Precision Detection and Assessment of Ash Death and Decline Caused by the Emerald Ash Borer Using Drones and Deep Learning
Abstract
:1. Introduction
2. Results
2.1. Ash Decline and Death Assessed by Ground Survey
2.2. Evaluation of Instance Segmentation Models in Deep Learning
2.3. Deep Learning for Declining and Dead Ash Tree Detection
2.4. Ablation Study of the Mask2former Model
2.5. Visualization of Predictions of Declining or Dead Ash Trees Using Mask2former
2.6. In-Situ Field Validation Study
3. Discussion and Conclusions
4. Materials and Methods
4.1. Study Sites and Types of Aerial Surveys
4.2. Acquisition of Aerial Imagery Using Drones for Deep Learning
4.3. Data Processing and Labeling
4.4. Overview of Deep Learning Procedures
4.5. Data Augmentation and Training Procedure
4.6. In-Situ Field Validation Study
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Herms, D.A.; McCullough, D.G. Emerald ash borer invasion of North America: History, biology, ecology, impacts, and management. Annu. Rev. Entomol. 2014, 59, 13–30. [Google Scholar] [CrossRef] [PubMed]
- Britannica: Ash. Encyclopedia Britannica. 2002. Available online: https://www.britannica.com/plant/ash-tree (accessed on 28 November 2022).
- Haack, R.A.; Jendak, E.; Housing, L.; Marchant, K.R.; Petrice, T.R.; Poland, T.M.; Ye, H. The emerald ash borer: A new exotic pest in North America. Newsl. Mich. Entomol. Soc. 2002, 47, 1–5. [Google Scholar]
- Herms, D.A.; McCullough, D.G. Emerald ash borer: Ecology and management. In Encyclopedia of Pest Management; Routledge: New York, NY, USA, 2013. [Google Scholar]
- Cappaert, D.; McCullough, D.G.; Poland, T.M.; Siegert, N.W. Emerald ash borer in North America: A research and regulatory challenge. Am. Entomol. 2005, 51, 152–163. [Google Scholar] [CrossRef]
- Hunt, L. Emerald ash borer state update: Ohio. In Proceedings of the Emerald Ash Borer Research and Technology Development Meeting, Port Huron, MI, USA, 30 September–1 October 2003; Mastro, V., Lance, D., Reardon, R., Parra, G., Eds.; USDA Forest Service: Morgantown, WV, USA, 2007. FHTET-2007-04. p. 2. [Google Scholar]
- Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 3431–3440. [Google Scholar]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 779–788. [Google Scholar]
- Redmon, J.; Farhadi, A. Yolo9000: Better, faster, stronger. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 7263–7271. [Google Scholar]
- Redmon, J.; Farhadi, A. Yolov3: An incremental improvement. arXiv preprint 2018, arXiv:1804.02767. [Google Scholar]
- Bolya, D.; Zhou, C.; Xiao, F.; Lee, Y.J. Yolact: Real-time instance segmentation. In Proceedings of the IEEE/CVF International Conference on Computer Vision Long Beach, Seoul, Republic of Korea, 27 October–02 November 2019; pp. 9157–9166. [Google Scholar]
- Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. Ssd: Single shot multibox detector. In Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands, 11–14 October 2016; Springer: Berlin/Heidelberg, Germany, 2016; pp. 21–37. [Google Scholar]
- Lin, T.Y.; Goyal, P.; Girshick, R.; He, K.; Dollár, P. Focal loss for dense object detection. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2980–2988. [Google Scholar]
- Chen, L.C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 40, 834–848. [Google Scholar] [CrossRef] [PubMed]
