Antifungal In Vitro Activity of Phoradendron sp. Extracts on Fungal Isolates from Tomato Crop
Abstract
:1. Introduction
2. Results
2.1. Phytochemicals Present in Plant Extracts
2.2. Isolation of Phytopathogens
2.3. Inhibition of Fungal Growth
2.4. Number of Conidia
3. Discussion
4. Materials and Methods
4.1. Obtaining Plant Material
4.1.1. Ultrasound-Microwave Assisted Extraction
4.1.2. Column Chromatography with Amberlite
4.1.3. Characterization of Phytochemicals Present in the Plant Extracts Using RP-HPLC-ESI-MS Liquid Chromatography
4.2. Tomato Pathogen Isolation
Molecular Identification of Isolated Fungi
4.3. Antifungal Activity Using Poisoned Medium
4.4. Number of Conidia
4.5. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Renna, M.; Durante, M.; Gonnella, M.; Buttaro, D.; D’Imperio, M.; Mita, G.; Serio, F. Quality and Nutritional Evaluation of Regina Tomato, a Traditional Long-Storage Landrace of Puglia (Southern Italy). Agriculture 2018, 8, 83. [Google Scholar] [CrossRef]
- Kabdwal, B.C.; Sharma, R.; Tewari, R.; Tewari, A.; Singh, R.P.; Dandona, J.K. Field efficacy of different combinations of Trichoderma harzianum, Pseudomonas fluorescens, and arbuscular mycorrhiza fungus against the major diseases of tomato in Uttarakhand (India). Egypt. J. Biol. Pest Control 2019, 29, 1. [Google Scholar] [CrossRef]
- Shijie, J.; Peiyi, J.; Siping, H.; Haibo, S. Automatic detection of tomato diseases and pests based on leaf images. In Proceedings of the 2017 Chinese Automation Congress (CAC), Jinan, China, 20–22 October 2017; pp. 2510–2537. [Google Scholar]
- Afreen, S.; Rahman, M.; Islam, M.; Hasan, M.; Islam, S. Management of insect pests in tomato (Solanum lycopersicon L.) under different planting dates and mechanical support. J. Sci. Technol. Environ. Inform. 2017, 5, 336–346. [Google Scholar] [CrossRef]
- Mantzoukas, S.; Eliopoulos, P.A. Endophytic Entomopathogenic Fungi: A Valuable Biological Control Tool against Plant Pests. Appl. Sci. 2020, 10, 360. [Google Scholar] [CrossRef]
- García-García, J.D.; Anguiano-Cabello, J.C.; Arredondo-Valdés, R.; Candido del Toro, C.A.; Martínez-Hernández, J.L.; Segura-Ceniceros, E.P.; Govea-Salas, M.; González-Chávez, M.L.; Ramos-González, R.; Esparza-González, S.C.; et al. Phytochemical Characterization of Phoradendron bollanum and Viscum album subs. austriacum as Mexican Mistletoe Plants with Antimicrobial Activity. Plants 2021, 10, 1299. [Google Scholar] [CrossRef] [PubMed]
- Liaquat, F.; Qunlu, L.; Arif, S.; Haroon, U.; Saqib, S.; Zaman, W.; Jianxin, S.; Shengquan, C.; Li, L.X.; Akbar, M.; et al. Isolation and characterization of pathogen causing brown rot in lemon and its control by using ecofriendly botanicals. Physiol. Mol. Plant Pathol. 2021, 114, 101639. [Google Scholar] [CrossRef]
- Arcos-Méndez, M.C.; Martínez-Bolaños, L.; Ortiz-Gil, G.; Martínez-Bolaños, M.; Avendaño-Arrazate, C.H. Efecto in vitro de extractos vegetales contra la moniliasis (Moniliophthora roreri) del cacao (Theobroma cacao L.). Agric. Trop. 2019, 5, 19–24. [Google Scholar]
- Andrade-Bustamante, G.; García-López, A.M.; Cervantes-Díaz, L.; Aíl-Catzim, C.E.; Borboa-Flores, J.; Rueda-Puente, E.O. Estudio del potencial biocontrolador de las plantas autóctonas de la zona árida del noroeste de México: Control de fitopatógenos. Rev. Fac. Cienc. Agrar. 2017, 49, 27–142. Available online: https://revistas.uncu.edu.ar/ojs/index.php/RFCA/article/view/3110 (accessed on 17 September 2022).
