Vertical Columns with Sustainable Green Cover: Meadow Plants in Urban Design
Abstract
:1. Introduction
2. Results
2.1. Dynamics of Plant Species
2.2. Dynamics of Plant Communities
2.3. Light Requirement and Species Distribution
3. Discussion
4. Methods and Materials
4.1. Installation of Vertical Columns
4.2. Maintenance of the Columns
4.3. Plant Species Composition and Vegetation Assessment
4.4. Analysis of Meteorological Data and Ecological Parameters
4.5. Statistical Analysis and Calculations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jain, R.; Janakinam, T. Vertical Gardening: A New Concept of Modern Era. In Commercial Horticulture, 3rd ed.; New India Publishing Agency: New Delhi, India, 2016; pp. 527–536. [Google Scholar]
- Ekren, E. Advantages and Risks of Vertical Gardens. Bartın Orman Fakültesi Derg. 2017, 19, 51–57. [Google Scholar]
- Meral, A.; Başaran, N.; Yalçınalp, E.; Doğan, E.; Ak, M.K.; Eroğlu, E. A Comparative Approach to Artificial and Natural Green Walls According to Ecological Sustainability. Sustainability 2018, 10, 1995. [Google Scholar] [CrossRef]
- Pérez, G.; Coma, J.; Martorell, I.; Cabeza, L.F. Vertical Greenery Systems (VGS) for energy saving in buildings: A review. Renew. Sustain. Energy Rev. 2014, 39, 139–165. [Google Scholar] [CrossRef]
- Radić, M.; Dodig, M.B.; Auer, T. Green Facades and Living Walls–A Review Establishing the Classification of Construction Types and Mapping the Benefits. Sustainability 2019, 11, 4579. [Google Scholar] [CrossRef]
- Perini, K.; Ottelé, M. Designing green façades and living wall systems for sustainable for constructions. Int. J. Des. Nat. Ecodynamics 2014, 9, 31–46. [Google Scholar] [CrossRef]
- Örnek, M.A.; Çağdaş, G. A Case Based Model For Designing Vertical Gardens. DLA Conf. 2011, 315–319. [Google Scholar]
- Timur, Ö.B.; Karaca, E. Vertical Gardens. In Advances in Landscape Architecture, 1st ed.; IntechOpen: London, UK, 2013; pp. 587–622. [Google Scholar]
- Xue, J. Redefining and Reapplication of the Vertical Garden Intersonal Household Context. Master’s Thesis, Yeates School, Toronto, ON, Canada, 2015; p. 25. [Google Scholar]
- Bașdoğan, G.; Çiğ, A. Ecological-social-economical impacts of vertical gardens in the sustainable city model. Yüzüncü Yıl Üniversitesi Tarım Bilim. Derg. 2016, 26, 430–438. [Google Scholar]
- Perini, K.; Ottelé, M.; Haas, E.M.; Raiteri, R. Greening the building envelope, facade greening and living wall systems. Open J. Ecol. 2011, 1, 1–8. [Google Scholar] [CrossRef]
- Sharma, P. Vertical Gardens—An Innovative Element of Green Building Technology. In Proceedings of the Internal Conference (GYANODAY 2015), Greater Nodia, India, 28 November 2015; Volume 42. [Google Scholar]
- Sheweka, S.; Magdy, N. The Living walls as an Approach for a Healthy Urban Environment. Energy Procedia 2011, 6, 592–599. [Google Scholar] [CrossRef]
- Lin, S.; Zhang, L. A mathematical model for vertical column farming system design of leafy vegetable crops. J. Phys. Conf. Ser. 2018, 1096, 012051. [Google Scholar] [CrossRef]
- Sasaki, T.; Lauenroth, W.K. Dominant species, rather than diversity, regulates temporal stability of plant communities. Oecologia 2011, 166, 761–768. [Google Scholar] [CrossRef]
- Surat, H.; Eminagaoglu, O. Determinaion of the aesthetical and functional use of certain natural plants in Hatila Valley national park in landscape architecture. Int. J. Ecosyst. Ecol. Sci. 2018, 8, 113–134. [Google Scholar]
- FloraWeb—Biologische Merkmale. Available online: https://www.floraweb.de/ (accessed on 12 July 2022).
