Big Data and Machine Learning to Improve European Grapevine Moth (Lobesia botrana) Predictions
Abstract
:1. Introduction
2. Results
- The Touzeau index.
- The Chilling index.
- The rainfall (in this case, calculated using daily data or accumulating the half-hourly samples, considering the starting date of dormancy as the start date to accumulation).
- The longitude.
3. Discussion
3.1. On the Model Performance
3.2. Advantages of ML Models and Most Relevant Weather Variables Identified by the Best-Performing ANN
3.3. Applicability of the Developed ML Models
3.4. Room for Improvement of the AI-Based Models and Future Work
4. Materials and Methods
4.1. Monitoring Field Sites and Study Period
4.2. Lobesia botrana Flight Monitoring
4.3. Weather Data
- First, valid stations were selected for each year: A station was considered valid when, for the year in question, it provided data for at least 90% of the days of the year and the number of days that had less than 90% of the total samples per day (i.e., 48 when the sampling frequency was 30 min) was less than 90%.
- Once the set of stations was defined for a year, the field observations from a vineyard in that year were combined with the climate data from the nearest station.
4.4. Touzeau Model
4.5. Data-Driven Models Used in This Study
- For each monitoring site and season pair, the day of the flight peak for each generation was labeled. This was the variable to be predicted.
- The aforementioned indexes were calculated considering different accumulation start dates, viz. January 1st, February 1st, or the starting date of dormancy, calculated as the first day of Autumn when the temperature remains under 10 °C. This date was considered to try to increase the accuracy of grapevine phenology predictions [79].
- Registered radiation values.
- Wind direction and speed were transformed into daily indexes, calculated using the following rules: wind direction was classified into one of eight categories (N, NE, E, SE, S, SW, W, or NW), and the average speed per day was calculated for each of those categories.
- The raw weather data were also provided to build the models.
- The weather data for the 14 days before a given date were projected horizontally so that the model could make predictions over a 2-week horizon.
4.6. Model Performance Assessment
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kamilaris, A.; Prenafeta-Boldú, F.X. Deep learning in agriculture: A survey. Comput. Electron. Agric. 2018, 147, 70–90. [Google Scholar] [CrossRef]
- Zangina, U.; Buyamin, S.; Aman, M.N.; Abidin, M.S.Z.; Mahmud, M.S.A. A greedy approach to improve pesticide application for precision agriculture using model predictive control. Comput. Electron. Agric. 2021, 182, 105984. [Google Scholar] [CrossRef]
- Ip, R.H.L.; Ang, L.-M.; Seng, K.P.; Broster, J.C.; Pratley, J.E. Big data and machine learning for crop protection. Comput. Electron. Agric. 2018, 151, 376–383. [Google Scholar] [CrossRef]
- Gutiérrez, S.; Hernández, I.; Ceballos, S.; Barrio, I.; Díez-Navajas, A.M.; Tardaguila, J. Deep learning for the differentiation of downy mildew and spider mite in grapevine under field conditions. Comput. Electron. Agric. 2021, 182, 105991. [Google Scholar] [CrossRef]
- Pham, X.; Stack, M. How data analytics is transforming agriculture. Bus. Horiz. 2018, 61, 125–133. [Google Scholar] [CrossRef]
- Kamilaris, A.; Kartakoullis, A.; Prenafeta-Boldú, F.X. A review on the practice of big data analysis in agriculture. Comput. Electron. Agric. 2017, 143, 23–37. [Google Scholar] [CrossRef]
