Use of Three Different Nanoparticles to Reduce Cd Availability in Soils: Effects on Germination and Early Growth of Sinapis alba L.
Abstract
:1. Introduction
2. Results and Discussion
2.1. Soil Characterization
2.2. Available Cd Contents in Soil Samples
2.3. Toxicity/Tolerance Bioassays with S. alba
3. Materials and Methods
3.1. Soil Sampling and Characterization
3.2. Nanoparticles
3.3. Plant Species
3.4. Cadmium and/or Nanoparticle Soil Treatments
3.5. Toxicity/Tolerance Bioassays Procedure
- GIndex: between 90 and 110% is classified as a species without Cd toxicity.
- GIndex: <90% is classified as a species with an inhibitory effect.
- GIndex: >110% is classified as a species with a stimulant effect.
- ApIndex: between 90 and 110% is classified as a species without Cd toxicity on the aerial part.
- ApIndex: <90% is classified as a species with an inhibitory effect on the aerial part.
- ApIndex: >110% is classified as a species with a stimulating effect on the growth of the aerial part.
3.6. Determination of Available Cd Contents in Soil Samples
3.7. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Foley, J.A.; DeFries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, F.S.; Coe, M.T.; Daily, G.C.; Gibbs, H.K.; et al. Global consequences of land use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef]
- Xin, X.; Shentu, J.; Zhang, T.; Yang, X.; Baligar, V.C.; He, Z. Sources, Indicators, and Assessment of Soil Contamination by Potentially Toxic Metals. Sustainability 2022, 14, 15878. [Google Scholar] [CrossRef]
- Chae, Y.; An, Y.-J. Current research trends on plastic pollution and ecological impacts on the soil ecosystem: A review. Environ. Pollut. 2018, 240, 387–395. [Google Scholar] [CrossRef]
- Okereafor, U.; Makhatha, M.; Mekuto, L.; Uche-Okereafor, N.; Sebola, T.; Mavumengwana, V. Toxic Metal Implications on Agricultural Soils, Plants, Animals, Aquatic life and Human Health. Int. J. Environ. Res. Public Health 2020, 17, 2204. [Google Scholar] [CrossRef]
- Yang, Q.; Li, Z.; Lu, X.; Duan, Q.; Huang, L.; Bi, J. A review of soil heavy metal pollution from industrial and agricultural regions in China: Pollution and risk assessment. Sci. Total Environ. 2018, 642, 690–700. [Google Scholar] [CrossRef] [PubMed]
- Chary, N.S.; Kamala, C.; Raj, D.S.S. Assessing risk of heavy metals from consuming food grown on sewage irrigated soils and food chain transfer. Ecotoxicol. Environ. Saf. 2008, 69, 513–524. [Google Scholar] [CrossRef]
- Kabata-Pendias, A. Trace Elements in Soils and Plants, 4th ed.; CRC Press: Boca Raton, FL, USA, 2010; ISBN 9781420093704. [Google Scholar]
- Alamgir, M. Alamgir The Effects of Soil Properties to the Extent of Soil Contamination with Metals. In Environmental Remediation Technologies for Metal-Contaminated Soils; Springer: Berlin/Heidelberg, Germany, 2016; pp. 1–19. [Google Scholar] [CrossRef]