- Stollberg, M.; Moser, G.; Müller, C.; Birgelen, A. Meadow-living walls: Creating attractive vertical greenery with meadow seed mixtures—Experiences and recommendations from a three year field trial. Ecol. Eng. 2022, 185, 106817. [Google Scholar] [CrossRef]
- Campiotti, C.A.; Gatti, L.; Campiotti, A.; Consorti, L.; De Rossi, P.; Bibbiani, C.; Muleo, R.; Latini, A. Vertical Greenery as Natural Tool for Improving Energy Efficiency of Buildings. Horticulturae 2022, 8, 526. [Google Scholar] [CrossRef]
- Ratyńska, H.; Lewandowska, A.; Waldon-Rudzionek, B.; Mazur, M. Species share of Molinio-Arrhenatheretea class in vegetation of the forest arboretum in Zielonka near Poznań and in Adjacent treestands. Steciana 2015, 19, 245–253. [Google Scholar] [CrossRef]
- Balevičienė, J. Syntaxonomy-Phytogeographical Structure of Vegetation in Lithuania; Mokslas: Vilnius, Lithuania, 1991. [Google Scholar]
- Balevičienė, J.; Kizienė, B.; Lazdauskaitė, Ž.; Patalauskaitė, D.; Rašomavičius, V.; Sinkevičienė, Z.; Tučienė, A.; Venckus, Z. Vegetation of Lithuania. Meadows; Šviesa: Kaunas, Lithuania, 1998. [Google Scholar]
- Matuszkiewicz, W. Przewodnik do Oznaczania Zbiorowisk Roślinnych Polski; Wydawnictwo Naukowe PWN: Warszawa, Poland, 2008. [Google Scholar]
- Laime, B.; Tjarve, D. Grey dune plant communities (Koelerio-Corynephoretea) on the Baltic coast in Latvia. Tuexenia 2009, 29, 409–435. [Google Scholar]
- Isbell, F.; Craven, D.; Connolly, J.; Loreau, M.; Schmid, B.; Beierkuhnlein, C.; Bezemer, T.M.; Bonin, C.; Bruelheide, H.; de Luca, E.; et al. Biodiversity increases the resistance of ecosystem productivity to climate extremes. Nature 2015, 526, 574–577. [Google Scholar] [CrossRef]
- Pashkevych, N. Ruderal vegetation of Skhidnytsia village-resort (Lviv region, Ukraine). Stud. Biol. 2018, 12, 63–76. [Google Scholar] [CrossRef]
- Linder, H.P.; Lehmann, C.E.R.; Archibald, S.; Osborne, C.P.; Richardson, D.M. Global grass (Poaceae) success underpinned by traits facilitating colonization, persistence and habitat transformation. Biol. Rev. 2017, 93, 1125–1144. [Google Scholar] [CrossRef]
- Mårtensson, L.-M.; Wuolo, A.; Fransson, A.-M.; Emilsson, T. Plant performance in living wall systems in the Scandinavian climate. Ecol. Eng. 2014, 71, 610–614. [Google Scholar] [CrossRef]
- Flora of Lithuania; State Publishing House of Political and Scientific Literature: Vilnius, Lithuania, 1961; Volume 3.
- Flora of Lithuania; State Publishing House of Political and Scientific Literature: Vilnius, Lithuania, 1976; Volume 5.
- Flora of Lithuania; State Publishing House of Political and Scientific Literature: Vilnius, Lithuania, 1980; Volume 6.
- Lekavičius, A. A Guide to Getting to Know Plants; Mokslas: Vilnius, Lithuania, 1989. [Google Scholar]
- Ganjurjav, H.; Gornish, E.S.; Hu, G.; Wan, Y.; Li, Y.; Danjiu, L.; Gao, Q. Temperature leads to annual changes of plant community composition in alpine grasslands on the Qinghai–Tibetan Plateau. Environ. Monit Assess 2018, 190, 585. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Loreau, M.; He, N.; Wang, J.; Pan, Q.; Bai, Y.; Han, X. Climate variability decreases species richness and community stability in a temperate grassland. Oecologia 2018, 188, 183–192. [Google Scholar] [CrossRef] [PubMed]
- Jørgensen, L.; Thorup-Kristensen, K.; Dresbøll, D.B. Against the wall—Root growth and competition in four perennial winter hardy plant species grown in living walls. Urban For. Urban Green. 2018, 29, 293–302. [Google Scholar] [CrossRef]
- Benvenuti, S.; Malandrin, V.; Pardossi, A. Germination ecology of wild living walls for sustainable vertical garden in urban environment. Sci. Hortic. 2016, 203, 185–191. [Google Scholar] [CrossRef]
- Lithuanian Hydrometeorological Service. Available online: http://www.meteo.lt/en/ (accessed on 25 January 2023).
