Tree-Level Growth Patterns and Genetic Associations Depict Drought Legacies in the Relict Forests of Abies marocana
Abstract
:1. Introduction
2. Results
2.1. Climate and Dendrochronology Studies
2.2. Genetic Structure of Populations
2.3. Selection Signatures
2.4. Genotype–Phenotype Associations (GPA)
3. Discussion
4. Materials and Methods
4.1. Study Sites
4.2. Climate Data
4.3. Field Sampling and Dendrochronological Methods
4.4. DNA Extraction and ddRAD-seq
4.5. Genetic Structure of Populations
4.6. Selection Signatures
4.7. Genotype–Phenotype Associations (GPA)
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Petit, R.J.; Hampe, A. Some Evolutionary Consequences of Being a Tree. Annu. Rev. Ecol. Evol. Syst. 2006, 37, 187–214. [Google Scholar] [CrossRef] [Green Version]
- Bennett, A.C.; McDowell, N.G.; Allen, C.D.; Anderson-Teixeira, K.J. Larger trees suffer most during drought in forests worldwide. Nat. Plants 2015, 1, 15139. [Google Scholar] [CrossRef] [PubMed]
- García-García, I.; Méndez-Cea, B.; Martín-Gálvez, D.; Seco, J.I.; Gallego, F.J.; Linares, J.C. Challenges and Perspectives in the Epigenetics of Climate Change-Induced Forests Decline. Front. Plant Sci. 2022, 12, 797958. [Google Scholar] [CrossRef] [PubMed]
- Cortés-Molino, Á.; Linares, J.C.; Viñegla, B.; Lechuga, V.; Salvo Tierra, A.E.; Flores-Moya, A.; Luque, I.F.; Carreira, J.A. Unexpected resilience in relict Abies pinsapo forests to dieback and mortality induced by climate change. Front. Plant Sci. 2023, 13, 5273. [Google Scholar] [CrossRef] [PubMed]
- McDowell, N.G.; Allen, C.D.; Anderson-Teixeira, K.; Aukema, B.H.; Bond-Lamberty, B.; Chini, L.; Clark, J.S.; Dietze, M.; Grossiord, C.; Hanbury-Brown, A.; et al. Pervasive shifts in forest dynamics in a changing world. Science 2020, 368, 6494. [Google Scholar] [CrossRef]
- Anderegg, W.; Kane, J.; Anderegg, L. Consequences of widespread tree mortality triggered by drought and temperature stress. Nat. Clim. Chang. 2013, 3, 30–36. [Google Scholar] [CrossRef]
- Ozturk, T.; Ceber, Z.P.; Türkeş, M.; Kurnaz, M.L. Projections of climate change in the Mediterranean Basin by using downscaled global climate model outputs. Int. J. Clim. 2015, 35, 4276–4292. [Google Scholar] [CrossRef]
- Babst, F.; Bouriaud, O.; Poulter, B.; Trouet, V.; Girardin, M.P.; Frank, D.C. Twentieth century redistribution in climatic drivers of global tree growth. Sci. Adv. 2019, 5, eaat4313. [Google Scholar] [CrossRef] [Green Version]
- Gazol, A.; Camarero, J.J.; Colangelo, M.; de Luis, M.; Martínez del Castillo, E.; Serra-Maluquer, X. Summer drought and spring frost, but not their interaction, constrain European beech and silver fir growth in their southern distribution limits. Agric. For. Meteorol. 2019, 278, 107695. [Google Scholar] [CrossRef]
- Gazol, A.; Camarero, J.J.; Gutiérrez, E.; Popa, I.; Andreu-Hayles, L.; Motta, R.; Nola, P.; Ribas, M.; Sangüesa-Barreda, G.; Urbinati, G.X.; et al. Distinct effects of climate warming on populations of silver fir (Abies alba) across Europe. J. Biogeogr. 2015, 42, 1150–1162. [Google Scholar] [CrossRef]
- Sánchez-Salguero, R.; Camarero, J.J.; Carrer, M.; Gutiérrez, E.; Alla, A.Q.; Andreu-Hayles, L.; Hevia, A.; Koutavas, A.; Martínez-Sancho, E.; Nola, P.; et al. Climate extremes and predicted warming threaten Mediterranean Holocene fir forest refugia. Proc. Natl. Acad. Sci. USA 2017, 114, E10142–E10150. [Google Scholar] [CrossRef] [Green Version]