- Mahieu, S.; Soussou, S.; Cleyet-Marel, J.-C.; Brunel, B.; Mauré, L.; Lefèbvre, C.; Escarré, J. Local Adaptation of Metallicolous and Non-Metallicolous Anthyllis vulneraria Populations: Their Utilization in Soil Restoration. Restor. Ecol. 2013, 21, 551–559. [Google Scholar] [CrossRef]
- Alengebawy, A.; Abdelkhalek, S.; Qureshi, S.; Wang, M.-Q. Heavy Metals and Pesticides Toxicity in Agricultural Soil and Plants: Ecological Risks and Human Health Implications. Toxics 2021, 9, 42. [Google Scholar] [CrossRef] [PubMed]
- Harmsen, J. Measuring Bioavailability: From a Scientific Approach to Standard Methods. J. Environ. Qual. 2007, 36, 1420–1428. [Google Scholar] [CrossRef] [PubMed]
- Peijnenburg, W.J.; Zablotskaja, M.; Vijver, M.G. Monitoring metals in terrestrial environments within a bioavailability framework and a focus on soil extraction. Ecotoxicol. Environ. Saf. 2007, 67, 163–179. [Google Scholar] [CrossRef] [PubMed]
- Agnieszka, B.; Tomasz, C.; Jerzy, W. Chemical properties and toxicity of soils contaminated by mining activity. Ecotoxicology 2014, 23, 1234–1244. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Ruiz, A.; Asensio, V.; Zaldibar, B.; Soto, M.; Marigómez, I. Toxicity assessment through multiple endpoint bioassays in soils posing environmental risk according to regulatory screening values. Environ. Sci. Pollut. Res. 2014, 21, 9689–9708. [Google Scholar] [CrossRef] [PubMed]
- Oleszczuk, P. Phytotoxicity of municipal sewage sludge composts related to physico-chemical properties, PAHs and heavy metals. Ecotoxicol. Environ. Saf. 2008, 69, 496–505. [Google Scholar] [CrossRef] [PubMed]
- Zuazo, V.H.D.; Pleguezuelo, C.R.R. Soil-erosion and runoff prevention by plant covers. A review. Agron. Sustain. Dev. 2008, 28, 65–86. [Google Scholar] [CrossRef]
- Arenas-Lago, D.; Vega, F.; Silva, L.; Andrade, M. Soil interaction and fractionation of added cadmium in some Galician soils. Microchem. J. 2013, 110, 681–690. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, Y.; Song, B.; Zhou, L.; Wang, F.; Pang, R. Spatial distribution and main controlling factor of cadmium accumulation in agricultural soils in Guizhou, China. J. Hazard. Mater. 2022, 424, 127308. [Google Scholar] [CrossRef]
- Shi, T.; Zhang, Y.; Gong, Y.; Ma, J.; Wei, H.; Wu, X.; Zhao, L.; Hou, H. Status of cadmium accumulation in agricultural soils across China (1975–2016): From temporal and spatial variations to risk assessment. Chemosphere 2019, 230, 136–143. [Google Scholar] [CrossRef]
- Abraham, E. Cadmium in New Zealand agricultural soils. N. Z. J. Agric. Res. 2018, 63, 202–219. [Google Scholar] [CrossRef]
- Kirkham, M.B. Cadmium in plants on polluted soils: Effects of soil factors, hyperaccumulation, and amendments. Geoderma 2006, 137, 19–32. [Google Scholar] [CrossRef]
- Clemens, S. Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie 2006, 88, 1707–1719. [Google Scholar] [CrossRef]