- Galvonaitė, A.; Valiukas, D.; Kilpys, J.; Kitrienė, Z.; Misiūnien, M. Climate Atlas of Lithuania; Lithuanian Hydrometeorological Service under the Ministry of Environment; Lithuanian Hydrometeorological Service: Vilnius, Lithuania, 2013. [Google Scholar]
- Braun-Blanquet, J. Pflanzensoziologie, Grundzüge der Vegetationskunde, 3rd ed.; Wien: New York, NY, USA, 1964. [Google Scholar]
Year | 2017 | 2019 | 2021 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Side of the Building | N | E | S | W | N | E | S | W | N | E | S | W | |
Coverage (%): | The light indicator values according to Ellenberg [17] | ||||||||||||
herbs | 88 | 95 | 95 | 92 | 77 | 95 | 91 | 88 | 73 | 90 | 85 | 83 | |
bryophytes | 34 | 54 | 42 | 48 | 27 | 49 | 40 | 41 | 18 | 42 | 35 | 26 | |
Achillea millefolium | IV+−3 * | IV+−4 | V+−4 | IV+−4 | III+−2 | IV+−3 | IV+−3 | III+−3 | I+−1 | II+−3 | II+−2 | III+−2 | 8–9 |
Agrimonia eupatoria | sp+ | I+ | I+−1 | sp+ | – | – | – | sp+ | – | – | – | – | 6–7 |
Ajuga reptans | sp+ | sp+ | sp+−1 | sp+−1 | sp+−1 | sp+−2 | sp+ | sp+ | I+−2 | sp+ | sp+ | sp+ | 6–7 |
Alchemilla subcrenata | – | sp+ | – | – | – | sp+ | – | – | – | – | – | – | 6–7 |
Anthemis tinctoria | sp1 | sp+ | – | – | – | sp+ | – | – | – | sp+ | – | – | 8–9 |
Arabidopsis arenosa | – | – | – | – | V+−4 | III+−3 | III+−1 | II+−2 | V+−5 | IV+−4 | IV+−3 | III+−4 | 8–9 |
Arenaria serpyllifolia | sp1 | – | – | II+−3 | – | – | – | I+−2 | – | sp+ | – | sp+ | n |
Artemisia campestris | sp1 | sp+−1 | sp+−2 | sp+ | sp+ | sp1−2 | sp+−2 | sp+ | – | sp2 | sp+ | sp+−1 | 8–9 |
Artemisia vulgaris | sp+ | – | sp+ | sp+ | sp+ | sp+ | sp+ | sp+ | sp+ | sp+ | sp+ | sp+−1 | 6–7 |
Barbarea vulgaris | – | sp+ | – | – | – | – | sp+−2 | – | – | – | – | – | 8–9 |
Betula pendula | – | – | – | – | sp+ | – | – | – | – | – | – | – | 6–7 |
Bidens tripartita | – | – | – | sp+ | – | – | – | sp+ | – | – | – | – | 8–9 |
Capsella bursa-pastoris | sp+−2 | sp+−2 | sp+−2 | sp+−1 | – | – | – | sp+ | – | sp+ | sp1−2 | sp+ | 6–7 |
Carex hirta | – | – | – | – | sp+ | – | – | – | sp1 | sp+−1 | – | – | 6–7 |
Carum carvi | I+−1 | sp+−1 | sp+ | sp+ | – | sp+ | – | sp+ | – | sp+ | – | – | 8–9 |
Centaurea scabiosa | – | sp+ | – | sp+ | – | sp+ | – | – | – | – | – | – | 6–7 |
Cerastium arvense | sp+ | sp+ | – | – | – | – | – | – | – | – | sp+ | sp+ | 8–9 |
Cerastium holosteoides | sp+ | sp+ | – | – | – | – | – | – | – | – | – | – | 6–7 |
Chelidonium majus | – | – | – | – | sp1 | – | – | – | – | – | – | – | 6–7 |
Chenopodium album | – | – | – | – | – | – | – | – | sp+ | sp+−1 | sp+ | sp+ | n |
Chenopodium glaucum | – | – | – | – | – | – | – | – | – | – | sp+ | – | 8–9 |
Convolvulus arvensis | – | – | – | – | – | – | – | – | – | – | – | sp+ | 6–7 |
Conyza canadensis | – | – | – | sp+ | – | – | – | sp+ | sp+ | sp+ | sp+ | sp+ | 8–9 |