- Ben-Said, M. The taxonomy of Moroccan fir Abies marocana (Pinaceae): Conceptual clarifications from phylogenetic studies. Mediter. Bot. 2022, 43, e71201. [Google Scholar] [CrossRef]
- Aussenac, G. Ecology and ecophysiology of circum-Mediterranean firs in the context of climate change. Ann. For. Sci. 2002, 59, 823–832. [Google Scholar] [CrossRef]
- Hampe, A.; Jump, A.S. Climate relicts: Past, present, future. Annu. Rev. Ecol. Evol. Syst. 2011, 42, 313–333. [Google Scholar] [CrossRef] [Green Version]
- Navarro-Cerrillo, R.M.; Manzanedo, R.D.; Rodriguez-Vallejo, C.; Gazol, A.; Palacios-Rodríguez, G.; Camarero, J. Competition modulates the response of growth to climate in pure and mixed Abies pinsapo subsp. Maroccana forests in northern Morocco. For. Ecol. Manag. 2020, 459, 117847. [Google Scholar] [CrossRef]
- Ben-Said, M.; Linares, J.C.; Carreira, J.A.; Taïqui, L. Spatial patterns and species coexistence in mixed Abies marocana-Cedrus atlantica forest in Talassemtane National Park. For. Ecol. Manag. 2022, 506, 119967. [Google Scholar] [CrossRef]
- Terrab, A.; Talavera, S.; Arista, M.; Paun, O.; Stuessy, T.F.; Tremetsberger, K. Genetic diversity and geographic structure at chloroplast microsatellites (cpSSRs) in endangered west Mediterranean firs (Abies spp., Pinaceae). Taxon 2007, 56, 409–416. [Google Scholar] [CrossRef]
- Jaramillo-Correa, J.P.; Grivet, D.; Terrab, A.; Kurt, Y.; de Lucas, A.I.; Wahid, N.; Vendramin, G.G.; González-Martínez, S.C. The Strait of Gibraltar as a major biogeographic barrier in Mediterranean conifers: A comparative phylogeographic survey. Mol. Ecol. 2010, 19, 5452–5468. [Google Scholar] [CrossRef]
- Sánchez-Robles, J.M.; Balao, F.; Terrab, A.; García-Castaño, J.L.; Ortiz, M.A.; Vela, E.; Talavera, S. Phylogeography of SW Mediterranean firs: Different European origins for the North African Abies species. Mol. Phylogenet. Evol. 2014, 79, 42–53. [Google Scholar] [CrossRef]
- Litkowiec, M.; Sękiewicz, K.; Romo, A.; Ok, T.; Dagher-Kharrat, M.B.; Jasińska, A.K.; Sobierajska, K.; Boratyńska, K.; Boratyński, A. Biogeography and relationships of the Abies taxa from the Mediterranean and central Europe regions as revealed by nuclear DNA markers and needle structural characters. Forest Ecol. Manag. 2021, 479, 118606. [Google Scholar] [CrossRef]
- Peterson, B.K.; Weber, J.N.; Kay, E.H.; Fisher, H.S.; Hoekstra, H.E. Double Digest RADseq: An Inexpensive Method for De Novo SNP Discovery and Genotyping in Model and Non-Model Species. PLoS ONE 2012, 7, e37135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parchman, T.L.; Jahner, J.P.; Uckele, K.A.; Galland, L.M.; Eckert, A.J. RADseq approaches and applications for forest tree genetics. Tree Genet. Genomes 2018, 14, 39. [Google Scholar] [CrossRef]
- Alberto, F.J.; Aitken, S.N.; Alía, R.; González-Martínez, S.C.; Hänninen, H.; Kremer, A.; Lefèvre, F.; Lenormand, T.; Yeaman, S.; Whetten, R.; et al. Potential for evolutionary responses to climate change evidence from tree populations. Glob. Chang. Biol. 2013, 19, 1645–1661. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodríguez-Quilón, I.; Santos-del-Blanco, L.; Grivet, D.; Jaramillo-Correa, J.P.; Majada, J.; Vendramin, G.G.; Alía, R.; González-Martínez, S.C. Local effects drive heterozygosity–fitness correlations in an outcrossing long-lived tree. Proc. R. Soc. B Biol. Sci. 2015, 282, 20152230. [Google Scholar] [CrossRef] [Green Version]