- Ng, T.Y.-T.; Wood, C.M. Trophic transfer and dietary toxicity of Cd from the oligochaete to the rainbow trout. Aquat. Toxicol. 2008, 87, 47–59. [Google Scholar] [CrossRef]
- Baryla, A.; Carrier, P.; Franck, F.; Coulomb, C.; Sahut, C.; Havaux, M. Leaf chlorosis in oilseed rape plants (Brassica napus) grown on cadmium-polluted soil: Causes and consequences for photosynthesis and growth. Planta 2001, 212, 696–709. [Google Scholar] [CrossRef]
- Gallego, S.M.; Pena, L.B.; Barcia, R.A.; Azpilicueta, C.E.; Iannone, M.F.; Rosales, E.P.; Zawoznik, M.S.; Groppa, M.D.; Benavides, M.P. Unravelling cadmium toxicity and tolerance in plants: Insight into regulatory mechanisms. Environ. Exp. Bot. 2012, 83, 33–46. [Google Scholar] [CrossRef]
- Benavides, M.P.; Gallego, S.M.; Tomaro, M.L. Cadmium toxicity in plants. Braz. J. Plant Physiol. 2005, 17, 21–34. [Google Scholar] [CrossRef]
- Michálková, Z.; Komárek, M.; Šillerová, H.; Della Puppa, L.; Joussein, E.; Bordas, F.; Vaněk, A.; Vaněk, O.; Ettler, V. Evaluating the potential of three Fe- and Mn-(nano)oxides for the stabilization of Cd, Cu and Pb in contaminated soils. J. Environ. Manag. 2014, 146, 226–234. [Google Scholar] [CrossRef] [PubMed]
- Vítková, M.; Rákosová, S.; Michálková, Z.; Komárek, M. Metal(loid)s behaviour in soils amended with nano zero-valent iron as a function of pH and time. J. Environ. Manag. 2017, 186, 268–276. [Google Scholar] [CrossRef]
- Klaine, S.J.; Alvarez, P.J.J.; Batley, G.E.; Fernandes, T.F.; Handy, R.D.; Lyon, D.Y.; Mahendra, S.; McLaughlin, M.J.; Lead, J.R. Nanomaterials in the environment: Behavior, fate, bioavailability, and effects. Environ. Toxicol. Chem. 2008, 27, 1825–1851. [Google Scholar] [CrossRef] [PubMed]
- Vítková, M.; Puschenreiter, M.; Komárek, M. Effect of nano zero-valent iron application on As, Cd, Pb, and Zn availability in the rhizosphere of metal(loid) contaminated soils. Chemosphere 2018, 200, 217–226. [Google Scholar] [CrossRef]
- Rodríguez-Seijo, A.; Vega, F.A.; Arenas-Lago, D. Assessment of iron-based and calcium-phosphate nanomaterials for immobilisation of potentially toxic elements in soils from a shooting range berm. J. Environ. Manag. 2020, 267, 110640. [Google Scholar] [CrossRef]
- Chaudhary, S.; Sharma, P.; Chauhan, P.; Kumar, R.; Umar, A. Functionalized nanomaterials: A new avenue for mitigating environmental problems. Int. J. Environ. Sci. Technol. 2019, 16, 5331–5358. [Google Scholar] [CrossRef]
- Arenas-Lago, D.; Rodríguez-Seijo, A.; Lago-Vila, M.; Couce, L.A.; Vega, F. Using Ca3(PO4)2 nanoparticles to reduce metal mobility in shooting range soils. Sci. Total Environ. 2016, 571, 1136–1146. [Google Scholar] [CrossRef] [PubMed]
- Arenas-Lago, D.; Abreu, M.M.; Couce, L.A.; Vega, F. Is nanoremediation an effective tool to reduce the bioavailable As, Pb and Sb contents in mine soils from Iberian Pyrite Belt? Catena 2019, 176, 362–371. [Google Scholar] [CrossRef]
