3′-Demethoxy-6-O-Demethylisoguaiacin and Norisoguaiacin Nematocidal Lignans from Artemisia cina against Haemonchus contortus Infective Larvae
Abstract
:1. Introduction
2. Results
2.1. Larvicidal Activity of Artemisia cina Extracts
2.2. Larvicidal Activity of Fractions of n-Hexane Artemisia cina Extract
2.3. Larvicidal Activity of Compounds Obtained of n-Hexane Artemisia cina Fractioning
2.4. Identification of 3′-Demethoxy-6-O-Demethylisoguaiacin and Norisoguaiacin
3. Discussion
4. Materials and Methods
4.1. Plant Material
4.2. Artemisia cina Extract Obtaining and Chemical Fractioning
4.3. Isolation and Identification of 3′-Demethoxy-6-O-Demethylisoguaiacin (1) and Norisoguaiacin (2) from the A. cina n-Hexane Extract
4.4. Mass Spectrometry Analysis of Compounds
4.5. Haemonchus contortus Larvae Obtaining
4.6. Larval Mortality Assay
4.7. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Roeber, F.; Jex, A.R.; Gasser, R.B. Impact of Gastrointestinal Parasitic Nematodes of Sheep, and the Role of Advanced Molecular Tools for Exploring Epidemiology and Drug Resistance—An Australian Perspective. Parasit Vectors 2013, 6, 153. [Google Scholar] [CrossRef]
- Wen, Z.; Zhang, Z.; Aimulajiang, K.; Aleem, M.T.; Feng, J.; Liang, M.; Lu, M.; Xu, L.; Song, X.; Li, X.; et al. Histidine Acid Phosphatase Domain-Containing Protein from Haemonchus contortus Is a Stimulatory Antigen for the Th1 Immune Response of Goat PBMCs. Parasit Vectors 2022, 15, 282. [Google Scholar] [CrossRef] [PubMed]
- Antonopoulos, A.; Doyle, S.R.; Bartley, D.J.; Morrison, A.A.; Kaplan, R.; Howell, S.; Neveu, C.; Busin, V.; Devaney, E.; Laing, R. Allele Specific PCR for a Major Marker of Levamisole Resistance in Haemonchus contortus. Int. J. Parasitol. Drugs Drug Resist. 2022, 20, 17–26. [Google Scholar] [CrossRef] [PubMed]
- Delgado-Núñez, E.J.; Zamilpa, A.; González-Cortazar, M.; Olmedo-Juárez, A.; Cardoso-Taketa, A.; Sánchez-Mendoza, E.; Tapia-Maruri, D.; Salinas-Sánchez, D.O.; Mendoza-de Gives, P. Isorhamnetin: A Nematocidal Flavonoid from Prosopis laevigata Leaves Against Haemonchus contortus Eggs and Larvae. Biomolecules 2020, 10, 773. [Google Scholar] [CrossRef] [PubMed]
- De la Cruz-López, J.; Hernández-Villegas, M.M.; Aranda-Ibáñez, M.E.; Bolio-López, G.I.; Velázquez-Carmona, M.A.; Córdova-Sánchez, S. Potencial Nutricional y Fitohelmíntico de Los Extractos Acuosos de Tithonia diversifolia Hemsl. (Asteraceae) En Pequeños Rumiantes En El Trópico Mexicano. Inf. Tec. Econ. Agrar. 2021, 118, 69–81. [Google Scholar] [CrossRef]
- Politi, F.A.S.; Bueno, R.V.; Zeoly, L.A.; Fantatto, R.R.; Eloy, J.d.O.; Chorilli, M.; Coelho, F.; Guido, R.V.C.; Chagas, A.C.d.S.; Furlan, M. Anthelmintic Activity of a Nanoformulation Based on Thiophenes Identified in Tagetes patula L. (Asteraceae) against the Small Ruminant Nematode Haemonchus contortus. Acta Trop. 2021, 219, 105920. [Google Scholar] [CrossRef] [PubMed]