Crepis tectorum | – | – | – | – | – | – | – | – | sp+ | – | – | – | 8–9 |
Dactylis glomerata | sp+ | sp+−2 | I+−2 | I+−2 | sp+−2 | sp+−2 | sp+−1 | I+−2 | – | – | – | – | 6–7 |
Elytrigia repens | III+−3 | II+−3 | II+−2 | II+−3 | IV+−4 | IV+−3 | IV+−3 | III+−3 | IV+−4 | III+−5 | IV+−5 | III+−4 | 6–7 |
Epilobium parviflorum | – | – | – | – | – | – | – | – | II+−1 | II+−2 | sp+ | sp+−1 | 6–7 |
Equisetum arvense | – | – | – | – | – | sp+ | – | – | – | sp+−2 | – | sp+−1 | 6–7 |
Erigeron acris | – | – | – | – | – | – | – | – | sp+ | sp+ | – | – | 8–9 |
Euphorbia helioscopia | – | – | – | – | – | sp+−2 | – | – | – | sp+ | – | – | 6–7 |
Euphrasia stricta | – | – | – | – | – | sp+−1 | sp+ | sp+ | – | sp+ | – | sp+−2 | n |
Fallopia convolvulus | – | – | – | – | – | – | – | – | sp+ | – | – | sp+ | 6–7 |
Festuca pratensis | – | – | – | – | – | – | – | – | I+−2 | I+−2 | II+−2 | II+−2 | 6–7 |
Fragaria vesca | sp+ | sp+−2 | I+−2 | sp+−1 | sp+ | I+−2 | I+−2 | sp+−2 | sp+ | sp+ | sp+ | sp+ | 6–7 |
Galium album | – | – | – | – | – | – | – | – | sp+−1 | I+−2 | sp+ | sp+ | 6–7 |
Galium aparine | I+−3 | III+−3 | II+−2 | III+−2 | sp+−1 | II+−3 | II+−2 | III+−3 | I+ | II+−2 | I+−3 | II+−2 | 6–7 |
Geranium palustre | – | – | – | – | – | sp+ | – | sp+ | sp+ | II+−2 | I+−1 | I+−2 | 8–9 |
Geranium pratense | – | – | – | – | sp+−2 | sp+ | sp+−2 | sp+ | – | – | – | – | 8–9 |
Geranium sibiricum | – | – | – | – | – | sp+ | sp+ | sp+ | – | – | – | – | n |
Geum urbanum | sp+−2 | sp+ | – | – | – | – | – | – | – | – | – | – | 4–5 |
Glechoma hederacea | II+−2 | I+−2 | II+−2 | II+−1 | sp+ | sp+ | sp+ | sp+ | I+−3 | sp+ | I+ | I+−2 | 6–7 |
Heracleum sibiricum | – | – | – | – | – | – | – | – | – | sp+ | – | – | n |
Hypericum perforatum | sp+ | sp+−1 | sp+ | sp+ | – | sp+ | – | – | sp+ | sp+ | – | sp+ | 6–7 |
Impatiens parviflora | – | – | – | – | – | – | – | – | – | – | – | sp+ | 4–5 |
Knautia arvensis | sp+ | I+−1 | sp+−1 | I+−1 | sp+ | sp+−2 | sp+ | sp+−2 | – | sp+−1 | sp+ | – | 6–7 |
Lapsana communis | – | – | – | – | sp+ | – | – | sp+ | – | – | – | sp+−1 | 4–5 |
Leontodon autumnalis | – | – | – | – | sp+ | sp+ | – | – | sp+−1 | sp+ | sp+−1 | sp+ | 6–7 |
Leucanthemum vulgare | sp+ | sp+ | sp+ | sp+−2 | – | sp+ | – | sp+ | – | – | – | – | 6–7 |
Linaria vulgaris | – | – | – | – | – | – | – | sp+ | – | sp1−2 | – | sp+ | 8–9 |
Lotus corniculatus | sp+ | sp+−1 | II+−2 | sp+ | – | sp+ | – | sp+ | – | – | – | – | 6–7 |
Lupinus polyphyllus | I+−1 | sp+−2 | sp+−2 | sp+−1 | – | – | – | sp+ | – | – | – | – | 6–7 |
Medicago falcata | sp+ | II+−3 | sp+−3 | I+−2 | sp+ | II+−3 | I+−4 | I+−3 | – | II+−4 | sp+−3 | I+−4 | 8–9 |
Medicago lupulina | sp2 | sp+−2 | sp+−2 | sp+−2 | sp+−1 | I+−3 | sp+−3 | I+−2 | sp+ | I+−2 | I+−2 | I+−2 | 6–7 |