- Liu, R.; Zhang, H.; Lal, R. Effects of Stabilized Nanoparticles of Copper, Zinc, Manganese, and Iron Oxides in Low Concentrations on Lettuce (Lactuca sativa) Seed Germination: Nanotoxicants or Nanonutrients? Water Air Soil Pollut. 2016, 227, 42. [Google Scholar] [CrossRef]
- Lago-Vila, M.; Rodríguez-Seijo, A.; Vega, F.; Arenas-Lago, D. Phytotoxicity assays with hydroxyapatite nanoparticles lead the way to recover firing range soils. Sci. Total Environ. 2019, 690, 1151–1161. [Google Scholar] [CrossRef]
- Xu, Y.; Yan, X.; Fan, L.; Fang, Z. Remediation of Cd(ii)-contaminated soil by three kinds of ferrous phosphate nanoparticles. RSC Adv. 2016, 6, 17390–17395. [Google Scholar] [CrossRef]
- Liu, C.; Wang, L.; Yin, J.; Qi, L.; Feng, Y. Combined Amendments of Nano-hydroxyapatite Immobilized Cadmium in Contaminated Soil-Potato (Solanum tuberosum L.) System. Bull. Environ. Contam. Toxicol. 2018, 100, 581–587. [Google Scholar] [CrossRef]
- Yang, Z.; Fang, Z.; Zheng, L.; Cheng, W.; Tsang, P.E.; Fang, J.; Zhao, D. Remediation of lead contaminated soil by biochar-supported nano-hydroxyapatite. Ecotoxicol. Environ. Saf. 2016, 132, 224–230. [Google Scholar] [CrossRef] [PubMed]
- Dave, P.N.; Chopda, L.V. Application of Iron Oxide Nanomaterials for the Removal of Heavy Metals. J. Nanotechnol. 2014, 2014, 398569. [Google Scholar] [CrossRef]
- Hu, J.; Chen, G.; Lo, I.M. Removal and recovery of Cr(VI) from wastewater by maghemite nanoparticles. Water Res. 2005, 39, 4528–4536. [Google Scholar] [CrossRef]
- Gil-Díaz, M.; Alonso, J.; Rodríguez-Valdés, E.; Gallego, J.; Lobo, M. Comparing different commercial zero valent iron nanoparticles to immobilize As and Hg in brownfield soil. Sci. Total Environ. 2017, 584–585, 1324–1332. [Google Scholar] [CrossRef]
- Tafazoli, M.; Hojjati, S.M.; Biparva, P.; Kooch, Y.; Lamersdorf, N. Reduction of soil heavy metal bioavailability by nanoparticles and cellulosic wastes improved the biomass of tree seedlings. J. Plant Nutr. Soil Sci. 2017, 180, 683–693. [Google Scholar] [CrossRef]
- Litter, M.I. A short review on the preparation and use of iron nanomaterials for the treatment of pollutants in water and soil. Emergent Mater. 2022, 5, 391–400. [Google Scholar] [CrossRef]
- Kumari, N.; Mohan, C. Basics of Clay Minerals and Their Characteristic Properties. In Clay and Clay Minerals; IntechOpen: London, UK, 2021. [Google Scholar] [CrossRef]
- Alloway, B. (Ed.) The Origin of Heavy Metals in Soils. In Heavy Metals in Soils; Blackie Academic and Professional Publisher: New York, NY, USA, 1995. [Google Scholar]
- Report Card on Sustainable Natural Resource Use in Agriculture in Western Australi—Agriculture and Food. Available online: https://www.agric.wa.gov.au/report-card-conditions-and-trends/report-card-sustainable-natural-resource-use-agriculture-western (accessed on 4 January 2023).