- Younes, K.M.; Bin, M.K.; Unissa, R.; Almarshdi, A.A.; Alharbi, F.M.; Alenzi, S.S.; Albsher, B.N.; Abouzied, A.S. In-Vitro Evaluation of Anti-Microbial and Cytotoxic Activity of Artemisia judaica Leaves and Stem Extracts via Induction of Caspase Dependent Apoptosis. Indian J. Pharm. Educ. Res. 2022, 56, s52–s57. [Google Scholar] [CrossRef]
- Meng, Y.; Ma, N.; Lyu, H.; Wong, Y.K.; Zhang, X.; Zhu, Y.; Gao, P.; Sun, P.; Song, Y.; Lin, L.; et al. Recent Pharmacological Advances in the Repurposing of Artemisinin Drugs. Med. Res. Rev. 2021, 41, 3156–3181. [Google Scholar] [CrossRef] [PubMed]
- Kamaraj, C.; Ragavendran, C.; Kumar, R.C.S.; Ali, A.; Khan, S.U.; Mashwani, Z.u.-R.; Luna-Arias, J.P.; Pedroza, J.P.R. Antiparasitic Potential of Asteraceae Plants: A Comprehensive Review on Therapeutic and Mechanistic Aspects for Biocompatible Drug Discovery. Phytomedicine Plus 2022, 2, 100377. [Google Scholar] [CrossRef]
- Koide, T.; Nose, M.; Inoue, M.; Ogihara, Y.; Yabu, Y.; Ohta, N. Trypanocidal Effects of Gallic Acid and Related Compounds. Planta Med. 1998, 64, 27–30. [Google Scholar] [CrossRef]
- Bashtar, A.-R.; Hassanein, M.; Abdel-Ghaffar, F.; Al-Rasheid, K.; Hassan, S.; Mehlhorn, H.; AL-Mahdi, M.; Morsy, K.; Al-Ghamdi, A. Studies on Monieziasis of Sheep I. Prevalence and Anthelminthic Effects of Some Plant Extracts, a Light and Electron Microscopic Study. Parasitol. Res. 2011, 108, 177–186. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Liu, C.; Zheng, Q. Development and Application of Anthelminthic Drugs in China. Acta Trop. 2019, 200, 105181. [Google Scholar] [CrossRef] [PubMed]
- Klayman, D.L. Qinghaosu (Artemisinin): An Antimalarial Drug from China. Science 1985, 228, 1049–1055. [Google Scholar] [CrossRef] [PubMed]
- Higuera-Piedrahita, R.I.; Dolores-Hernández, M.; Jiménez-Pérez, L.G.; Camacho-Enríquez, B.C.; Zamilpa, A.; López-Arellano, R.; Mendoza-de-Gives, P.; Cuéllar-Ordaz, J.A.; López-Arellano, M.E. In Vitro Nematocidal Effect and Anthelmintic Activity of Artemisia cina Against Haemonchus contortus in Gerbils and Relative Expression of Hc29 Gene in Transitional Larvae (L3–L4). Acta Parasitol. 2021, 66, 938–946. [Google Scholar] [CrossRef] [PubMed]
- Higuera-Piedrahita, R.I.; Dolores-Hernández, M.; de la-Cruz-Cruz, H.A.; Andrade-Montemayor, H.M.; Zamilpa, A.; López-Arellano, R.; González-Garduño, R.; Cuéllar-Ordaz, J.A.; Mendoza-de-Gives, P.; López-Arellano, M.E. An Artemisia cina N-Hexane Extract Reduces the Haemonchus contortus and Teladorsagia circumcincta Fecal Egg Count in Naturally Infected Periparturient Goats. Trop Anim. Health Prod. 2022, 54, 95. [Google Scholar] [CrossRef]
- Mazzeti, A.L.; Capelari-Oliveira, P.; Bahia, M.T.; Mosqueira, V.C.F. Review on Experimental Treatment Strategies Against Trypanosoma cruzi. J. Exp. Pharmacol. 2021, 13, 409–432. [Google Scholar] [CrossRef]
- Fogarty, E.S.; Evans, C.A.; Trotter, M.G.; Manning, J.K. Sensor-Based Detection of a Haemonchus contortus (Barber’s Pole Worm) Infection in Sheep. Smart Agric. Technol. 2023, 3, 100112. [Google Scholar] [CrossRef]
- Konno, C.; Xue, H.-Z.; Lu, Z.-Z.; Ma, B.-X.; Erdelmeier, C.A.J.; Che, C.-T.; Cordell, G.A.; Soejarto, D.D.; Waller, D.P.; Fong, H.H.S. 1-Aryl Tetralin Lignans from Larrea tridentata. J. Nat. Prod. 1989, 52, 1113–1117. [Google Scholar] [CrossRef]