- Simirgiotis, M.J.; Quispe, C.; Areche, C.; Sepúlveda, B. Phenolic compounds in Chilean Mistletoe (Quintral, Tristerix tetrandus) analyzed by UHPLC–Q/Orbitrap/MS/MS and its antioxidant properties. Molecules 2016, 21, 245. [Google Scholar] [CrossRef]
- Xie, W.; Adolf, J.; Melzig, M.F. Identification of Viscum album L. miRNAs and prediction of their medicinal values. PLoS ONE 2017, 12, e0187776. [Google Scholar] [CrossRef]
- Chávez-Salcedo, L.F.; Queijeiro-Bolaños, M.E.; López-Gómez, V.; Cano-Santana, Z.; Mejía-Recamier, B.E.; Mojica-Guzmán, A. Comunidades de artrópodos contrastantes asociadas con muérdagos enanos Arceuthobium globosum y A. vaginatum y su huésped Pinus hartwegii. J. For. Res. 2018, 29, 1351–1364. [Google Scholar] [CrossRef]
- López-Martínez, S.; Navarrete-Vázquez, G.; Estrada-Soto, S.; León-Rivera, I.; Rios, M.Y. Chemical constituents of the hemiparasitic plant Phoradendron brachystachyum DC Nutt (Viscaceae). Nat. Prod. Res. 2013, 27, 130–136. [Google Scholar] [CrossRef] [PubMed]
- Dawlatana, M. Science and Technology for Sustainable Development. Bangladesh J. Sci. Ind. Res. 2019, 20, 1–134. [Google Scholar] [CrossRef]
- Shahbaz, M.U.; Arshad, M.; Mukhtar, K.; Nabi, B.G.; Goksen, G.; Starowicz, M.; Nawaz, A.; Ahmad, I.; Walayat, N.; Manzoor, M.F.; et al. Natural Plant Extracts: An Update about Novel Spraying as an Alternative of Chemical Pesticides to Extend the Postharvest Shelf Life of Fruits and Vegetables. Molecules 2022, 27, 5152. [Google Scholar] [CrossRef] [PubMed]
- Ricco, M.V.; Bari, M.L.; Bagnato, F.; Cornacchioli, C.; Laguia-Becher, M.; Spairani, L.U.; Posadaz, A.; Dobrecky, C.; Ricco, R.A.; Wagner, M.L.; et al. Establishment of callus-cultures of the Argentinean mistletoe, Ligaria cuneifolia (R. et P.) Tiegh (Loranthaceae) and screening of their polyphenolic content. Plant Cell Tissue Organ Cult. 2019, 138, 167–180. [Google Scholar] [CrossRef]
- Trifunschi, S.; Munteanu, M.F.; Pogurschi, E.N.; Gligor, R. Characterisation of Polyphenolic Compounds in Viscum album L. and Allium sativum L. extracts. Rev. Chim. 2017, 68, 1677–1680. [Google Scholar] [CrossRef]
- Ayala-Zavala, J.F.; Silva-Espinoza, B.A.; Valenzuela, M.R.C.; Villegas-Ochoa, M.A.; Esqueda, M.; González-Aguilar, G.A.; Calderón-López, Y. Antioxidant and antifungal potential of methanol extracts of Phellinus spp. from Sonora, Mexico. Rev. Iberoam. Micol. 2012, 29, 132–138. [Google Scholar] [CrossRef]
- Luczkiewicz, M.; Cisowski, W.; Kaiser, P.; Ochocka, R.; Piotrowski, A. Comparative analysis of phenolic acids in mistletoe plants from various hosts. Acta Pol. Pharm. Drug Res. 2002, 58, 6. [Google Scholar]
- El-Seedi, H.R.; Taher, E.A.; Sheikh, B.Y.; Anjum, S.; Saeed, A.; AlAjmi, M.F.; Hegazy, M.E.F. Hydroxycinnamic acids: Natural sources, biosynthesis, possible biological activities, and roles in Islamic medicine. Stud. Nat. Prod. Chem. 2018, 55, 269–292. [Google Scholar]