- Vega, F.; Covelo, E.; Andrade, M. A versatile parameter for comparing the capacities of soils for sorption and retention of heavy metals dumped individually or together: Results for cadmium, copper and lead in twenty soil horizons. J. Colloid Interface Sci. 2008, 327, 275–286. [Google Scholar] [CrossRef] [PubMed]
- Macías, F.; Calvo de Anta, R. Niveles Genéricos de Referencia de Metales Pesados y Otros Elementos Traza En Los Suelos de Galicia; Xunta de Galicia: A Coruña, Spain, 2009. [Google Scholar]
- Yang, Z.; Liang, L.; Yang, W.; Shi, W.; Tong, Y.; Chai, L.; Gao, S.; Liao, Q. Simultaneous immobilization of cadmium and lead in contaminated soils by hybrid bio-nanocomposites of fungal hyphae and nano-hydroxyapatites. Environ. Sci. Pollut. Res. 2018, 25, 11970–11980. [Google Scholar] [CrossRef]
- Qiao, Y.; Wu, J.; Xu, Y.; Fang, Z.; Zheng, L.; Cheng, W.; Tsang, E.P.; Fang, J.; Zhao, D. Remediation of cadmium in soil by biochar-supported iron phosphate nanoparticles. Ecol. Eng. 2017, 106, 515–522. [Google Scholar] [CrossRef]
- Xu, Y.; Fang, Z.; Tsang, E.P. In situ immobilization of cadmium in soil by stabilized biochar-supported iron phosphate nanoparticles. Environ. Sci. Pollut. Res. 2016, 23, 19164–19172. [Google Scholar] [CrossRef] [PubMed]
- Hughes, D.; Afsar, A.; Laventine, D.; Shaw, E.; Harwood, L.; Hodson, M. Metal removal from soil leachates using DTPA-functionalised maghemite nanoparticles, a potential soil washing technology. Chemosphere 2018, 209, 480–488. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Fernández, D.; Bingöl, D.; Komárek, M. Trace elements and nutrients adsorption onto nano-maghemite in a contaminated-soil solution: A geochemical/statistical approach. J. Hazard. Mater. 2014, 276, 271–277. [Google Scholar] [CrossRef]
- Xu, C.; Qi, J.; Yang, W.; Chen, Y.; Yang, C.; He, Y.; Wang, J.; Lin, A. Immobilization of heavy metals in vegetable-growing soils using nano zero-valent iron modified attapulgite clay. Sci. Total Environ. 2019, 686, 476–483. [Google Scholar] [CrossRef]
- Landa, P.; Cyrusova, T.; Jerabkova, J.; Drabek, O.; Vanek, T.; Podlipna, R. Effect of Metal Oxides on Plant Germination: Phytotoxicity of Nanoparticles, Bulk Materials, and Metal Ions. Water Air Soil Pollut. 2016, 227, 448. [Google Scholar] [CrossRef]
- IUSS Working Group WRB. World Reference Base for Soil Resources 2014: International Soil Classification System for Naming Soils and Creating Legends for Soil Map; FAO: Rome, Italy, 2014; ISBN 9789251083697. [Google Scholar]
- Guitián, F.; Carballas, T. Técnicas de Análisis de Suelos; Pico Sacro: Santiago de Compostela, Chile, 1976. [Google Scholar]
- Walkley, A.; Black, I.A. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- US Department of Agriculture—Soil Conservation Service. Dithionite Citrate Method, Soil, Survey Laboratory Methods and Procedures for Collecting Soil Samples. Soil Survey Investigation; Report No. 1; USDA: Washington, DC, USA, 1972.