- Neophytou, C.; Weisser, A.M.; Landwehr, D.; Šeho, M.; Kohnle, U.; Ensminger, I.; Wildhagen, H. Assessing the relationship between height growth and molecular genetic variation in Douglas-fir (Pseudotsuga menziesii) provenances. Eur. J. For. Res. 2016, 135, 465–481. [Google Scholar] [CrossRef]
- González-Díaz, P.; Gazol, A.; Valbuena-Carabaña, M.; Sangüesa-Barreda, G.; Moreno-Urbano, A.; Zavala, M.A.; Camarero, J.J. Remaking a stand: Links between genetic diversity and tree growth in expanding Mountain pine populations. For. Ecol. Manag. 2020, 472, 118244. [Google Scholar] [CrossRef]
- Babushkina, E.A.; Vaganov, E.A.; Grachev, A.M.; Oreshkova, N.V.; Belokopytova, L.V.; Kostyakova, T.V.; Krutovsky, K.V. The effect of individual genetic heterozygosity on general homeostasis, heterosis and resilience in Siberian larch (Larix sibirica Ledeb.) using dendrochronology and microsatellite loci genotyping. Dendrochronologia 2016, 38, 26–37. [Google Scholar] [CrossRef] [Green Version]
- Johnson, J.S.; Chhetri, P.K.; Krutovsky, K.V.; Cairns, D.M. Growth and its relationship to individual genetic diversity of mountain hemlock (Tsuga mertensiana) at alpine treeline in Alaska: Combining dendrochronology and genomics. Forests 2017, 8, 418. [Google Scholar] [CrossRef] [Green Version]
- Heer, K.; Behringer, D.; Piermattei, A.; Bässler, C.; Brandl, R.; Fady, B.; Jehl, H.; Liepelt, S.; Lorch, S.; Piotti, A.; et al. Linking dendroecology and association genetics in natural populations: Stress responses archived in tree rings associate with SNP genotypes in silver fir (Abies alba Mill.). Mol. Ecol. 2018, 27, 1428–1438. [Google Scholar] [CrossRef]
- Fasanella, M.; Suarez, M.L.; Hasbún, R.; Premoli, A.C. Individual-based dendrogenomic analysis of forest dieback driven by extreme droughts. Can. J. For. Res. 2020, 51, 420–432. [Google Scholar] [CrossRef]
- Housset, J.M.; Nadeau, S.; Isabel, N.; Depardieu, C.; Duchesne, I.; Lenz, P.; Girardin, M.P. Tree rings provide a new class of phenotypes for genetic associations that foster insights into adaptation of conifers to climate change. New Phytol. 2018, 218, 630–645. [Google Scholar] [CrossRef] [Green Version]
- Housset, J.M.; Tóth, E.G.; Girardin, M.P.; Tremblay, F.; Motta, R.; Bergeron, Y.; Carcaillet, C. Tree-rings, genetics and the environment: Complex interactions at the rear edge of species distribution range. Dendrochronologia 2021, 69, 125863. [Google Scholar] [CrossRef]
- Venegas-González, A.; Gibson-Capintero, S.; Anholetto-Junior, C.; Mathiasen, P.; Premoli, A.C.; Fresia, P. Tree-Ring Analysis and Genetic Associations Help to Understand Drought Sensitivity in the Chilean Endemic Forest of Nothofagus macrocarpa. Front. For. Glob. Chang. 2022, 5, 762347. [Google Scholar] [CrossRef]
- Tejedor, E.; Serrano-Notivoli, R.; de Luis, M.; Saz, M.A.; Hartl, C.; George, S.S.; Büntgen, U.; Liebhold, A.M.; Vuille, M.; Esper, J. A global perspective on the climate-driven growth synchrony of neighbouring trees. Glob. Ecol. Biogeogr. 2020, 29, 1114–1125. [Google Scholar] [CrossRef]
- Shestakova, T.A.; Gutiérrez, E.; Kirdyanov, A.V.; Camarero, J.J.; Génova, M.; Knorre, A.A.; Linares, J.C.; Resco de Dios, V.; Sánchez-Salguero, R.; Voltas, J. Forests synchronize their growth in contrasting Eurasian regions in response to climate warming. Proc. Natl. Acad. Sci. USA 2016, 113, 662–667. [Google Scholar] [CrossRef] [Green Version]