- Lokers, R.; Knapen, R.; Janssen, S.; van Randen, Y.; Jansen, J. Analysis of Big Data technologies for use in agro-environmental science. Environ. Model. Softw. 2016, 84, 494–504. [Google Scholar] [CrossRef]
- Lokhorst, C.; de Mol, R.M.; Kamphuis, C. Invited review: Big Data in precision dairy farming. Animal 2019, 13, 1519–1528. [Google Scholar] [CrossRef]
- Gutierrez, A.P.; Ponti, L.; Cooper, M.L.; Gilioli, G.; Baumgärtner, J.; Duso, C. Prospective analysis of the invasive potential of the European grapevine moth Lobesia botrana (Den. & Schiff.) in California. Agric. For. Entomol. 2012, 14, 225–238. [Google Scholar] [CrossRef]
- Aguilera Sammaritano, J.; Deymié, M.; Herrera, M.; Vazquez, F.; Cuthbertson, A.G.S.; López-Lastra, C.; Lechner, B. The entomopathogenic fungus, Metarhizium anisopliae for the European grapevine moth, Lobesia botrana Den. & Schiff. (Lepidoptera: Tortricidae) and its effect to the phytopathogenic fungus, Botrytis cinerea. Egypt. J. Biol. Pest Control 2018, 28, 83. [Google Scholar] [CrossRef]
- Lucchi, A.; Sambado, P.; Juan Royo, A.B.; Bagnoli, B.; Conte, G.; Benelli, G. Disrupting mating of Lobesia botrana using sex pheromone aerosol devices. Environ. Sci. Pollut. Res. 2018, 25, 22196–22204. [Google Scholar] [CrossRef]
- Rank, A.; Ramos, R.S.; da Silva, R.S.; Soares, J.R.S.; Picanço, M.C.; Fidelis, E.G. Risk of the introduction of Lobesia botrana in suitable areas for Vitis vinifera. J. Pest Sci. 2020, 93, 1167–1179. [Google Scholar] [CrossRef]
- Tzanakakis, Μ.Ε.; Savopoulou-Soultani, Μ.; Oustapassidis, C.S.; Verras, S.C.; Hatziemmanouel, H. Induction of dormancy in Lobesia botrana by long day and high temperature conditions. Entomol. Hell. 1988, 6. [Google Scholar] [CrossRef]
- Andreadis, S.S.; Milonas, P.G.; Savopoulou-Soultani, M. Cold hardiness of diapausing and non-diapausing pupae of the European grapevine moth, Lobesia botrana. Entomol. Exp. Appl. 2005, 117, 113–118. [Google Scholar] [CrossRef]
- Martín-Vertedor, D.; Ferrero-García, J.J.; Torres-Vila, L.M. Global warming affects phenology and voltinism of Lobesia botrana in Spain. Agric. For. Entomol. 2010, 12, 169–176. [Google Scholar] [CrossRef]
- Caffarra, A.; Rinaldi, M.; Eccel, E.; Rossi, V.; Pertot, I. Modelling the impact of climate change on the interaction between grapevine and its pests and pathogens: European grapevine moth and powdery mildew. Agric. Ecosyst. Environ. 2012, 148, 89–101. [Google Scholar] [CrossRef]
- Roditakis, N.E.; Karandinos, M.G. Effects of photoperiod and temperature on pupal diapause induction of grape berry moth Lobesia botrana. Physiol. Entomol. 2001, 26, 329–340. [Google Scholar] [CrossRef]
- Moschos, T. Yield loss quantification and assessment of economic injury level for the anthophagous generation of the European grapevine moth Lobesia botrana Den. et Schiff. (Lepidoptera: Tortricidae). Int. J. Pest Manag. 2005, 51, 81–89. [Google Scholar] [CrossRef]
- Pavan, F.; Bigot, G.; Cargnus, E.; Zandigiacomo, P. Influence of the carpophagous generations of the European grapevine moth Lobesia botrana on grape bunch rots. Phytoparasitica 2013, 42, 61–69. [Google Scholar] [CrossRef]
- Stern, V.M.; Smith, R.F.; van den Bosch, R.; Hagen, K.S. The integration of chemical and biological control of the spotted alfalfa aphid: The integrated control concept. Hilgardia 1959, 29, 81–101. [Google Scholar] [CrossRef] [Green Version]
- van Lenteren, J.C. Success in biological control of arthropods by augmentation of natural enemies. In Biological Control: Measures of Success; Gurr, G., Wratten, S., Eds.; Springer: Dordrecht, The Netherlands, 2000; pp. 77–103. [Google Scholar] [CrossRef]