- Badrinarayanan, V.; Kendall, A.; Cipolla, R. Segnet: A deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2481–2495. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI, Munich, Germany, 5–9 October 2015; Springer: Berlin/Heidelberg, Germany, 2015; pp. 234–241. [Google Scholar]
- Cheng, B.; Schwing, A.; Kirillov, A. Per-pixel classification is not all you need for semantic segmentation. Adv. Neural Inf. Process. Syst. 2021, 34, 17864–17875. [Google Scholar]
- Cheng, B.; Misra, I.; Schwing, A.G.; Kirillov, A.; Girdhar, R. Masked-attention mask transformer for universal image segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 19–24 June 2022; pp. 1290–1299. [Google Scholar]
- He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask r-cnn. In Proceedings of the IEEE International Conference on Computer vision, Venice, Italy, 22–29 October 2017; pp. 2961–2969. [Google Scholar]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention is all you need. arXiv 2017, arXiv:1706.03762. [Google Scholar]
- Der Yang, M.; Tseng, H.H.; Hsu, Y.C.; Tseng, W.C. Real-time crop classification using edge computing and deep learning. In Proceedings of the 2020 IEEE 17th Annual Consumer Communications & Networking Conference (CCNC), Las Vegas, NV, USA, 10–13 January 2020; pp. 1–4. [Google Scholar]
- Yang, M.D.; Tseng, H.H.; Hsu, Y.C.; Tsai, H.P. Semantic segmentation using deep learning with vegetation indices for rice lodging identification in multi-date uav visible images. Remote Sens. 2020, 12, 633. [Google Scholar] [CrossRef]
- Song, Z.; Zhang, Z.; Yang, S.; Ding, D.; Ning, J. Identifying sunflower lodging based on image fusion and deep semantic segmentation with uav remote sensing imaging. Comput. Electron. Agric. 2020, 179, 105812. [Google Scholar] [CrossRef]
- Sherstinsky, A. Fundamentals of recurrent neural network (rnn) and long short-term memory (lstm) network. Phys. D Nonlinear Phenom. 2020, 404, 132306. [Google Scholar] [CrossRef]
- Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.; Gelly, S.; et al. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv 2020, arXiv:2010.11929. [Google Scholar]
- Touvron, H.; Cord, M.; Douze, M.; Massa, F.; Sablayrolles, A.; Jégou, H. Training data-efficient image transformers & distillation through attention. In Proceedings of the International Conference on Machine Learning, ICML, Vienna, Austria, 18–24 July 2021; pp. 10347–10357. [Google Scholar]
- Liu, Z.; Lin, Y.; Cao, Y.; Hu, H.; Wei, Y.; Zhang, Z.; Lin, S.; Guo, B. Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, QC, Canada, 11–17 October 2021; pp. 10012–10022. [Google Scholar]
- Fraser, B.T.; Congalton, R.G. Monitoring Fine-Scale Forest Health Using Unmanned Aerial Systems (UAS) Multispectral Models. Remote Sens. 2021, 13, 4873. [Google Scholar] [CrossRef]
- Chan, A.H.; Barnes, C.; Swinfield, T. and Coomes, D.A. Monitoring ash dieback (Hymenoscyphus fraxineus) in British forests using hyperspectral remote sensing. Remote Sens. Ecol. Conserv. 2021, 7, 306–320. [Google Scholar] [CrossRef]
- Sapkota, B.B.; Liang, L. High-resolution mapping of ash (Fraxinus s) in bottomland hardwoods to slow Emerald Ash Borer infestation. Sci. Remote Sens. 2020, 1, 100004. [Google Scholar] [CrossRef]