- Méndez-Cea, B.; García-García, I.; Gazol, A.; Camarero, J.J.; de Andrés, E.G.; Colangelo, M.; Valeriano, C.; Gallego, F.J.; Linares, J.C. Weak genetic differentiation but strong climate-induced selective pressure toward the rear edge of mountain pine in north-eastern Spain. Sci. Total Environ. 2023, 858, 159778. [Google Scholar] [CrossRef]
- Balao, F.; Lorenzo, M.T.; Sánchez-Robles, J.M.; Paun, O.; García-Castańo, J.L.; Terrab, A. Early diversification and permeable species boundaries in the Mediterranean firs. Ann. Bot. 2020, 125, 495–507. [Google Scholar] [CrossRef]
- Dering, M.; Sękiewicz, K.; Boratyńska, K.; Litkowiec, M.; Iszkuło, G.; Romo, A.; Boratyński, A. Genetic diversity and inter-specific relations of western Mediterranean relic Abies taxa as compared to the Iberian A. alba. Flora 2014, 209, 367–374. [Google Scholar] [CrossRef] [Green Version]
- Kronfuss, G.; Wieser, G.; Havranek, W.M.; Polle, A. Effects of ozone and mild drought stress on total and apoplastic guaiacol peroxidase and lipid peroxidation in current-year needles of young Norway spruce (Picea abies (L.) Karst). J. Plant Physiol. 1996, 148, 203–206. [Google Scholar] [CrossRef]
- Alonso, R.; Elvira, S.; Castillo, F.J.; Gimeno, B.S. Interactive effects of ozone and drought stress on pigments and activities of antioxidative enzymes in Pinus halepensis. Plant Cell Environ. 2001, 24, 905–916. [Google Scholar] [CrossRef]
- Shiu, S.H.; Bleecker, A.B. Expansion of the receptor-like kinase/Pelle gene family and receptor-like proteins in Arabidopsis. Plant Physiol. 2003, 132, 530–543. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matsushita, M.; Takata, K.; Hitsuma, G.; Yagihashi, T.; Noguchi, M.; Shibata, M.; Masaki, T. A novel growth model evaluating age-size effect on long-term trends in tree growth. Funct. Ecol. 2015, 29, 1250–1259. [Google Scholar] [CrossRef]
- Bowman, D.M.J.S.; Brienen, R.J.W.; Gloor, E.; Philips, O.L.; Prior, L.D. Detecting trends in tree growth: Not so simple. Trends Plant Sci. 2013, 18, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Gazol, A.; Camarero, J.J.; Sánchez-Salguero, R.; Vicente-Serrano, S.M.; Serra-Maluquer, X.; Gutiérrez, E.; de Luis, M.; Sangüesa-Barreda, G.; Novak, K.; Rozas, V.; et al. Drought legacies are short, prevail in dry conifer forests and depend on growth variability. J. Ecol. 2020, 108, 2473–2484. [Google Scholar] [CrossRef]
- Aafi, A. Floristic diversity of Morocco’s fir ecosystem (Abies marocana Trab.) (Talassemtane National Park). Nat. Faune 2000, 18, 15–19. [Google Scholar]
- DREFLCD (Direction Regionale des Eaux et Forêts et de la Lutte Contre la Désertification du Rif). Etude D’aménagement de la Sapinière de la Forêt de Talassemtane (Province de Chefchaouen)—Volume 3: Plan de Gestion; DREFLCD: Oujda, Morocco, 2012. [Google Scholar]
- Aussenac, G. Interactions between forest stands and microclimate: Ecophysiological aspects and consequences for silviculture. Ann. For. Sci. 2000, 57, 287–301. [Google Scholar] [CrossRef]
- Alaoui, M.L.; Knees, S.; Gardner, M. Abies pinsapo var. marocana. The IUCN Red List of Threatened Species 2011: E.T34126A9841418. 2011. Available online: https://doi.org/10.2305/IUCN.UK.2011-2.RLTS.T34126A9841418.en (accessed on 5 September 2022).