- Tang, S.; Cheke, R.A. Models for integrated pest control and their biological implications. Math. Biosci. 2008, 215, 115–125. [Google Scholar] [CrossRef] [PubMed]
- Sáenz-de-Cabezón, E.; Hernández, L.J.; Rivas, M.T.; García-Ruiz, E.; Marco, V.; Pérez-Moreno, I.; Sáenz-de-Cabezón, F.J. A computer implementation of the partition of the unity procedure and its application to arthropod population dynamics. A case study on the European grape berry moth. Math. Comput. Simul. 2011, 82, 2–14. [Google Scholar] [CrossRef]
- Rossini, L.; Bruzzone, O.A.; Contarini, M.; Bufacchi, L.; Speranza, S. A physiologically based ODE model for an old pest: Modeling life cycle and population dynamics of Bactrocera oleae (Rossi). Agronomy 2022, 12, 2298. [Google Scholar] [CrossRef]
- Knight, J.D.; Mumford, J.D. Decision support systems in crop protection. Outlook Agric. 2016, 23, 281–285. [Google Scholar] [CrossRef]
- Zhai, Z.; Martínez, J.F.; Beltran, V.; Martínez, N.L. Decision support systems for agriculture 4.0: Survey and challenges. Comput. Electron. Agric. 2020, 170, 105256. [Google Scholar] [CrossRef]
- Nansen, C.; Ferguson, J.C.; Moore, J.; Groves, L.; Emery, R.; Garel, N.; Hewitt, A. Optimizing pesticide spray coverage using a novel web and smartphone tool, SnapCard. Agron. Sustain. Dev. 2015, 35, 1075–1085. [Google Scholar] [CrossRef]
- Santos, J.A.; Fraga, H.; Malheiro, A.C.; Moutinho-Pereira, J.; Dinis, L.-T.; Correia, C.; Moriondo, M.; Leolini, L.; Dibari, C.; Costafreda-Aumedes, S.; et al. A review of the potential climate change impacts and adaptation options for European viticulture. Appl. Sci. 2020, 10, 3092. [Google Scholar] [CrossRef]
- Fabre, F.; Plantegenest, M.; Yuen, J. Financial benefit of using crop protection decision rules over systematic spraying strategies. Phytopathology 2007, 97, 1484–1490. [Google Scholar] [CrossRef]
- Michels, M.; Bonke, V.; Musshoff, O. Understanding the adoption of smartphone apps in crop protection. Precis. Agric. 2020, 21, 1209–1226. [Google Scholar] [CrossRef]
- Plant, R.E.; Mangel, M. Modeling and simulation in agricultural pest management. SIAM Rev. 1987, 29, 235–261. [Google Scholar] [CrossRef]
- Rossini, L.; Severini, M.; Contarini, M.; Speranza, S. EntoSim, a ROOT-based simulator to forecast insects’ life cycle: Description and application in the case of Lobesia botrana. Crop Prot. 2020, 129, 105024. [Google Scholar] [CrossRef]
- Moravie, M.A.; Davison, A.C.; Pasquier, D.; Charmillot, P.J. Bayesian forecasting of grape moth emergence. Ecol. Model. 2006, 197, 478–489. [Google Scholar] [CrossRef]
- Rossi, V.; Giosuè, S.; Caffi, T. Modelling plant diseases for decision making in crop protection. In Precision Crop Protection—The Challenge and Use of Heterogeneity; Oerke, E.-C., Gerhards, R., Menz, G., Sikora, R.A., Eds.; Springer: Dordrecht, The Netherlands, 2010; pp. 241–258. [Google Scholar] [CrossRef]
- Olatinwo, R.; Hoogenboom, G. Weather-based Pest Forecasting for Efficient Crop Protection. In Integrated Pest Management; Abrol, D.P., Ed.; Academic Press: San Diego, CA, USA, 2014; pp. 59–78. [Google Scholar] [CrossRef]
- Briere, J.-F.; Pracros, P. Comparison of temperature-dependent growth models with the development of Lobesia botrana (Lepidoptera: Tortricidae). Environ. Entomol. 1998, 27, 94–101. [Google Scholar] [CrossRef]
- Milonas, P.G.; Savopoulou-Soultani, M.; Stavridis, D.G. Day-degree models for predicting the generation time and flight activity of local populations of Lobesia botrana (Den. & Schiff.) (Lep., Tortricidae) in Greece. J. Appl. Entomol. 2001, 125, 515–518. [Google Scholar] [CrossRef]