- Murfitt, J.; He, Y.; Yang, J.; Mui, A.; De Mille, K. Ash decline assessment in emerald ash borer infested natural forests using high spatial resolution images. Remote Sens. 2016, 8, 256. [Google Scholar] [CrossRef]
- Lin, T.Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C.L. Microsoft coco: Common objects in context. In Proceedings of the European Conference on Computer Vision, Zurich, Switzerland, 6–12 Sepetember 2014; Springer: Berlin/Heidelberg, Germany, 2014; pp. 740–755. [Google Scholar]
- Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.; et al. Imagenet large scale visual recognition challenge. Int. J. Comput. Vis. 2015, 115, 211–252. [Google Scholar] [CrossRef]
- Hoiem, D.; Chodpathumwan, Y.; Dai, Q. Diagnosing error in object detectors. In Proceedings of the European Conference on Computer Vision, Florence, Italy, 7–13 October 2012; Springer: Berlin/Heidelberg, Germany, 2012; pp. 340–353. [Google Scholar]
- Moley, L.M.; Goodin, D.G.; Winslow, W.P. Leaf-Level Spectroscopy for Analysis of Invasive Pest Impact on Trees in a Stressed Environment: An Example Using Emerald Ash Borer (Agrilus planipennis Fairmaire) in Ash Trees (Fraxinus s), Kansas, USA. Environments 2022, 9, 42. [Google Scholar] [CrossRef]
- Rodgers, L.; Pernas, T.; Hill, S.D. Mapping invasive plant distributions in the Florida Everglades using the digital aerial sketch mapping technique. Invasive Plant Sci. Manag. 2014, 7, 360–374. [Google Scholar] [CrossRef]
- Taylor, S.L.; MacLean, D.A. Validation of spruce budworm outbreak history developed from aerial sketch mapping of defoliation in New Brunswick. North. J. Appl. For. 2008, 25, 139–145. [Google Scholar] [CrossRef]
- Stone, C.; Carnegie, A.; Melville, G.; Smith, D.; Nagel, M. Aerial mapping canopy damage by the aphid Essigella californica in a Pinus radiata plantation in southern New South Wales: What are the challenges? Aust. For. 2013, 76, 101–109. [Google Scholar] [CrossRef]
- Park, Y.-L.; Krell, R.K.; Carroll, M. Theory, technology, and practice of site-specific insect pest management. J. Asia-Pac. Entomol. 2007, 10, 89–101. [Google Scholar] [CrossRef]
- Park, Y.-L.; Cho, J.R.; Lee, G.S.; Seo, B.Y. Detection of Monema flavescens (Lepidoptera: Limacodidae) cocoons using small unmanned aircraft system. J. Econ. Entomol. 2021, 114, 1927–1933. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.-L.; Cho, J.R.; Choi, K.H.; Kim, H.R.; Kim, J.W.; Kim, S.J.; Lee, D.H.; Park, C.G.; Cho, Y.S. Advances, Limitations, and Future Applications of Aerospace and Geospatial Technologies for Apple IPM. Korean J. Appl. Entomol. 2021, 60, 135–143. [Google Scholar]
- Carion, N.; Massa, F.; Synnaeve, G.; Usunier, N.; Kirillov, A.; Zagoruyko, S. End-to-end object detection with transformers. In Proceedings of the European Conference on Computer Vision, Glasgow, UK, 23–28 August 2020; Springer: Berlin/Heidelberg, Germany, 2020; pp. 213–229. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June –1 July 2016; pp. 770–778. [Google Scholar]
- Shorten, C.; Khoshgoftaar, T.M. A survey on image data augmentation for deep learning. J. Big Data 2019, 6, 1–48. [Google Scholar] [CrossRef]
- Du, X.; Zoph, B.; Hung, W.C.; Lin, T.Y. Simple training strategies and model scaling for object detection. arXiv 2021, arXiv:2107.00057. [Google Scholar]