- Rocha, L.D.; Monteiro, M.C.; Teodoro, A. Anticancer Properties of Hydroxycinnamic Acids A Review. Cancer Clin. Oncol. 2012, 1, 109–121. [Google Scholar] [CrossRef]
- Hernanz, D.; Nuñez, V.; Sancho, A.I.; Faulds, C.B.; Williamson, G.; Bartolomé, B.; Gómez-Cordovés, C. Hydroxycinnamic Acids and Ferulic Acid Dehydrodimers in Barley and Processed Barley. J. Agric. Food Chem. 2001, 49, 4884–4888. [Google Scholar] [CrossRef] [PubMed]
- Condrat, D.; Szabo, M.R.; Crişan, F.; Lupea, A.X. Antioxidant activity of some phanerogam plant extracts. Food Sci. Technol. Res. 2009, 15, 95–98. [Google Scholar] [CrossRef]
- Fukunaga, T.; Nishiya, K.; Kajikawa, I.; Takeya, K.; Itokawa, H. Studies on the constituents of Japanese mistletoes from different host trees, and their antimicrobial and hypotensive properties. Chem. Pharm. Bull. 1989, 37, 1543–1546. [Google Scholar] [CrossRef]
- de Pascual-Teresa, S.; Sanchez-Ballesta, M.T. Anthocyanins: From plant to health. Phytochem. Rev. 2008, 7, 281–299. [Google Scholar] [CrossRef]
- Brito, A.; Ramírez, J.E.; Areche, C.; Sepúlveda, B.; Simirgiotis, M.J. HPLC-UV-MS profiles of phenolic compounds and antioxidant activity of fruits from three citrus species consumed in Northern Chile. Molecules 2014, 19, 17400–17421. [Google Scholar] [CrossRef] [PubMed]
- Lea, M.A. Flavonol regulation in tumor cells. J. Cell. Biochem. 2015, 116, 1190–1194. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Han, A.; Chen, E.; Singh, R.K.; Chichester, C.O.; Moore, R.G.; Vorsa, N. The cranberry flavonoids PAC DP-9 and quercetin aglycone induce cytotoxicity and cell cycle arrest and increase cisplatin sensitivity in ovarian cancer cells. Int. J. Oncol. 2015, 46, 1924–1934. [Google Scholar] [CrossRef] [PubMed]
- Ronnie-Gakegne, E.; Martínez-Coca, B. Eficacia de dos biofungicidas para el manejo en campo del Tizón temprano (Alternaria solani Sorauer) de la papa (Solanum tuberosum L.). Rev. Protección Veg. 2019, 34, 1010–2752. [Google Scholar]
- Espinoza-Ahumada, C.A.; Gallegos-Morales, G.; Ochoa-Fuentes, Y.M.; Hernández-Castillo, F.D.; Méndez-Aguilar, R.; Rodríguez-Guerra, R. Microbial antagonists for the biocontrol of wilting and its promoter effect on the performance of serrano chili. Rev. Mex. Cienc. Agríc. 2019, 10, 187–197. [Google Scholar]
- Leslie, J.F.; Summerell, B.A.; Bullock, S. The Fusarium Laboratory Manual; Wiley: Hoboken, NJ, USA, 2006; Volume xii, p. 388. [Google Scholar]
- Ajayi-Oyetunde, O.O.; Bradley, C.A. Rhizoctonia solani: Taxonomy, population biology and management of rhizoctonia seedling disease of soybean. Plant Pathol. 2017, 67, 3–17. [Google Scholar] [CrossRef]