- Benabid, A. Flore et Ecosystèmes du Maroc Évaluation et Préservation; Ibis Press: Paris, France, 2000; ISBN 2-910728-13-7. [Google Scholar]
- Haylock, M.R.; Hofstra, N.; Klein Tank, A.M.G.; Klok, E.J.; Jones, P.D.; New, M. A European daily high-resolution gridded data set of surface temperature and precipitation for 1950–2006. J. Geophys. Res. 2008, 113, D20119. [Google Scholar] [CrossRef] [Green Version]
- Beguería, S.; Vicente-Serrano, S.M.; Reig, F.; Latorre, B. Standardized precipitation evapotranspiration index (SPEI) revisited: Parameter fitting, evapotranspiration models, tools, datasets and drought monitoring. Int. J. Climatol. 2014, 34, 3001–3023. [Google Scholar] [CrossRef] [Green Version]
- Mann, H.B. Nonparametric Tests against Trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods; Charles Griffin: London, UK, 1975. [Google Scholar]
- IPCC. Climate Change 1994: Radiative Forcing of Climate Change and An Evaluation of the IPCC IS92 Emission Scenarios; Houghton, J.T., Meira Filho, L.G., Bruce, J., Lee, H., Callander, B.A., Haites, E., Harris, N., Maskell, K., Eds.; Cambridge University Press: Cambridge, UK, 1994. [Google Scholar]
- Holmes, R.L. Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bull 1983, 43, 68–78. [Google Scholar]
- Fritts, H.C. Tree Rings and Climate; Academic Press: London, UK, 1976. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Core Team: Vienna, Austria, 2022. [Google Scholar]
- Pootakham, W.; Sonthirod, C.; Naktang, C.; Jomchai, N.; Sangsrakru, D.; Tangphatsornruang, S. Effects of methylation-sensitive enzymes on the enrichment of genic SNPs and the degree of genome complexity reduction in a two-enzyme genotyping-by-sequencing (GBS) approach: A case study in oil palm (Elaeis guineensis). Mol. Breed. 2016, 36, 154. [Google Scholar] [CrossRef] [Green Version]
- Andrews, S. FastQC: A Quality Control Tool for High throughput Sequence Data. 2010. Available online: http://www.bioinformatics.babraham.ac.uk/projects/fastqc (accessed on 11 February 2023).
- Chen, S.; Zhou, Y.; Chen, Y.; Gu, J. fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018, 34, i884–i890. [Google Scholar] [CrossRef]
- Eaton, D.A.R.; Overcast, I. ipyrad: Interactive assembly and analysis of RADseq datasets. Bioinformatics 2020, 36, 2592–2594. [Google Scholar] [CrossRef]
- Danecek, P.; Auton, A.; Abecasis, G.; Albers, C.A.; Banks, E.; DePristo, M.A.; Handsaker, R.E.; Lunter, G.; Marth, G.T.; Sherry, S.T.; et al. 1000 Genomes Project Analysis Group. The variant call format and VCFtools. Bioinformatics 2011, 27, 2156–2158. [Google Scholar] [CrossRef]
- Chang, C.C.; Chow, C.C.; Tellier, L.C.A.M.; Vattikuti, S.; Purcell, S.M.; Lee, J.J. Second-generation PLINK: Rising to the challenge of larger and richer datasets. GigaScience 2015, 4, 7. [Google Scholar] [CrossRef]
- Wickham, H. ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016; ISBN 978-3-319-24277-4. Available online: https://ggplot2.tidyverse.org (accessed on 11 February 2023).
- Frichot, E.; François, O. LEA: An R package for landscape and ecological association studies. Methods Ecol. Evol. 2015, 6, 925–929. [Google Scholar] [CrossRef]
- Behr, A.A.; Liu, K.Z.; Liu-Fang, G.; Nakka, P.; Ramachandran, S. pong: Fast analysis and visualization of latent clusters in population genetic data. Bioinformatics 2016, 32, 2817–2823. [Google Scholar] [CrossRef] [Green Version]
- Peakall, R.; Smouse, P.E. GENALEX 6: Genetic analysis in Excel. Population genetic software for teaching and research. Mol. Ecol. Notes 2006, 6, 288–295. [Google Scholar] [CrossRef]