- Wang, Y.-F.; Ni, Z.-Y.; Dong, M.; Cong, B.; Shi, Q.-W.; Gu, Y.-C.; Kiyota, H. Secondary Metabolites of Plants from the Genus Saussurea: Chemistry and Biological Activity. Chem. Biodivers. 2010, 7, 2623–2659. [Google Scholar] [CrossRef]
- Lans, C.; Turner, N.; Khan, T.; Brauer, G. Ethnoveterinary Medicines Used to Treat Endoparasites and Stomach Problems in Pigs and Pets in British Columbia, Canada. Vet. Parasitol. 2007, 148, 325–340. [Google Scholar] [CrossRef]
- Githiori, J.B.; Athanasiadou, S.; Thamsborg, S.M. Use of Plants in Novel Approaches for Control of Gastrointestinal Helminths in Livestock with Emphasis on Small Ruminants. Vet. Parasitol. 2006, 139, 308–320. [Google Scholar] [CrossRef]
- Akhtar, M.S.; Iqbal, Z.; Khan, M.N.; Lateef, M. Anthelmintic Activity of Medicinal Plants with Particular Reference to Their Use in Animals in the Indo–Pakistan Subcontinent. Small Rumin. Res. 2000, 38, 99–107. [Google Scholar] [CrossRef]
- Castagna, F.; Piras, C.; Palma, E.; Musolino, V.; Lupia, C.; Bosco, A.; Rinaldi, L.; Cringoli, G.; Musella, V.; Britti, D. Green Veterinary Pharmacology Applied to Parasite Control: Evaluation of Punica Granatum, Artemisia campestris, Salix caprea Aqueous Macerates against Gastrointestinal Nematodes of Sheep. Vet. Sci. 2021, 8, 237. [Google Scholar] [CrossRef] [PubMed]
- Rojo-Rubio, R.; González-Cortazar, M.; Olmedo-Juárez, A.; Zamilpa, A.; Arece-García, J.; Mendoza-Martínez, G.D.; Lee-Rangel, H.A.; Vázquez-Armijo, J.F.; Mendoza-de Gives, P. Caesalpinia coriaria Fruits and Leaves Extracts Possess in Vitro Ovicidal Activity against Haemonchus contortus and Haemonchus placei. Vet. México OA 2019, 6, 1–13. [Google Scholar]
- Mravčáková, D.; Komáromyová, M.; Babják, M.; Urda Dolinská, M.; Königová, A.; Petrič, D.; Čobanová, K.; Ślusarczyk, S.; Cieslak, A.; Várady, M.; et al. Anthelmintic Activity of Wormwood (Artemisia absinthium L.) and Mallow (Malva sylvestris L.) against Haemonchus contortus in Sheep. Animals 2020, 10, 219. [Google Scholar] [CrossRef]
- Tariq, K.A.; Chishti, M.Z.; Ahmad, F.; Shawl, A.S. Anthelmintic Activity of Extracts of Artemisia absinthium against Ovine Nematodes. Vet. Parasitol. 2009, 160, 83–88. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, Z.; Lateef, M.; Akhtar, M.S.; Ghayur, M.N.; Gilani, A.H. In Vivo Anthelmintic Activity of Ginger against Gastrointestinal Nematodes of Sheep. J. Ethnopharmacol. 2006, 106, 285–287. [Google Scholar] [CrossRef]
- Irum, S.; Ahmed, H.; Mukhtar, M.; Mushtaq, M.; Mirza, B.; Donskow-Łysoniewska, K.; Qayyum, M.; Simsek, S. Anthelmintic Activity of Artemisia vestita Wall Ex DC. and Artemisia maritima L. against Haemonchus contortus from Sheep. Vet. Parasitol. 2015, 212, 451–455. [Google Scholar] [CrossRef]
- Iqbal, Z.; Lateef, M.; Ashraf, M.; Jabbar, A. Anthelmintic Activity of Artemisia Brevifolia in Sheep. J. Ethnopharmacol. 2004, 93, 265–268. [Google Scholar] [CrossRef]