Melilotus albus | – | sp+−2 | sp+ | sp+ | sp+ | sp+ | I+−2 | I+−2 | sp+−1 | II+−4 | II+−5 | II+−5 | 8–9 |
Melilotus officinalis | – | – | – | – | – | – | – | – | – | sp2 | – | – | 8–9 |
Mentha arvensis | – | sp+ | – | – | – | – | – | – | – | – | – | – | 6–7 |
Moehringia trinervia | – | – | – | – | – | – | – | – | – | sp+−2 | sp+−2 | sp+ | 4–5 |
Phleum pratense | – | – | – | – | sp+ | – | – | – | – | – | – | – | 6–7 |
Pilosella officinarum | I+−1 | II+−3 | II+−2 | II+−3 | – | sp+ | – | sp+−1 | – | – | – | sp+ | 6–7 |
Pimpinella saxifraga | – | – | – | – | sp+ | I+−1 | II+−1 | I+−2 | sp+ | sp+−2 | sp+ | sp+−2 | 6–7 |
Plantago lanceolata | sp+ | sp+ | – | sp+ | III+−3 | sp+−2 | sp+−3 | II+−3 | sp+ | sp+−1 | – | sp+−3 | 6–7 |
Plantago major | – | – | – | – | – | – | sp+ | – | – | – | sp+ | – | n |
Plantago media | sp+ | sp+ | sp+ | sp+ | sp+ | sp+−1 | sp+−2 | sp+ | – | sp+ | sp+−2 | sp+ | 6–7 |
Poa angustifolia | IV+−4 | V+−5 | V+−4 | V+−4 | II+−3 | IV+−4 | IV+−3 | IV+−3 | sp+−1 | II+−3 | II+−3 | II+−3 | 6–7 |
Poa pratensis | II+−3 | II+−4 | II+−4 | III+−3 | II+−2 | II+−3 | II+−3 | III+−2 | I+−2 | I+−2 | I+−2 | I+−1 | 6–7 |
Potentilla anserina | – | – | – | – | sp+−2 | – | – | – | sp+ | – | – | – | 6–7 |
Potentilla argentea | II+−1 | sp+ | I+ | sp+ | I+−1 | sp+−1 | sp+−1 | sp+−1 | sp+ | – | – | sp+−1 | 8–9 |
Primula veris | II+−2 | sp+−1 | sp+−2 | sp+−2 | sp+ | sp+−2 | – | sp+−3 | sp+ | sp+ | sp+ | sp+−2 | 6–7 |
Prunella vulgaris | sp+ | – | – | sp+ | – | – | – | sp+ | – | – | – | – | 6–7 |
Ranunculus acris | – | – | – | sp+ | sp+ | I+−1 | sp+ | sp+ | sp+ | sp+ | – | sp+ | n |
Ranunculus auricomus | – | – | – | – | – | – | – | – | – | – | sp+−2 | – | 4–5 |
Ranunculus repens | – | sp+−1 | sp+ | sp+ | – | – | – | sp+ | – | – | – | – | 6–7 |
Rumex acetosa | II+−2 | I+−3 | III+−2 | I+−2 | II+−2 | I+−2 | II+−2 | I+−2 | sp+ | I+−2 | sp+−1 | I+−2 | 8–9 |
Silene pratensis | – | – | – | – | – | – | – | – | – | – | – | sp+ | 8–9 |
Silene vulgaris | – | sp+−2 | – | – | sp+ | sp+ | sp+ | sp+−2 | sp+ | I+−2 | – | sp+ | 8–9 |
Sedum acre | – | – | – | – | – | sp+−2 | – | – | – | sp+−2 | – | – | 8–9 |
Senecio jacobaea | – | – | – | sp+ | – | – | – | sp+ | – | – | – | – | 8–9 |
Setaria pumila | – | – | – | – | – | – | – | – | – | – | – | sp+ | 6–7 |
Setaria viridis | – | sp+ | – | – | – | – | – | – | sp+ | sp+ | – | – | 6–7 |
Solidago virgaurea | – | – | – | – | sp+−1 | sp+ | sp+ | sp+ | sp+ | sp+−1 | sp+ | sp+ | n |
Sonchus oleraceus | – | sp+ | sp+ | sp+ | – | – | – | – | – | – | – | – | 6–7 |
Stellaria holostea | sp+ | II+−3 | II+−3 | I+−3 | I+−4 | I+−1 | II+−2 | II+−3 | sp+ | I+−2 | I+−2 | sp+−3 | 4–5 |
Stellaria media | III+−4 | III+−4 | III+−3 | II+−2 | – | sp+ | sp+−3 | – | sp+ | sp+ | – | sp+ | n |
