake N [kg·ha−1] | PFPN [kg Grains·kg Nitrogen Applied] | Use N [%] |
---|---|---|---|---|---|
Y | 2017 | 1.67 ns | 139.16 a | 55.18 a | 20.03 a |
2018 | 1.58 ns | 105.07 b | 44.01 b | 17.46 a | |
2019 | 1.82 ns | 88.77 b | 32.40 c | 11.48 b | |
A | A1 | 1.62 b | 97.19 b | 40.23 c | 13.09 b |
A2 | 1.67 ab | 108.39 b | 43.37 b | 12.78 b | |
A3 | 1.78 a | 127.42 a | 47.99 a | 23.10 a | |
B | B1 | 1.55 d | 90.01 f | 39.04 e | - |
B2 | 1.66 c | 103.41 e | 41.78 d | 8.93 e | |
B3 | 1.70 bc | 108.34 de | 42.69 cd | 12.22 de | |
B4 | 1.71 abc | 112.34 cd | 44.15 bc | 14.88 cd | |
B5 | 1.72 abc | 116.86 bc | 45.49 ab | 17.90 bc | |
B6 | 1.74 ab | 121.19 ab | 46.65 a | 20.79 ab | |
B7 | 1.77 a | 124.85 a | 47.26 a | 23.23 a |
A | B | Uptake N [kg·ha−1] | PFPN [kg Grains·kg Nitrogen Applied] | Use N [%] |
---|---|---|---|---|
A1 | B1 | 80.36 l | 35.83 k | - |
B2 | 94.13 jkl | 40.15 hijk | 9.18 fg | |
B3 | 94.60 jkl | 38.78 jk | 9.49 fg | |
B4 | 100.66 ijk | 41.35 ghij | 13.54 defg | |
B5 | 101.73 hijk | 41.53 fghij | 14.24 defg | |
B6 | 105.56 ghijk | 42.79 efghij | 16.80 cdef | |
B7 | 103.30 ghijk | 41.20 ghij | 15.30 defg | |
A2 | B1 | 91.95 kl | 39.16 ijk | - |
B2 | 100.17 ijk | 40.89 ghij | 5.48 g | |
B3 | 107.35 fghij | 43.49 defgh | 10.26 efg | |
B4 | 107.64 fghij | 43.33 efghi | 10.46 efg | |
B5 | 112.79 efghi | 44.76 defg | 13.89 defg | |
B6 | 117.37 defg | 45.71 def | 16.94 cdef | |
B7 | 121.43 def | 46.27 cde | 19.65 bcde | |
A3 | B1 | 97.72 jk | 42.12 efghij | - |
B2 | 115.93 defgh | 44.29 defgh | 12.14 defg | |
B3 | 123.07 cde | 45.81 def | 16.90 cdef | |
B4 | 128.71 bcd | 47.77 bcd | 20.66 bcd | |
B5 | 136.05 abc | 50.19 abc | 25.55 abc | |
B6 | 140.65 ab | 51.44 ab | 28.62 ab | |
B7 | 149.83 a | 54.29 a | 34.74 a |
Years | H2O | KCl | % N | % C | % Humus | C:N |
---|---|---|---|---|---|---|
pH | ||||||
2017 | 7.01 | 6.52 | 0.086 | 1.037 | 1.79 | 12.1 |
2018 | 6.96 | 6.56 | 0.086 | 1.037 | 1.79 | 12.1 |
2019 | 7.07 | 6.45 | 0.085 | 0.987 | 1.70 | 11.6 |
Years | Phosphorus mg P·kg−1 | Soil Fertility Class | Content Rating | Potassium mg K·kg−1 | Soil Fertility Class | Content Rating | Magnesium mg ·kg−1 | Soil Fertility Class | Content Rating |
---|---|---|---|---|---|---|---|---|---|
2017 | 168.7 | I | very high | 79.5 | III | medium | 92.6 | I | very high |
2018 | 162.7 | I | very high | 87.5 | III | medium | 89.2 | I | very high |
2019 | 173.1 | I | very high | 74.5 | III | medium | 95.6 | I | very high |
Years | IV | V | VI | VII | VIII | IX | X | Sum/Average |
---|---|---|---|---|---|---|---|---|
Temperatures [°C] | ||||||||
2017 | 6.9 | 15.0 | 16.8 | 17.4 | 18.0 | 13.0 | 9.8 | 13.8 |
2018 | 12.4 | 17.0 | 18.2 | 20.1 | 20.9 | 16.3 | 10.6 | 16.5 |
2019 | 9.8 | 12.1 | 21.7 | 18.8 | 20.6 | 14.4 | 10.6 | 15.4 |
Many years (2007–2019) | 9.0 | 13.7 | 17.4 | 19.1 | 19.3 | 13.7 | 8.6 | 14.4 |
Precipitation [mm] | ||||||||
2017 | 30 | 85 | 62 | 134 | 143 | 64 | 99 | 617 |
2018 | 49 | 5 | 45 | 120 | 14 | 32 | 25 | 290 |
2019 | 3 | 72 | 18 | 25 | 44 | 84 | 31 | 277 |
Many years (2007–2019) | 26 | 56 | 58 | 92 | 60 | 40 | 43 | 375 |
The Sielianinov hydrothermal coefficient of water availability (1) | ||||||||
2017 | 1.4 | 1.8 | 1.2 | 2.5 | 2.6 | 1.6 | 3.2 | 2.1 |
2018 | 1.3 | 0.1 | 0.8 | 1.9 | 0.2 | 0.7 | 0.8 | 0.8 |
2019 | 0.1 | 1.9 | 0.3 | 0.4 | 0.7 | 1.9 | 0.9 | 0.9 |
Many years (2007–2019) | 1.0 | 1.3 | 1.1 | 1.6 | 1.0 | 1.0 | 1.6 | 1.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szulc, P.; Krauklis, D.; Ambroży-Deręgowska, K.; Wróbel, B.; Niedbała, G.; Niazian, M.; Selwet, M. Response of Maize Varieties (Zea mays L.) to the Application of Classic and Stabilized Nitrogen Fertilizers—Nitrogen as a Predictor of Generative Yield. Plants 2023, 12, 600. https://doi.org/10.3390/plants12030600
Szulc P, Krauklis D, Ambroży-Deręgowska K, Wróbel B, Niedbała G, Niazian M, Selwet M. Response of Maize Varieties (Zea mays L.) to the Application of Classic and Stabilized Nitrogen Fertilizers—Nitrogen as a Predictor of Generative Yield. Plants. 2023; 12(3):600. https://doi.org/10.3390/plants12030600
Chicago/Turabian StyleSzulc, Piotr, Daniel Krauklis, Katarzyna Ambroży-Deręgowska, Barbara Wróbel, Gniewko Niedbała, Mohsen Niazian, and Marek Selwet. 2023. "Response of Maize Varieties (Zea mays L.) to the Application of Classic and Stabilized Nitrogen Fertilizers—Nitrogen as a Predictor of Generative Yield" Plants 12, no. 3: 600. https://doi.org/10.3390/plants12030600
APA StyleSzulc, P., Krauklis, D., Ambroży-Deręgowska, K., Wróbel, B., Niedbała, G., Niazian, M., & Selwet, M. (2023). Response of Maize Varieties (Zea mays L.) to the Application of Classic and Stabilized Nitrogen Fertilizers—Nitrogen as a Predictor of Generative Yield. Plants, 12(3), 600. https://doi.org/10.3390/plants12030600