- Zhu, L.; Dai, J.L.; Yang, L.; Qiu, J. In Vitro Ovicidal and Larvicidal Activity of the Essential Oil of Artemisia lancea against Haemonchus contortus (Strongylida). Vet. Parasitol. 2013, 195, 112–117. [Google Scholar] [CrossRef]
- Konno, C.; Lu, Z.-Z.; Xue, H.-Z.; Erdelmeier, C.A.J.; Meksuriyen, D.; Che, C.-T.; Cordell, G.A.; Soejarto, D.D.; Waller, D.P.; Fong, H.H.S. Furanoid Lignans from Larrea tridentata. J. Nat. Prod. 1990, 53, 396–406. [Google Scholar] [CrossRef] [PubMed]
- Shepherd, F.; Chylinski, C.; Hutchings, M.R.; Lima, J.; Davidson, R.; Kelly, R.; Macrae, A.; Salminen, J.-P.; Engström, M.T.; Maurer, V.; et al. Comparative Analysis of the Anthelmintic Efficacy of European Heather Extracts on Teladorsagia circumcincta and Trichostrongylus colubriformis Egg Hatching and Larval Motility. Parasit Vectors 2022, 15, 409. [Google Scholar] [CrossRef] [PubMed]
- Plaha, N.S.; Awasthi, S.; Sharma, A.; Kaushik, N. Distribution, Biosynthesis and Therapeutic Potential of Lignans. 3 Biotech. 2022, 12, 255. [Google Scholar] [CrossRef]
- Li, R.; Luan, F.; Zhao, Y.; Wu, M.; Lu, Y.; Tao, C.; Zhu, L.; Zhang, C.; Wan, L. Crataegus Pinnatifida: A Botanical, Ethnopharmacological, Phytochemical, and Pharmacological Overview. J. Ethnopharmacol. 2023, 301, 115819. [Google Scholar] [CrossRef] [PubMed]
- Gnabre, J.N.; Ito, Y.; Ma, Y.; Huang, R.C. Isolation of Anti-HIV-1 Lignans from Larrea tridentata by Counter-Current Chromatography. J. Chromatogr. A 1996, 719, 353–364. [Google Scholar] [CrossRef] [PubMed]
- Favela-Hernández, J.; Clemente-Soto, A.; Balderas-Rentería, I.; Garza-González, E.; Camacho-Corona, M. Potential Mechanism of Action of 3′-Demethoxy-6-O-Demethyl-Isoguaiacin on Methicillin Resistant Staphylococcus aureus. Molecules 2015, 20, 12450–12458. [Google Scholar] [CrossRef]
- Luna-Vázquez, F.; Ibarra-Alvarado, C.; Camacho-Corona, M.; Rojas-Molina, A.; Rojas-Molina, J.; García, A.; Bah, M. Vasodilator Activity of Compounds Isolated from Plants Used in Mexican Traditional Medicine. Molecules 2018, 23, 1474. [Google Scholar] [CrossRef]
- Pardini, R.S.; Kim, C.H.; Blagini, R.; Morms, R.J.; Fletcher, D.C. Inhibition of Mitochondrial Electron-Transport Systems by nor-Isoguaiacin. Biochem. Pharmacol. 1973, 22, 1921–1925. [Google Scholar] [CrossRef]
- Gisvold, O.; Thaker, E. Lignans from Larrea Divaricata. J. Pharm. Sci. 1974, 63, 1905–1907. [Google Scholar] [CrossRef]
- Torres, R.; Urbina, F.; Morales, C.; Modak, B.; Monache, F.D. Antioxidant properties of lignans and ferulic acid from the resinous exudate of Larrea nitida. J. Chil. Chem. Soc. 2003, 48, 61–63. [Google Scholar] [CrossRef]
- Schmidt, T.J.; Rzeppa, S.; Kaiser, M.; Brun, R. Larrea tridentata—Absolute Configuration of Its Epoxylignans and Investigations on Its Antiprotozoal Activity. Phytochem. Lett. 2012, 5, 632–638. [Google Scholar] [CrossRef]
- Pharmaceutical Composition from Larrea nitida Extract for Preventing and Treating Female Cancers and Menopausal Symptoms. 2014. Patent No WO/2014/193067. Available online: https://patents.google.com/patent/WO2014193067A1/en (accessed on 1 November 2022).