- Meena, B.R.; Meena, S.; Chittora, D.; Sharma, K. Antifungal efficacy of Thevetia peruviana leaf extract against Alternaria solani and characterization of novel inhibitory compounds by Gas Chromatography-Mass Spectrometry analysis. Biochem. Biophys. Rep. 2021, 25, 100914. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Eleria, G.D.C.; Hernández-Garcia, V.; Rios-Velasco, C.; Ruiz-Cisneros, F.M.; Rodriguez-Larramendi, A.L.; Orantes-Garcia, C.; Salas-Marina, A.M. Salmea scandens (Asteraceae) extracts inhibit Fusarium oxysporum and Alternaria solani in tomato (Solanum lycopersicum L.). Rev. Fac. Cienc. Agrar. 2021, 53, 262–273. [Google Scholar]
- Tucuch-Pérez, M.A.; Arredondo-Valdés, R.; Hernández-Castillo, F.D. Antifungal activity of phytochemical compounds of extracts from Mexican semi-desert plants against Fusarium oxysporum from tomato by microdilution in plate method. Nova Sci. 2020, 12, 25. [Google Scholar] [CrossRef]
- Juárez-Segovia, K.G.; Díaz-Darcía, E.J.; Méndez-López, M.D.; Pina-Canseco, M.S.; Pérez-Santiago, A.D.; Sánchez-Medina, M.A. Efecto de extractos crudos de ajo (Allium sativum) sobre el desarrollo in vitro de Aspergillus parasiticus y Aspergillus niger. Polibotánica 2019, 47, 99–111. [Google Scholar] [CrossRef]
- Abbas, H.K.; Duke, S.O.; Tanaka, T. Phytotoxicity of Fumonisins and Rfzated Compounds. J. Toxicol. Toxin Rev. 1993, 12, 225–251. [Google Scholar] [CrossRef]
- Merrill, A.H., Jr.; Sullards, M.C.; Wang, E.; Voss, K.A.; Riley, R.T. Sphingolipid metabolism: Roles in signal transduction and disruption by fumonisins. Environ. Health Perspect. 2001, 109 (Suppl. 2), 283–289. [Google Scholar]
- Perincherry, L.; Lalak-Kańczugowska, J.; Stępień, Ł. Fusarium-produced mycotoxins in plant-pathogen interactions. Toxins 2019, 11, 664. [Google Scholar] [CrossRef]
- Ochoa-Fuentes, Y.M.; Cerna-Chávez, E.; Landeros-Flores, J.; Hernández-Camacho, S.; Delgado Ortiz, J.C. Evaluación in vitro de la actividad antifúngica de cuatro extractos vegetales metanólicos para el control de tres especies de Fusarium spp. Phyton 2012, 81, 69–73. [Google Scholar]
- Vásquez Covarrubias, D.A.; Montes Belmont, R.; Jiménez Pérez, A.; Flores Moctezuma, H.E. Aceites esenciales y extractos acuosos para el manejo in vitro de Fusarium oxysporum f. sp. lycopersici y F. solani. Rev. Mex. Fitopatol. 2014, 31, 170–179. [Google Scholar]
- Rodríguez-Castro, A.; Torres-Herrera, S.; Domínguez-Calleros, A.; Romero-García, A.; Silva-Flores, M. Extractos vegetales para el control de Fusarium oxysporum, Fusarium solani y Rhizoctonia solani, una alternativa sostenible para la agricultura. Abanico. Agrofor. 2020, 2, 3. [Google Scholar]
- Ramírez González, S.I.; López Báez, O.; Espinosa Zaragoza, S.; Wong Villarreal, A. Actividad antifúngica de hidrodestilados y aceites sobre Alternaria solani, Fusarium oxysporum y Colletotrichum gloesporioides. Rev. Mex. Cienc. Agric. 2016, 7, 1879–1891. [Google Scholar] [CrossRef] [Green Version]
- De Asmundis, C.; Romero, C.H.; Acevedo, H.A.; Pellerano, R.G.; Vázquez, F.A. Funcionalización de una resina de intercambio ionico para la pre-concentracion de HG (II). ACI 2011, 2, 63–70. [Google Scholar]