- Amo-Salas, M.; Ortega-López, V.; Harman, R.; Alonso-González, A. A new model for predicting the flight activity of Lobesia botrana (Lepidoptera: Tortricidae). Crop Prot. 2011, 30, 1586–1593. [Google Scholar] [CrossRef]
- Moshtaghi Maleki, F.; Iranipour, S.; Hejazi, M.J.; Saber, M. Temperature-dependent age-specific demography of grapevine moth (Lobesia botrana) (Lepidoptera: Tortricidae): Jackknife vs. bootstrap techniques. Arch. Phytopathol. Plant Prot. 2016, 49, 263–280. [Google Scholar] [CrossRef]
- Gutierrez, A.P.; Ponti, L.; Gilioli, G.; Baumgärtner, J. Climate warming effects on grape and grapevine moth (Lobesia botrana) in the Palearctic region. Agric. For. Entomol. 2018, 20, 255–271. [Google Scholar] [CrossRef] [Green Version]
- Aguirre-Zapata, E.; Morales, H.; Dagatti, C.V.; di Sciascio, F.; Amicarelli, A.N. Semi physical growth model of Lobesia botrana under laboratory conditions for Argentina’s Cuyo region. Ecol. Model. 2022, 464, 109803. [Google Scholar] [CrossRef]
- Touzeau, J. Modélisation de l’évolution de l’Eudémis de la Vigne pour la région Midi Pyrénées. Boll. Zool. Agrar. Bachic. Ser. II 1981, 16, 26–28. [Google Scholar]
- Lucchi, A.; Suma, P.; Ladurner, E.; Iodice, A.; Savino, F.; Ricciardi, R.; Cosci, F.; Marchesini, E.; Conte, G.; Benelli, G. Managing the vine mealybug, Planococcus ficus, through pheromone-mediated mating disruption. Environ. Sci. Pollut. Res. 2019, 26, 10708–10718. [Google Scholar] [CrossRef]
- Ricciardi, R.; Benelli, G.; Suma, P.; Cosci, F.; Di Giovanni, F.; Zeni, V.; Conte, G.; Marchesini, E.; Savino, F.; Ladurner, E.; et al. One device for two pests: A new double dispenser for mating disruption of Lobesia botrana and Planococcus ficus. Entomol. Gen. 2022, 42, 289–307. [Google Scholar] [CrossRef]
- Welter, S.C.; Pickel, C.; Millar, J.; Cave, F.; Van Steenwyk, R.A.; Dunley, J. Pheromone mating disruption offers selective management options for key pests. Calif. Agric. 2005, 59, 16–22. [Google Scholar] [CrossRef]
- Benelli; Lucchi; Thomson; Ioriatti. Sex pheromone aerosol devices for mating disruption: Challenges for a brighter future. Insects 2019, 10, 308. [Google Scholar] [CrossRef] [PubMed]
- Witzgall, P.; Kirsch, P.; Cork, A. Sex pheromones and their impact on pest management. J. Chem. Ecol. 2010, 36, 80–100. [Google Scholar] [CrossRef] [PubMed]
- Kong, W.N.; Li, J.; Fan, R.J.; Li, S.C.; Ma, R.Y. Sex-pheromone-mediated mating disruption technology for the oriental fruit moth, Grapholita molesta (Busck) (Lepidoptera: Tortricidae): Overview and prospects. Psyche A J. Entomol. 2014, 2014, 253924. [Google Scholar] [CrossRef]
- Iltis, C.; Moreau, J.; Pecharová, K.; Thiéry, D.; Louâpre, P. Reproductive performance of the European grapevine moth Lobesia botrana (Tortricidae) is adversely affected by warming scenario. J. Pest Sci. 2020, 93, 679–689. [Google Scholar] [CrossRef]
- Comșa, M.; Tomoiagă, L.L.; Muntean, M.-D.; Ivan, M.M.; Orian, S.M.; Popescu, D.M.; Chedea, V.S. The effects of climate change on the activity of the Lobesia botrana and Eupoecilia ambiguella moths on the grapevine cultivars from the Târnave vineyard. Sustainability 2022, 14, 14554. [Google Scholar] [CrossRef]
- Ting, K.M. Confusion Matrix. In Encyclopedia of Machine Learning and Data Mining; Sammut, C., Webb, G.I., Eds.; Springer: New York, NY, USA, 2017; p. 260. [Google Scholar] [CrossRef]
- Sepúlveda, J.; Velastin, S.A. F1 score assessment of Gaussian mixture background subtraction algorithms using the MuHAVi dataset. In In Proceedings of the 6th International Conference on Imaging for Crime Prevention and Detection (ICDP-15), London, UK, 15–17 July 2015. [Google Scholar]