- Gee, G.W.; Bauder, J.W. Particle-size analysis. In Methods of Soil Analysis. Part 1: Physical and Mineralogical Methods; American Society of Agronomy: Madison, WI, USA, 1986; pp. 383–411. [Google Scholar] [CrossRef]
- Hendershot, W.H.; Duquette, M. A Simple Barium Chloride Method for Determining Cation Exchange Capacity and Exchangeable Cations. Soil Sci. Soc. Am. J. 1986, 50, 605–608. [Google Scholar] [CrossRef]
- Houba, V.; Temminghoff, E.; Gaikhorst, G.; van Vark, W. Soil analysis procedures using 0.01 M calcium chloride as extraction reagent. Commun. Soil Sci. Plant Anal. 2000, 31, 1299–1396. [Google Scholar] [CrossRef]
Characteristics | Unit | Value | Metal | Unit | Content |
---|---|---|---|---|---|
pH(H2O) | - | 5.75 ± 0.10 | Al | g kg−1 | 57.71 ± 8.69 |
pH(KCl) | - | 4.85 ± 0.10 | As | mg kg−1 | 14.58 ± 1.18 |
Organic matter | % | 2.01 ± 0.35 | Ca | g kg−1 | 1.76 ± 0.05 |
Texture | - | sandy-loam | Cd | mg kg−1 | udl |
Co | mg kg−1 | 17.92 ± 0.38 | |||
Ca2+ | cmol(+)kg−1 | 1.69 ± 0.34 | Cr | mg kg−1 | 68.75 ± 2.18 |
K+ | 18.11 ± 4.84 | Cu | mg kg−1 | 77.92 ± 1.84 | |
Mg2+ | 0.50 ± 0.10 | Fe | g kg−1 | 48.81 ± 3.08 | |
Na+ | 1.50 ± 0.69 | K | g kg−1 | 10.94 ± 1.07 | |
Al3+ | 31.11 ± 1.97 | Mg | g kg−1 | 10.88 ± 0.77 | |
ECEC | 52.92 ± 7.94 | Mn | g kg−1 | 0.43 ± 0.02 | |
Na | mg kg−1 | 135.83 ± 3.54 | |||
Iron oxides | g kg−1 | 35.08 ± 4.17 | Ni | mg kg−1 | 31.92 ± 1.26 |
Aluminum oxides | 5.83 ± 0.70 | Pb | mg kg−1 | 9.50 ± 1.32 | |
Manganese oxides | 0.15 ± 0.02 | Zn | mg kg−1 | 107.67 ± 2.45 |
Soil + Cd Added Content (mg kg−1) + NPs | Available Cd (mg kg−1) | pH(H2O) |
---|---|---|
Control soil (untreated) | nd | 5.75 ± 0.10 f |
Soil + Cd (1) | 0.50 ± 0.08 b | 6.08 ± 0.03 d |
Soil + Cd (3) | 1.60 ± 0.20 a | 5.94 ± 0.02 e |
Soil + HANPs | nd | 6.32 ± 0.14 c |
Soil + Cd (1) + HANPs | <0.01 e | 6.32 ± 0.16 c |
Soil + Cd (3) + HANPs | 0.05 ± 0.01 d | 6.42 ± 0.01 c |
Soil + MNPs | nd | 6.01 ± 0.12 d |
Soil + Cd (1) + MNPs | 0.03 ± 0.02 d | 6.05 ± 0.14 d,e |
Soil + Cd (3) + MNPs | 0.13 ± 0.06 c | 6.12 ± 0.12 d |
Soil + FeNPs | nd | 6.50 ± 0.24 c |
Soil + Cd (1) + FeNPs | <0.01 e | 6.92 ± 0.06 b |
Soil + Cd (3) + FeNPs | 0.03 ± 0.02 d | 7.22 ± 0.08 a |
Soil + Cd Added Content (mg kg−1) + NPs | G (%) | GIndex | ApIndex | Root Length | Aerial Part |
---|---|---|---|---|---|
Soil (untreated) | 96 ± 4 a | 100.0 ± 0.6 a | 100.0 ± 1.0 b | 8.19 ± 2.11 | 4.16 ± 0.99 |
Soil + Cd (1) | 80 ± 0 c | 60.9 ± 0.5 f | 60.9 ± 0.5 j | 5.98 ± 3.11 | 3.64 ± 1.14 |
Soil + Cd (3) | 90 ± 0 b | 65.5 ± 0.4 e | 70.1 ± 0.5 i | 5.72 ± 2.02 | 3.11 ± 1.04 |
Soil + HANPs | 80 ± 0 c | 63.3 ± 0.4 | 87.3 ± 0.6 f | 6.22 ± 1.84 | 4.36 ± 1.70 |
Soil + Cd (1) + HANPs | 90 ± 5 a,b | 81.0 ± 0.5 c | 107.0 ± 1.0 a | 7.07 ± 1.82 | 4.76 ± 0.94 |
Soil + Cd (3) + HANPs | 86 ± 6 b,c | 73.8 ± 0.6 d | 96.5 ± 0.6 c | 6.82 ± 2.96 | 4.48 ± 1.09 |