- Ascacio-Valdés, J.A.; Aguilera-Carbó, A.F.; Buenrostro, J.J.; Prado-Barragán, A.; Rodríguez-Herrera, R.; Aguilar, C.N. The complete biodegradation pathway of ellagitannins by Aspergillus niger in solid-state fermentation. J. Basic Microbio. 2016, 56, 329–336. [Google Scholar] [CrossRef]
- Barnett, H.L.; Hunter, B.B. Illustrated Genera of Imperfect Fungi, 4th ed.; APS Press: St. Paul, MN, USA, 1998; 218p. [Google Scholar]
- White, T.J.; Bruns, T.; Lee, S.J.W.T.; Taylor, J.L. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protoc. 1990, 18, 315–322. [Google Scholar]
- Tamura, K.; Stecher, G.; Peterson, D.; Filipski, A.; Kumar, S. MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 2013, 30, 2725–2729. [Google Scholar] [CrossRef] [Green Version]
- Ruiz, S.; Coy, P.; Pellicer, M.; Ramírez, A. Manual de Prácticas de Fisiología Animal Veterinaria; EDITUM: Murcia, Spain, 1995; p. 235. [Google Scholar]
Extract | T.R (min) | Mass(m/z) | Compound (70% 1:12) | Family |
---|---|---|---|---|
CME | 15.83 | 353.1 | 1-Caffeoylquinic acid | Hydroxycinnamic acids |
18.03 | 353.0 | 3-Caffeoylquinic acid | Hydroxycinnamic acids | |
21.36 | 353.0 | 4-Caffeoylquinic acid | Hydroxycinnamic acids | |
35.85 | 325.1 | p-Coumaric acid 4-O-glucoside | Hydroxycinnamic acids | |
38.49 | 597.1 | Delphinidin 3-O-sambubioside | Anthocyanins | |
39.65 | 597.1 | Delphinidin 3-O-sambubioside | Anthocyanins | |
40.53 | 597.1 | Delphinidin 3-O-sambubioside | Anthocyanins | |
30.37 | 381.1 | Quercetin 3′-sulfate | Flavonols | |
OME | 15.79 | 353.0 | 1-Caffeoylquinic acid | Hydroxycinnamic acids |
18.74 | 353.1 | 3-Caffeoylquinic acid | Hydroxycinnamic acids | |
34.41 | 285.1 | Luteolin | Flavones | |
40.13 | 285.0 | Kaempferol | Flavonols | |
MME | 15.40 | 353.0 | 1-Caffeoylquinic acid | Hydroxycinnamic acids |
18.21 | 353.0 | 3-Caffeoylquinic acid | Hydroxycinnamic acids | |
33.36 | 285.1 | Luteolin | Flavones | |
39.17 | 285.0 | Kaempferol | Flavonols | |
40.59 | 285.0 | Scutellarein | Flavones |
Scientific Name | Query Cover | Per. Ident | Accession |
---|---|---|---|
Alternaria alternata | 99 | 99.55 | MT446176.1 |
Fusarium oxysporum | 49 | 98.99 | MF630984.1 |
Fusarium sp. | 100 | 100 | MH884139.1 |
Rhizoctonia solani | 92 | 99.53 | KX674533.1 |
Extract | Concentration (ppm) | A. alternata % | F. oxysporum % | Fusarium sp. % | R. solani % | ||||
---|---|---|---|---|---|---|---|---|---|
Control | 0 | d | 0 | c | 0 | d | 0 | b | |
250 | 7.65 | c | 12.72 | b | 19.12 | b | 0 | b | |
CME | 500 | 23.63 | ab | 13.03 | b | 18.55 | b | 0 | b |
1000 | 19.76 | bc | 19.04 | ab | 15.83 | c | 0 | b | |
2000 | 22.46 | abc | 24.30 | ab | 15.36 | c | 0 | b | |
4000 | 35.60 | a | 13.13 | b | 25.99 | a | 1.70 | a | |
Control | 0 | c | 0 | e | 0 | e | 0 | b | |
250 | 2.52 | c | 18.11 | d | 17.36 | b | 0 | b | |
OME | 500 | 13.72 | ab | 17.87 | d | 12.38 | d | 0 | b |
1000 | 11.65 | bc | 30.88 | c | 14.15 | c | 0 | b | |