- Nieto, L.; Schwalbert, R.; Prasad, P.V.V.; Olson, B.J.S.C.; Ciampitti, I.A. An integrated approach of field, weather, and satellite data for monitoring maize phenology. Sci. Rep. 2021, 11, 15711. [Google Scholar] [CrossRef]
- Stellwaag, F. Die Weinbauinsekten der Kulturländer: Lehr- und Handbuch; Springer: Berlin/Heidelberg, Germany, 1928; pp. 631–660. [Google Scholar]
- Fenu, G.; Malloci, F.M. Forecasting plant and crop disease: An explorative study on current algorithms. Big Data Cogn. Comput. 2021, 5, 2. [Google Scholar] [CrossRef]
- Zhan, T.; Xu, H. Nonlinear optimization of GM(1,1) model based on multi-parameter background value. In Computer and Computing Technologies in Agriculture, Proceedings of the 5th IFIP TC 5, SIG 5.1 International Conference, CCTA 2011, Beijing, China, 29–31 October 2011; Springer: Berlin/Heidelberg, Germany, 2011; pp. 15–19. [Google Scholar]
- Arlo Richardson, E.; Seeley, S.D.; Walker, D.R. A model for estimating the completion of rest for ‘Redhaven’ and ‘Elberta’ peach trees. HortScience 1974, 9, 331–332. [Google Scholar] [CrossRef]
- Khaghaninia, S.; Mohammadi, S.A.; Nejad, K.H.I.; Sarafrazi, A.M. Population variation of codling moth Cydia pomonella (Lep.; Tortricidae) based on molecular data from northwestern Iran. Turk. J. Zool. 2011, 35, 571–578. [Google Scholar] [CrossRef]
- Zhou, X.-Y.; Wang, J.-W.; Zhang, J.; Yang, H.; Yang, W.; Yang, C.-P.; Zhou, W.; Li, T.; Wang, R.-L. The relationships among longitude, latitude and elevation of occurrence of Parocneria orienta Chao (Lepidoptera: Erebidae) in China. J. Kans. Entomol. Soc. 2020, 92. [Google Scholar] [CrossRef]
- Lacueva-Pérez, F.J.; Ilarri, S.; Barriuso, J.J.; Balduque, J.; Labata, G.; del-Hoyo, R. Grapevine phenology prediction: A comparison of physical and machine learning models. In 24th International Conference on Big Data Analytics and Knowledge Discovery, Proceedings of the 24th International Conference, DaWaK 2022, Vienna, Austria, 22–24 August 2022; Springer: Cham, Switzerland, 2022; pp. 263–269. [Google Scholar] [CrossRef]
- Lacueva-Pérez, F.J.; Ilarri, S.; Labata Lezaun, G.; Barriuso Vargas, J.J.; del Hoyo Alonso, R. Multifactorial Evolutionary Prediction of Phenology and Pests: Can Machine Learning Help? In Proceedings of 16th International Conference on Web Information Systems and Technologies (WEBIST 2020), Online, 3–5 November 2020; pp. 75–82. [Google Scholar] [CrossRef]
- Lessio, F.; Alma, A. Models applied to grapevine pests: A review. Insects 2021, 12, 169. [Google Scholar] [CrossRef] [PubMed]
- RedFAra. RedFAra Homepage. Available online: http://web.redfara.es/ (accessed on 21 December 2022).
- QGIS Development Team. QGIS Geographic Information System. Open Source Geospatial Foundation Project. 2023. Available online: http://qgis.osgeo.org (accessed on 21 December 2022).
- Spanish Cadastral Registry. Spanish Cadastral Registry Electronic Homepage. Available online: http://www.catastro.minhap.es/webinspire/index.html (accessed on 21 December 2022).
- Government of Aragon. Aragon Open Data Homepage. Available online: https://opendata.aragon.es/ (accessed on 21 December 2022).
- Silva, S.; Burgardt, M.; Ohanian, G.; San Blas, G.; Valeria, B.; Buran, M.; Musri, L. Aplicación del modelo de Touzeau como herramienta para el control y manejo de la “polilla de la vid” Lobesia botrana (Denis & Schiffmüller) en Mendoza. In Proceedings of the Séptimo Encuentro de Investigadores y Docentes de Ingeniería, EnIDI 2013, Mendoza, Argentina, 12–14 September 2013; pp. 398–407. [Google Scholar]
- SiAR. Agro-Climatic Information System for Irrigation Homepage. Available online: https://eportal.mapa.gob.es//websiar/Inicio.aspx (accessed on 21 December 2022).