Stellaria graminea | – | – | – | – | – | – | – | – | – | sp+−2 | – | sp+−2 | 6–7 |
Tanacetum vulgare | – | – | – | sp1 | – | – | – | – | – | – | – | – | 6–7 |
Taraxacum officinale | sp+ | sp+ | I+ | sp+ | sp+ | sp+−1 | sp+−2 | sp+ | sp+ | sp+ | sp+ | sp+ | 6–7 |
Thymus pulegioides | sp+ | I+−4 | sp+−2 | I+−2 | sp+ | II+−3 | sp+−2 | II+−3 | sp+−1 | II+−2 | I+−2 | I+−2 | 8–9 |
Trifolium pratense | II+−3 | II+−3 | III+−3 | III+−2 | sp+ | sp+ | sp+ | I+−1 | – | sp+−1 | sp+ | sp+ | 6–7 |
Trifolium repens | I+−1 | II+−2 | II+−2 | I+−2 | sp+ | I+−2 | sp+ | I+−3 | sp+ | sp+ | – | sp+−1 | 8–9 |
Tussilago farfara | – | – | – | – | – | – | – | – | – | – | sp+ | – | 8–9 |
Urtica dioica | sp+−1 | sp+ | sp+ | sp+−1 | I+−2 | sp+ | sp+ | sp+ | I+−3 | sp+ | I+−2 | sp+−2 | n |
Urtica urens | – | sp+ | – | – | – | – | – | – | – | – | – | – | 6–7 |
Verbascum nigrum | sp+ | I+−1 | sp+ | I+−1 | sp+ | sp+ | – | sp+−1 | – | sp+ | – | sp+−1 | 6–7 |
Veronica chamaedrys | II+−2 | sp+−1 | sp+ | I+−2 | sp+−1 | sp+ | sp+ | sp+−2 | – | sp+ | – | sp1 | 6–7 |
Vicia hirsuta | – | – | – | – | – | – | – | – | – | sp+ | – | – | 6–7 |
Vicia sepium | sp+−1 | II+−3 | II+−2 | II+−3 | I+−2 | II+−3 | II+−4 | II+−3 | – | I+−2 | II+−4 | II+−2 | n |
Viola arvensis | – | – | – | – | – | – | – | – | – | – | – | sp+ | 6–7 |
Exposition | Statistical Parameter | Year | One-Way ANOVA Testing Years (df = 2) | |||||
---|---|---|---|---|---|---|---|---|
2017 | 2019 | 2021 | F | p | ||||
North | Mean ± SD | 12.1 ± 3.2 A,a | 8.6 ± 2.9 B,a | 7.4 ± 3.9 B,ac | 14.02 | 6 × 10−6 * | ||
Min–Max | 5–21 | 3–15 | 2–19 | |||||
CV (%) | 26 | 34 | 52 | |||||
East | Mean ± SD | 12.5 ± 3.0 A,a | 10.5 ± 2.9 B,bc | 10.5 ± 3.0 B,b | 10.12 | 7 × 10−5 * | ||
Min–Max | 5–20 | 5–21 | 3–18 | |||||
CV (%) | 24 | 28 | 29 | |||||
South | Mean ± SD | 13.4 ± 2.6 A,a | 10.4 ± 2.3 B,ac | 9.6 ± 2.6 B,cb | 17.29 | 10−6 * | ||
Min–Max | 10–21 | 6–16 | 5–15 | |||||
CV (%) | 19 | 22 | 27 | |||||
West | Mean ± SD | 13.7 ± 3.3 A,a | 11.5 ± 2.9 B,bc | 9.1 ± 3.1 C,cb | 32.65 | 9 × 10−13 * | ||
Min–Max | 7–21 | 7–18 | 4–16 | |||||
CV (%) | 24 | 25 | 34 | |||||
One-way ANOVA testing building expositions (df = 3) | F | 2.50 | 6.67 | 6.23 | ||||
p | 0.06 | 0.0003 ** | 0.0005 ** |
Exposition | 2019 | 2021 | Total Species Balance for Two Years | ||||
---|---|---|---|---|---|---|---|
Extinct Species | Emerging Species | Species Balance | Extinct Species | Emerging Species | Species Balance | ||
North | 14 | 12 | –2 | 14 | 12 | –2 | –4 |
East | 12 | 13 | +1 | 9 | 16 | +7 | +8 |
South | 11 | 11 | 0 | 13 | 14 | +1 | +1 |
West | 5 | 10 | +5 | 13 | 17 | +4 | +9 |
Vegetation Classes | Percentage of Investigated Segments in the Columns | ||
---|---|---|---|
2017 | 2019 | 2021 | |
Molinio-Arrhenatheretea elatioris | 72.9 | 55.9 | 1.7 |