Soil + MNPs | 96 ± 4 a | 82.9 ± 0.6 c | 93.3 ± 0.5 d | 6.74 ± 2.48 | 3.88 ± 0.81 |
Soil + Cd (1) + MNPs | 90 ± 0 b | 87.0 ± 0.4 b | 80.4 ± 0.4 g | 7.60 ± 1.44 | 3.57 ± 0.84 |
Soil + Cd (3) + MNPs | 96 ± 4 a | 81.5 ± 0.6 c | 86.2 ± 0.6 f | 6.72 ± 2.32 | 3.59 ± 1.19 |
Soil + FeNPs | 96 ± 4 a | 56.5 ± 0.4 g | 89.1 ± 0.5 e | 4.62 ± 1.97 | 3.71 ± 0.96 |
Soil + Cd (1) + FeNPs | 90 ± 0 b | 60.8 ± 0.5 f | 72.9 ± 0.4 h | 5.31 ± 2.40 | 3.24 ± 0.85 |
Soil + Cd (3) + FeNPs | 100 ± 0 a | 64.8 ± 0.4 e | 86.0 ± 0.5 f | 5.09 ± 1.60 | 3.44 ± 0.90 |
Soil + Cd Added Content (mg kg−1) + NPs | GI (%) | RI (%) |
---|---|---|
Soil control (untreated) | 0.00 ± 1.41 d | 0.00 ± 4.22 h |
Soil + Cd (1) | 20.00 ± 0.70 a | 36.82 ± 5.22 d |
Soil + Cd (3) | 6.67 ± 2.12 c | 43.09 ± 4.13 c |
Soil + HANPs | 20.00 ± 0.70 a | 31.72 ± 3.95 d |
Soil + Cd (1) + HANPs | 6.67 ± 2.12 c | 15.72 ± 3.93 f |
Soil + Cd (3) + HANPs | 11.63 ± 1.41 b | 21.38 ± 5.07 e |
Soil + MNPs | 0.00 ± 1.41 d | 20.63 ± 4.59 e |
Soil + Cd (1) + MNPs | 6.67 ± 2.12 c | 7.78 ± 3.55 g |
Soil + Cd (3) + MNPs | 0.00 ± 1.41 d | 22.71 ± 4.43 e |
Soil + FeNPs | 0.00 ± 1.41 d | 77.04 ± 4.08 a |
Soil + Cd (1) + FeNPs | 6.67 ± 0.71 c | 54.30 ± 4.51 b |
Soil + Cd (3) + FeNPs | −4.00 ± 0.71 e | 60.88 ± 3.71 b |
Soil Samples | Cd Content Treatment | Nanoparticles Added (3% w/w) |
---|---|---|
90 g soil | - | - |
1 mg kg−1 | - | |
3 mg kg−1 | - | |
90 g soil | - | HANPs |
1 mg kg−1 | HANPs | |
3 mg kg−1 | HANPs | |
90 g soil | - | MNPs |
1 mg kg−1 | MNPs | |
3 mg kg−1 | MNPs | |
90 g soil | - | FeNPs |
1 mg kg−1 | FeNPs | |
3 mg kg−1 | FeNPs |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
González-Feijoo, R.; Rodríguez-Seijo, A.; Fernández-Calviño, D.; Arias-Estévez, M.; Arenas-Lago, D. Use of Three Different Nanoparticles to Reduce Cd Availability in Soils: Effects on Germination and Early Growth of Sinapis alba L. Plants 2023, 12, 801. https://doi.org/10.3390/plants12040801
González-Feijoo R, Rodríguez-Seijo A, Fernández-Calviño D, Arias-Estévez M, Arenas-Lago D. Use of Three Different Nanoparticles to Reduce Cd Availability in Soils: Effects on Germination and Early Growth of Sinapis alba L. Plants. 2023; 12(4):801. https://doi.org/10.3390/plants12040801
Chicago/Turabian StyleGonzález-Feijoo, Rocío, Andrés Rodríguez-Seijo, David Fernández-Calviño, Manuel Arias-Estévez, and Daniel Arenas-Lago. 2023. "Use of Three Different Nanoparticles to Reduce Cd Availability in Soils: Effects on Germination and Early Growth of Sinapis alba L." Plants 12, no. 4: 801. https://doi.org/10.3390/plants12040801
APA StyleGonzález-Feijoo, R., Rodríguez-Seijo, A., Fernández-Calviño, D., Arias-Estévez, M., & Arenas-Lago, D. (2023). Use of Three Different Nanoparticles to Reduce Cd Availability in Soils: Effects on Germination and Early Growth of Sinapis alba L. Plants, 12(4), 801. https://doi.org/10.3390/plants12040801