- Copernicus. Copernicus Climate Data Store. Available online: https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview (accessed on 21 December 2022).
- Open-Meteo. Open-Meteo. 60 Years of Historical Weather as Free API and Download. Available online: https://openmeteo.substack.com/p/60-years-of-historical-weather-as (accessed on 21 December 2022).
- Akyuz, A. Growing degree day calculation method comparison between two methods in the northern edge of the US Corn Belt. J. Appl. Serv. Climatol. 2015, 2015, 1–9. [Google Scholar] [CrossRef]
- Nietschke, B.S.; Magarey, R.D.; Borchert, D.M.; Calvin, D.D.; Jones, E. A developmental database to support insect phenology models. Crop Prot. 2007, 26, 1444–1448. [Google Scholar] [CrossRef]
- Gabel, B.; Mocko, V. A functional simulation of European vine moth Lobesia botrana Den. Et Schiff. (Lep., Tortricidae) population development. J. Appl. Entomol. 1986, 101, 121–127. [Google Scholar] [CrossRef]
- Del Tío, R.; Martínez, J.L.; Ocete, R.; Ocete, M.E. Study of the relationship between sex pheromone trap catches of Lobesia botrana (Den. & Schiff.) (Lep., Tortricidae) and the accumulation of degree-days in Sherry vineyards (SW of Spain). J. Appl. Entomol. 2008, 125, 9–14. [Google Scholar] [CrossRef]
- Gallardo, A.; Ocete, R.; López, M.A.; Maistrello, L.; Ortega, F.; Semedo, A.; Soria, F.J. Forecasting the flight activity of Lobesia botrana (Denis & Schiffermüller) (Lepidoptera, Tortricidae) in Southwestern Spain. J. Appl. Entomol. 2009, 133, 626–632. [Google Scholar] [CrossRef]
- Montáns, F.J.; Chinesta, F.; Gómez-Bombarelli, R.; Kutz, J.N. Data-driven modeling and learning in science and engineering. C. R. Mécanique 2019, 347, 845–855. [Google Scholar] [CrossRef]
- Domingues, T.; Brandão, T.; Ferreira, J.C. Machine learning for detection and prediction of crop diseases and pests: A comprehensive survey. Agriculture 2022, 12, 1350. [Google Scholar] [CrossRef]
- Bonhomme, R. Bases and limits to using ‘degree.day’ units. Eur. J. Agron. 2000, 13, 1–10. [Google Scholar] [CrossRef]
- Rodriguez-Galiano, V.F.; Sanchez-Castillo, M.; Dash, J.; Atkinson, P.M.; Ojeda-Zujar, J. Modelling interannual variation in the spring and autumn land surface phenology of the European forest. Biogeosciences 2016, 13, 3305–3317. [Google Scholar] [CrossRef]
- Scikit-Learn. Scikit-Learn Homepage. Available online: https://scikit-learn.org/stable/ (accessed on 21 December 2022).
- Keras. Keras Homepage. Available online: https://keras.io/ (accessed on 21 December 2022).
- Optuna. Optuna Homepage. Available online: https://optuna.org/ (accessed on 21 December 2022).
- Python. Python Homepage. Available online: https://www.python.org/ (accessed on 21 December 2022).