Artemisietea vulgaris | 0.0 | 0.6 | 13.0 |
Nardetea strictae | 0.6 | 0.0 | 0.0 |
Koelerio-Corynephoretea canescentis | 0.0 | 1.1 | 23.1 |
Trifolio-Geranietea sanguinei | 0.0 | 0.0 | 0.6 |
Unformed plant communities | 26.5 | 42.4 | 61.6 |
Exposition | Installed | Evaluated | ||
---|---|---|---|---|
Number of Columns | Number of Segments | Number of Columns | Number of Segments | |
North | 34 | 102 | 9 | 27 |
East | 75 | 225 | 21 | 63 |
South | 21 | 63 | 9 | 27 |
West | 67 | 201 | 20 | 60 |
Year | Severe Meteorological Incidents | |
---|---|---|
Sudden Frosts in Spring/Low Temperatures | Summer Heat Waves | |
2017 | Severe frosts during the period of early vegetation on 9–14 May and 17 May, and the temperature was down to −1.7…−4.0 °C. | None |
2018 | None | The first heat wave was on 30 May, when the highest air temperature reached 30.3 °C. The second heat wave occurred on 20 July–4 August, when the temperature reached 31 °C. The third heat wave occurred on August 8–10, when the temperature exceeded 30 °C. |
2019 | Frost which lasted for 6 days during the period of early vegetation on 4–9 May, and the temperature was down to −2.1…−3.8 °C. | In June, there were two heat waves on the 4–7 and 11–14, when the temperature rose up to 34.2 °C. |
2020 | Frost during early vegetation was the most damaging and lasted for several days on 8–12 May, and the temperature was down to −1.8…−3.5 °C. | Three heat waves were recorded on 11 June, 20 July, and 16 August, when the temperature reached 28.8–30.3 °C. |
2021 | Active plant vegetation was significantly delayed (about 10 days) due to a long period of low temperatures in April–May (≤10 °C) | A long heat wave during the active growing season on 18–25 June, with the highest temperature reaching 33.1 °C on 23 June. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stakelienė, V.; Pašakinskienė, I.; Ložienė, K.; Ryliškis, D.; Skridaila, A. Vertical Columns with Sustainable Green Cover: Meadow Plants in Urban Design. Plants 2023, 12, 636. https://doi.org/10.3390/plants12030636
Stakelienė V, Pašakinskienė I, Ložienė K, Ryliškis D, Skridaila A. Vertical Columns with Sustainable Green Cover: Meadow Plants in Urban Design. Plants. 2023; 12(3):636. https://doi.org/10.3390/plants12030636
Chicago/Turabian StyleStakelienė, Violeta, Izolda Pašakinskienė, Kristina Ložienė, Darius Ryliškis, and Audrius Skridaila. 2023. "Vertical Columns with Sustainable Green Cover: Meadow Plants in Urban Design" Plants 12, no. 3: 636. https://doi.org/10.3390/plants12030636
APA StyleStakelienė, V., Pašakinskienė, I., Ložienė, K., Ryliškis, D., & Skridaila, A. (2023). Vertical Columns with Sustainable Green Cover: Meadow Plants in Urban Design. Plants, 12(3), 636. https://doi.org/10.3390/plants12030636