- Kirillov, A.; He, K.; Girshick, R.; Rother, C.; Dollár, P. Panoptic segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–20 June 2019; pp. 9404–9413. [Google Scholar]
- Chen, K.; Wang, J.; Pang, J.; Cao, Y.; Xiong, Y.; Li, X.; Sun, S.; Feng, W.; Liu, Z.; Xu, J.; et al. MMDetection: Open mmlab detection toolbox and benchmark. arXiv 2019, arXiv:1906.07155. [Google Scholar]
- Milletari, F.; Navab, N.; Ahmadi, S.A. V-net: Fully convolutional neural networks for volumetric medical image segmentation. In Proceedings of the 2016 Fourth International Conference on 3D Vision (3DV), Stanford, CA, USA, 25–28 October 2016; IEEE: Stanford, CA, USA, 2016; pp. 565–571. [Google Scholar]
- Krell, R.K.; Boyd, E.A.; Nay, J.E.; Park, Y.-L.; Perring, T.M. Mechanical and insect transmission of Xylella fastidiosa to Vitis vinifera. Am. J. Enol. Vitic. 2007, 58, 211–216. [Google Scholar] [CrossRef]
Data Category | Images with Declining or Dead Ash Tree | Images without Declining or Dead Ash Tree | Total Number of Images |
---|---|---|---|
Training | 2718 (62.4%) | 1639 (37.6%) | 4357 |
Validation | 800 (66.7%) | 400 (33.3%) | 1200 |
Testing | 475 (77.0%) | 142 (23.0%) | 617 |
Baseline | Backbone | Pre-Train | Bounding Box | Mask | ||||
---|---|---|---|---|---|---|---|---|
AP50 | AP75 | mAP | AP50 | AP75 | mAP | |||
RetinaNet | ResNet-18 | ImageNet-1K | 0.6630 | 0.4850 | 0.3810 | - | - | - |
Yolact | ResNet-101 | ImageNet-1K | 0.6640 | 0.4360 | 0.4141 | 0.6270 | 0.4040 | 0.3640 |
Mask R-CNN | SWIN—T | ImageNet-1K | 0.6730 | 0.4640 | 0.4440 | 0.6290 | 0.4090 | 0.3810 |
Mask2former | SWIN—S | ImageNet-1K | 0.7290 | 0.5920 | 0.5620 | 0.7890 | 0.6170 | 0.5420 |
Method | Backbone | Pre-Train | Bounding Box | Mask | ||||
---|---|---|---|---|---|---|---|---|
AP50 | AP75 | mAP | AP50 | AP75 | mAP | |||
CNNs | ResNet-50 | ImageNet-1K | 0.7260 | 0.5630 | 0.5340 | 0.7800 | 0.5930 | 0.5240 |
CNNs | ResNet-101 | ImageNet-1K | 0.7510 | 0.6150 | 0.5790 | 0.7680 | 0.6170 | 0.5370 |
Transformers | SWIN—T | ImageNet-1K | 0.7120 | 0.6220 | 0.5780 | 0.7590 | 0.5720 | 0.5180 |
Transformers | SWIN—S | ImageNet-1K | 0.7290 | 0.5920 | 0.5620 | 0.7890 | 0.6170 | 0.5420 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valicharla, S.K.; Li, X.; Greenleaf, J.; Turcotte, R.; Hayes, C.; Park, Y.-L. Precision Detection and Assessment of Ash Death and Decline Caused by the Emerald Ash Borer Using Drones and Deep Learning. Plants 2023, 12, 798. https://doi.org/10.3390/plants12040798
Valicharla SK, Li X, Greenleaf J, Turcotte R, Hayes C, Park Y-L. Precision Detection and Assessment of Ash Death and Decline Caused by the Emerald Ash Borer Using Drones and Deep Learning. Plants. 2023; 12(4):798. https://doi.org/10.3390/plants12040798
Chicago/Turabian StyleValicharla, Sruthi Keerthi, Xin Li, Jennifer Greenleaf, Richard Turcotte, Christopher Hayes, and Yong-Lak Park. 2023. "Precision Detection and Assessment of Ash Death and Decline Caused by the Emerald Ash Borer Using Drones and Deep Learning" Plants 12, no. 4: 798. https://doi.org/10.3390/plants12040798
APA StyleValicharla, S. K., Li, X., Greenleaf, J., Turcotte, R., Hayes, C., & Park, Y. -L. (2023). Precision Detection and Assessment of Ash Death and Decline Caused by the Emerald Ash Borer Using Drones and Deep Learning. Plants, 12(4), 798. https://doi.org/10.3390/plants12040798