- Magalhães, I.A.L.; de Carvalho Júnior, O.A.; de Carvalho, O.L.F.; de Albuquerque, A.O.; Hermuche, P.M.; Merino, É.R.; Gomes, R.A.T.; Guimarães, R.F. Comparing machine and deep learning methods for the phenology-based classification of land cover types in the Amazon biome using Sentinel-1 time series. Remote Sens. 2022, 14, 4858. [Google Scholar] [CrossRef]
- Mendes, J.; Peres, E.; Neves dos Santos, F.; Silva, N.; Silva, R.; Sousa, J.J.; Cortez, I.; Morais, R. VineInspector: The Vineyard Assistant. Agriculture 2022, 12, 730. [Google Scholar] [CrossRef]
- Sitarz, M. Extending F1 metric, probabilistic approach. arXiv 2022, arXiv:2210.11997. [Google Scholar]
Layer | Neurons | Activation Function |
---|---|---|
0 | 96 | linear |
1 | 336 | selu |
2 | 64 | linear |
3 | 144 | selu |
Season | Generation | Observation/ Prediction | Site Code | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
50024A00300013 | 50073A03500094 | 50004A03400175 | 50073A00700043 | 50073A01000009 | 50073A02700014 | 50073A03400128 | 50073A04100021 | 50073A04800016 | 50073A05800042 | 50073A08400031 | 50073A08900011 | 50073A09500073 | 50073A10000051 | 50098A03000027 | 50201A00200124 | 50201A02200012 | 50268A00100050 | |||
2008 | 1st | Obs. | 126 | 126 | 153 | 153 | 126 | 153 | ||||||||||||
Tou. | 111 | 111 | 111 | 111 | 111 | 111 | 111 | |||||||||||||
ML | 126 | 149 | 93 | 149 | 153 | 126 | 153 | |||||||||||||
2nd | Obs. | 184 | 184 | 157 | 159 | 157 | 157 | 157 | 159 | 157 | 157 | 160 | 159 | 157 | 159 | 157 | ||||
Tou. | 172 | 172 | 172 | 172 | 172 | 172 | 172 | 172 | 172 | 172 | 172 | 172 | 172 | 172 | 172 | |||||
ML | 186 | 157 | 157 | 157 | 157 | 157 | 159 | 157 | 157 | 159 | 157 | 159 | 156 | |||||||
3rd | Obs. | 221 | 221 | 224 | 216 | 224 | 224 | 224 | 221 | 224 | 224 | 224 | 214 | 216 | 224 | |||||
Tou. | 210 | 210 | 210 | 210 | 210 | 210 | 210 | 210 | 210 | 210 | 210 | 210 | 210 | 210 | 210 | |||||
ML | 220 | 223 | 215 | 223 | 223 | 223 | 221 | 223 | 223 | 214 | 223 | 216 | 223 | |||||||
2009 | 1st | Obs. | 134 | 125 | 131 | 128 | 131 | 131 | 131 | 125 | 131 | 131 | 131 | 128 | 128 | 131 | ||||
Tou. | 127 | 127 | 127 | 127 | 127 | 127 | 127 | 127 | 127 | 127 | 127 | 127 | 127 | 127 | ||||||
ML | 130 | 128 | 130 | 130 | 130 | 124 | 130 | 130 | 130 | 128 | 128 | |||||||||
2nd | Obs. | 175 | 173 | 152 | 158 | 152 | 152 | 152 | 159 | 152 | 152 | 152 | 152 | 152 | 159 | 152 | ||||
Tou. | 166 | 166 | 166 | 166 | 166 | 166 | 166 | 166 | 166 | 166 | 166 | 166 | 166 | 166 | 166 | |||||
ML | 151 | 157 | 151 | 151 | 151 | 159 | 151 | 151 | 151 | 152 | 151 | |||||||||
3rd | Obs. | 223 | 212 | 217 | 215 | 215 | 217 | 217 | 215 | 217 | 215 | 220 | 215 | 218 | 223 | 224 | ||||
Tou. | 201 | 201 | 201 | 201 | 201 | 201 | 201 | 201 | 201 | 201 | 201 | 201 | 201 | 201 | 201 | |||||
ML | 217 | 215 | 215 | 217 | 217 | 214 | 217 | 215 | 220 | 215 | 223 | |||||||||
2010 | 1st | Obs. | 139 | 139 | 152 | 122 | 157 | 157 | 124 | 131 | 124 | 152 | 127 | 124 | 156 | 127 | 124 | |||
Tou. | 116 | 116 | 116 | 116 | 116 | 116 | 116 | 116 | 116 | 116 | 116 | 116 | 116 | 116 | 116 | |||||
ML | 123 | 123 | 152 | 122 | 120 | 120 | 123 | 120 | 123 | 123 | 152 | 123 | 123 | 156 | 123 | 123 | ||||
2nd | Obs. | 181 | 181 | 158 | 163 | 158 | 158 | 183 | 157 | 158 | 183 | 158 | 163 | 183 | 163 | 160 | 158 | |||