A. cina Extract (mg/mL) | Egg Hatching Inhibition after 48 h Post-Exposition (EHI% ± SD) | Infective Larvae Mortality after 24 h Post-Exposition (Mortality% ± SD) |
---|---|---|
n-hexane extract | ||
4 | 76.6 ± 9.3 a | 80 ± 9 a |
2 | 63.6 ± 5.9 a | 68 ± 7 a |
Ethyl acetate extract | ||
4 | 61.1 ± 3.4 b | 45 ± 5 b |
2 | 56.8 ± 9.3 b | 20 ± 2 b |
Methanolic extract | ||
4 | 39.6 ± 1.2 c | 30 ± 3 c |
2 | 10.4 ± 3 c | 10 ± 1 c |
Ivermectin (5 mg/mL) | 100 d | 100 d |
Fractions on n-Hexane Extract of A. cina | Concentration (mg/mL) | % Mortality | LC50/LC90 (mg/mL) |
---|---|---|---|
C1F1 | 2 | 0 | - |
1 | 0 | - | |
0.5 | 0 | - | |
0.25 | 0 | - | |
C1F2 | 2 | 0 | - |
1 | 0 | - | |
0.5 | 0 | - | |
0.25 | 0 | - | |
C1F3 | 2 | 0 | - |
1 | 9.11 ± 8.8 d | - | |
0.5 | 11.24 ± 20 d | - | |
0.25 | 0 | - | |
C1F4 | 2 | 9.09 ± 0.8 d | - |
1 | 0 | - | |
0.5 | 0 | - | |
0.25 | 3.8 ± 1.2 e | - | |
C1F5 | 2 | 100 a | 0.63/1.26 |
1 | 94.97 ± 5 b | - | |
0.5 | 35.87 ± 14 c | - | |
0.25 | 9.43 ± 3.7 d | - | |
C1F6 | 2 | 69.46 ± 5.7 b | 0.6/5.5 |
1 | 67.44 ± 15.8 b | - | |
0.5 | 36.84 ± 3.6 c | - | |
0.25 | 26.69 ± 4.1 c | - | |
C1F7 | 2 | 8.51 ± 0.5d | 4.15/14.9 |
1 | 8.81 ± 4.9d | - | |
0.5 | 1.92 ± 1.6 e | - | |
0.25 | 4.13 ± 0.3 e | - |
Fractions on n-Hexane Extract of A. cina | Concentration (mg/mL) | Mortality % | LC50/LC90 (mg/mL) |
---|---|---|---|
C2F1 | 2 | 0 | - |
1 | 0 | - | |
0.5 | 0 | - | |
0.25 | 0 | - | |
C2F2 | 2 | 0 | - |
1 | 0 | - | |
0.5 | 0 | - | |
0.25 | 0 | - | |
C2F3 | 2 | 0 | - |
1 | 9.11 ± 8.8 d | ||
0.5 | 11.24 ± 20 d | ||
0.25 | 0 | ||
C2F4 | 2 | 9.09 ± 0.8 d | - |
1 | 0 | ||
0.5 | 0 | ||
0.25 | 3.8 ± 1.2 e | ||
C2F5 | 2 | 100 a | 0.63/1.55 |
1 | 94.97 ± 5 b | ||
0.5 | 35.87 ± 14 c | ||
0.25 | 9.43 ± 3.7 d | ||
C2F6 | 2 | 69.46 ± 5.7 b | 0.6/5.5 |
1 | 67.44 ± 15.8 b | ||
0.5 | 36.84 ± 3.6 c | ||
0.25 | 26.69 ± 4.1 c | ||
C2F7 | 2 | 8.51 ± 0.5 d | - |
1 | 8.81 ± 4.9 d | ||
0.5 | 1.92 ± 1.6 e | ||
0.25 | 4.13 ± 0.3 e | ||
C2F8 | 2 | 18.3 ± 1.5 d | - |
1 | 10.3 ± 1.5 d | ||
0.5 | 0 | ||
0.25 | 0 | ||
C2F9 | 2 | 46 ± 3.6 c | - |
1 | 15 ± 5 d | ||
0.5 | 0 | ||
0.25 | 0 | ||
C2F10 | 2 | 23.3 ± 9.8 d | - |
1 | 14.3 ± 4.04 d | ||
0.5 | 0 | ||
0.25 | 0 | ||
C2F11 | 2 | 100 a | 0.25/0.65 |
1 | 100 a | ||
0.5 | 98.33 ± 1.5 a | ||
0.25 | 87 ± 1.2 b | ||
C2F12 | 2 | 91.7 ± 1.5 b | - |
1 | 91 ± 1 b | ||
0.5 | 53.67 ± 3 d | ||
0.25 | 10 d | ||
Distillated water | - | 0 | - |
Ivermectin | 5 | 100 a | - |
Position | 1 δ H (J in Hz) | 1 δC | 2 δ H (J in Hz) | 2 δC |
---|---|---|---|---|
1 | 3.53 (1H, d, 6.2) | 51.1 | 3.53 (1H, d, 5.1) | 51.5 |
2 | 1.86 (1H, d, 2.5, 6.6) | 42.2 | 1.91 (m) | 42.0 |