2000 | 10.56 | bc | 37.23 | b | 23.61 | a | 0 | b | |
4000 | 24.00 | a | 40.60 | a | 24.16 | a | 1.33 | a | |
Control | 0 | d | 0 | e | 0 | d | 0 | c | |
250 | 13.50 | bc | 17.68 | d | 3.50 | c | 0 | c | |
MME | 500 | 16.85 | b | 25.36 | c | 3.82 | c | 0 | c |
1000 | 12.86 | c | 40.91 | b | 3.94 | c | 0 | c | |
2000 | 13.84 | bc | 49.36 | a | 11.66 | b | 3.47 | b | |
4000 | 22.03 | a | 52.32 | a | 44 75 | a | 13.05 | a |
Concentrations (ppm) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Fungus | Extract | Control | 250 | 500 | 1000 | 2000 | 4000 | ||||||
Alternaria alternata Conidia (1 × 106 mL−1) | CME | 25.2 | a | 3.6 | b | 3.8 | b | 0.8 | b | 2.6 | b | 0.2 | b |
OME | 25.2 | a | 2.4 | c | 0.2 | c | 3.6 | bc | 2.4 | c | 6.8 | b | |
MME | 25.2 | a | 0.8 | b | 3.6 | b | 0.4 | b | 3.4 | b | 5.6 | b | |
Fusarium oxysporum Conidia (1 × 106 mL−1) | CME | 549.2 | a | 167.4 | de | 215.8 | cd | 354 | b | 542.8 | a | 249.4 | c |
OME | 272.2 | a | 117.4 | bc | 69.4 | d | 126.4 | b | 84.8 | cd | 117.4 | bc | |
MME | 121.4 | a | 59.8 | b | 42 | b | 59.8 | b | 58 | b | 55.8 | b | |
Fusarium sp. Conidia (1 × 106 mL−1) | CME | 30 | a | 5.8 | b | 5.8 | b | 9.2 | b | 4.6 | b | 14.8 | b |
OME | 42.8 | b | 3.8 | de | 15 | c | 9.2 | cd | 11.4 | cd | 53 | a | |
MME | 37.8 | b | 55.4 | ab | 84.6 | a | 62.6 | ab | 20.8 | b | 34 | b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salas-Gómez, A.L.; Espinoza Ahumada, C.A.; Castillo Godina, R.G.; Ascacio-Valdés, J.A.; Rodríguez-Herrera, R.; Segura Martínez, M.T.d.J.; Neri Ramírez, E.; Estrada Drouaillet, B.; Osorio-Hernández, E. Antifungal In Vitro Activity of Phoradendron sp. Extracts on Fungal Isolates from Tomato Crop. Plants 2023, 12, 672. https://doi.org/10.3390/plants12030672
Salas-Gómez AL, Espinoza Ahumada CA, Castillo Godina RG, Ascacio-Valdés JA, Rodríguez-Herrera R, Segura Martínez MTdJ, Neri Ramírez E, Estrada Drouaillet B, Osorio-Hernández E. Antifungal In Vitro Activity of Phoradendron sp. Extracts on Fungal Isolates from Tomato Crop. Plants. 2023; 12(3):672. https://doi.org/10.3390/plants12030672
Chicago/Turabian StyleSalas-Gómez, Alma Leticia, César Alejandro Espinoza Ahumada, Rocío Guadalupe Castillo Godina, Juan Alberto Ascacio-Valdés, Raúl Rodríguez-Herrera, Ma. Teresa de Jesús Segura Martínez, Efraín Neri Ramírez, Benigno Estrada Drouaillet, and Eduardo Osorio-Hernández. 2023. "Antifungal In Vitro Activity of Phoradendron sp. Extracts on Fungal Isolates from Tomato Crop" Plants 12, no. 3: 672. https://doi.org/10.3390/plants12030672
APA StyleSalas-Gómez, A. L., Espinoza Ahumada, C. A., Castillo Godina, R. G., Ascacio-Valdés, J. A., Rodríguez-Herrera, R., Segura Martínez, M. T. d. J., Neri Ramírez, E., Estrada Drouaillet, B., & Osorio-Hernández, E. (2023). Antifungal In Vitro Activity of Phoradendron sp. Extracts on Fungal Isolates from Tomato Crop. Plants, 12(3), 672. https://doi.org/10.3390/plants12030672