Tou. | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | ||||
ML | 159 | 175 | 157 | 162 | 157 | 157 | 175 | 156 | 157 | 175 | 157 | 162 | 175 | 162 | 159 | 157 | ||||
3rd | Obs. | 224 | 221 | 218 | 224 | 218 | 224 | 224 | 213 | 214 | 214 | 214 | 224 | 224 | 224 | 224 | ||||
Tou. | 207 | 207 | 207 | 207 | 207 | 207 | 207 | 207 | 207 | 207 | 207 | 207 | 207 | 207 | 207 | |||||
ML | 223 | 223 | 218 | 223 | 217 | 223 | 223 | 212 | 214 | 214 | 214 | 223 | 223 | 223 | 223 | |||||
2011 | 1st | Obs. | 123 | 123 | 131 | 128 | 129 | 131 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 129 | 121 | 128 | 128 |
Tou. | 103 | 103 | 103 | 103 | 103 | 103 | 103 | 103 | 103 | 103 | 103 | 103 | 103 | 103 | 103 | 103 | 103 | 103 | ||
ML | 123 | 123 | 126 | 126 | 130 | 126 | 126 | 126 | 126 | 126 | 126 | 126 | 126 | 126 | 121 | 126 | 126 | |||
2nd | Obs. | 164 | 164 | 157 | 184 | 157 | 158 | 158 | 158 | 182 | 157 | 182 | 157 | 157 | 182 | |||||
Tou. | 162 | 162 | 162 | 162 | 162 | 162 | 162 | 162 | 162 | 162 | 162 | 162 | 162 | 162 | ||||||
ML | 152 | 157 | 157 | 157 | 176 | 150 | 175 | 150 | 150 | 150 | 176 | |||||||||
3rd | Obs. | 216 | 216 | 224 | 220 | 223 | 214 | 220 | 220 | 220 | 224 | 220 | 220 | 223 | 213 | 223 | 223 | 213 | ||
Tou. | 202 | 202 | 202 | 202 | 202 | 202 | 202 | 202 | 202 | 202 | 202 | 202 | 202 | 202 | 202 | 202 | 202 | |||
ML | 216 | 216 | 216 | 222 | 210 | 220 | 220 | 220 | 223 | 220 | 220 | 213 | 222 | 222 | 213 |
Hyperparameter | Value |
---|---|
Number of layers | 3−10 |
Number of neurons in intermediate layers | 0, 32, 512 |
Number of neurons in last 2 layers | 16, 464 |
Activation functions | “selu”,”linear”,”tanh”,”softmax” |
Exist activation function | sigmoid |
Learning rates | 10.0 × 10−3, 10.0 × 10−2, 10.0 × 10−1 |
Optimizers | ‘sgd’,’adam’,’rmsprop’ |
Callback | Val_loss, patient = 17.0, min_delta = 0.17 |
Epochs | 1000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balduque-Gil, J.; Lacueva-Pérez, F.J.; Labata-Lezaun, G.; del-Hoyo-Alonso, R.; Ilarri, S.; Sánchez-Hernández, E.; Martín-Ramos, P.; Barriuso-Vargas, J.J. Big Data and Machine Learning to Improve European Grapevine Moth (Lobesia botrana) Predictions. Plants 2023, 12, 633. https://doi.org/10.3390/plants12030633
Balduque-Gil J, Lacueva-Pérez FJ, Labata-Lezaun G, del-Hoyo-Alonso R, Ilarri S, Sánchez-Hernández E, Martín-Ramos P, Barriuso-Vargas JJ. Big Data and Machine Learning to Improve European Grapevine Moth (Lobesia botrana) Predictions. Plants. 2023; 12(3):633. https://doi.org/10.3390/plants12030633
Chicago/Turabian StyleBalduque-Gil, Joaquín, Francisco J. Lacueva-Pérez, Gorka Labata-Lezaun, Rafael del-Hoyo-Alonso, Sergio Ilarri, Eva Sánchez-Hernández, Pablo Martín-Ramos, and Juan J. Barriuso-Vargas. 2023. "Big Data and Machine Learning to Improve European Grapevine Moth (Lobesia botrana) Predictions" Plants 12, no. 3: 633. https://doi.org/10.3390/plants12030633
APA StyleBalduque-Gil, J., Lacueva-Pérez, F. J., Labata-Lezaun, G., del-Hoyo-Alonso, R., Ilarri, S., Sánchez-Hernández, E., Martín-Ramos, P., & Barriuso-Vargas, J. J. (2023). Big Data and Machine Learning to Improve European Grapevine Moth (Lobesia botrana) Predictions. Plants, 12(3), 633. https://doi.org/10.3390/plants12030633