3 | 1.98 (m) | 30.5 | 1.98 (m) | 30.8 |
4 a b | 2.80 (1H, dd, 5.1, 16.1) 2.37 (1H, dd, 6.6, 16.1) | 35.9 | 2.83 (1H, dd, 5.1, 12.8) 2.38 (1H, dd, 4.7, 16.1) | 36.0 |
5 | 6.51, s | 116.0 | 6.51 (1H, br, s) | 116.0 |
6 | 144.5 | 144.4 | ||
7 | 144.1 | 144.4 | ||
8 | 6.21, s | 118.0 | 6.24, (1H, s) | 117.9 |
9 | 130.8 | 130.7 | ||
10 | 128.5 | 128.5 | ||
11 | 0.86 (3H, d, 6.2) | 16.1 | 0.88 (3H, d, 5.1) | 16.0 |
12 | 0.87 (3H, d, 6.2) | 16.1 | 0.86 (3H, d, 6.2) | 16.2 |
1′ | 139.7 | 140.4 | ||
2′ | 6.82 (1H, d, 8.4) | 130.9 | 6.57 (1H, br, s) | 113.5 |
3′ | 6.66 (1H, d, 8.4) | 115.6 | 148.6 | |
4′ | 156.1 | 145.3 | ||
5′ | 6.66 (1H, d, 8.4) | 115.6 | 6.68 (1H, d, 7.7) | 115.5 |
6′ | 6.82 (1H, d, 8.4) | 130.9 | 6.45 (1H, d, br, 7.7) | 122.8 |
OCH3 | ---- | ---- | 3.73 (3H, s) | 56.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Higuera-Piedrahita, R.I.; Dolores-Hernández, M.; Cruz-Cruz, H.A.d.l.; López-Arellano, R.; Gives, P.M.-d.; Olmedo-Juárez, A.; Cuéllar-Ordaz, J.A.; González-Cortazar, M.; Ble-González, E.A.; López-Arellano, M.E.; et al. 3′-Demethoxy-6-O-Demethylisoguaiacin and Norisoguaiacin Nematocidal Lignans from Artemisia cina against Haemonchus contortus Infective Larvae. Plants 2023, 12, 820. https://doi.org/10.3390/plants12040820
Higuera-Piedrahita RI, Dolores-Hernández M, Cruz-Cruz HAdl, López-Arellano R, Gives PM-d, Olmedo-Juárez A, Cuéllar-Ordaz JA, González-Cortazar M, Ble-González EA, López-Arellano ME, et al. 3′-Demethoxy-6-O-Demethylisoguaiacin and Norisoguaiacin Nematocidal Lignans from Artemisia cina against Haemonchus contortus Infective Larvae. Plants. 2023; 12(4):820. https://doi.org/10.3390/plants12040820
Chicago/Turabian StyleHiguera-Piedrahita, Rosa Isabel, Mariana Dolores-Hernández, Héctor Alejandro de la Cruz-Cruz, Raquel López-Arellano, Pedro Mendoza-de Gives, Agustín Olmedo-Juárez, Jorge Alfredo Cuéllar-Ordaz, Manasés González-Cortazar, Ever A. Ble-González, María Eugenia López-Arellano, and et al. 2023. "3′-Demethoxy-6-O-Demethylisoguaiacin and Norisoguaiacin Nematocidal Lignans from Artemisia cina against Haemonchus contortus Infective Larvae" Plants 12, no. 4: 820. https://doi.org/10.3390/plants12040820
APA StyleHiguera-Piedrahita, R. I., Dolores-Hernández, M., Cruz-Cruz, H. A. d. l., López-Arellano, R., Gives, P. M. -d., Olmedo-Juárez, A., Cuéllar-Ordaz, J. A., González-Cortazar, M., Ble-González, E. A., López-Arellano, M. E., & Zamilpa, A. (2023). 3′-Demethoxy-6-O-Demethylisoguaiacin and Norisoguaiacin Nematocidal Lignans from Artemisia cina against Haemonchus contortus Infective Larvae. Plants, 12(4), 820. https://doi.org/10.3390/plants12040820