- Peakall, R.; Smouse, P.E. GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 2012, 28, 2537–2539. [Google Scholar] [CrossRef] [Green Version]
- Foll, M.; Gaggiotti, O.E. A genome scan method to identify selected loci appropriate for both dominant and codominant markers: A Bayesian perspective. Genetics 2008, 180, 977–993. [Google Scholar] [CrossRef] [Green Version]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef] [PubMed]
- Gish, W.; States, D.J. Identification of protein coding regions by database similarity search. Nature Genet. 1993, 3, 266–272. [Google Scholar] [CrossRef] [PubMed]
- Endelman, J.B. Ridge regression and other kernels for genomic selection with R package rrBLUP. Plant Genome 2011, 4, 250–255. [Google Scholar] [CrossRef] [Green Version]
- Endelman, J.B.; Jannink, J.L. Shrinkage estimation of the realized relationship matrix. G3 Genes Genomes Genet. 2012, 2, 1405–1413. [Google Scholar] [CrossRef]
Time Span | 1921–2021 | 1961–2021 | |||||||
---|---|---|---|---|---|---|---|---|---|
Variable | Season | Mean (mm, °C) | Mean Change (Slope*Time Span; mm, °C) | MK-Stat | p-Value | Mean (mm, °C) | Mean Change (Slope*Time Span; mm, °C) | MK-Stat | p-Value |
Total precipitation | Wi | 468 | 165 | 2.06 | 0.0394 | 521 | ns | −1.23 | 0.2179 |
Sp | 291 | ns | 0.76 | 0.4490 | 299 | ns | 0.10 | 0.9207 | |
Su | 23 | −30 | −2.67 | 0.0076 | 20 | −26 | −2.94 | 0.0032 | |
Au | 322 | ns | 1.59 | 0.1118 | 337 | ns | 0.58 | 0.5586 | |
Yr | 1105 | 219 | 2.05 | 0.0406 | 1178 | ns | −0.83 | 0.4044 | |
Mean temperature | Wi | 7.7 | 2.4 | 7.28 | <0.0001 | 8.1 | 1.8 | 4.47 | <0.0001 |
Sp | 11.2 | 0.8 | 3.09 | 0.0020 | 11.1 | 2.0 | 5.86 | <0.0001 | |
Su | 18.5 | ns | −1.24 | 0.2145 | 18.2 | 1.7 | 4.34 | <0.0001 | |
Au | 14.4 | ns | 1.48 | 0.1392 | 14.4 | 1.5 | 3.81 | 0.0001 | |
Yr | 12.9 | 0.9 | 3.50 | 0.0005 | 13.0 | 1.7 | 5.71 | <0.0001 |
Talassemtane | Tazaot | |
---|---|---|
Latitude (°N) | 35.14 ± 0.006 | 35.26 ± 0.001 |
Longitude (°W) | −5.14 ± 0.001 | −5.10 ± 0.001 |
Elevation (m a.s.l.) | 1652.80 ± 23.890 | 1722.33 ± 10.423 |
Tree age (years) | 221.72 ± 12.274 | 214.95 ± 11.459 |
DBH (cm) | 84.44 ± 3.066 | 73.18 ± 2.821 * |
BAI mean 1900–2018 (cm2) | 28.97 ± 2.109 | 26.07 ± 2.177 |
CV 1900–2018 (%) | 39.60 ± 2.379 | 55.03 ± 5.568 * |
BAI trend 1900–2018 (cm2year−1) | −0.01 ± 0.031 | 0.12 ± 0.042 * |
Within-tree BAI autocorrelation 1900–2018 | 0.71 ± 0.028 | 0.76 ± 0.035 |
Among-trees BAI intercorrelation 1900–2018 | 0.50 ± 0.033 | 0.49 ± 0.074 |
BAI mean 1961–2018 (cm2) | 29.75 ± 2.355 | 31.62 ± 3.124 |
CV 1961–2018 | 31.29 ± 2.232 | 39.92 ± 3.343 * |
BAI trend 1961–2018 (cm2year−1) | −0.25 ± 0.069 | −0.28 ± 0.102 |
Within-tree BAI autocorrelation 1961–2018 | 0.58 ± 0.038 | 0.68 ± 0.030 |
Among-trees BAI intercorrelation 1961–2018 | 0.60 ± 0.039 | 0.53 ± 0.065 |
SNP ID | Sequence Type | Protein Name | Protein Function | E-Value |
---|---|---|---|---|
1127 | Transcribed RNA sequence Abies pinsapo | Formyltetrahydrofolate deformylase 1 (mitochondrial) | Biosynthesis of purines Metabolism of amino acids | 2 × 10−104 |
1369 | mRNA Picea glauca | Disease resistance protein | Pathogen response (viruses, bacteria, or fungi) | 4 × 10−58 |
2458 | mRNA Picea glauca | Peroxidase 5-like | Response to environmental stress, pathogen, and oxidative stress Auxin catabolism Suberization | 5 × 10−65 |
2769 | mRNA Picea glauca | Alpha-D-phospohexomutase superfamily | Catalyze a phosphoryl transfer on sugar substrates | 0.0 |
3755 | Transcribed RNA sequence of Picea glauca | WD-40 repeat family protein | Signal transduction Protein trafficking Transcriptional mechanisms | 2 × 10−5 |
5262 | mRNA Pinus taeda | Clavata 1-like protein | Cell differentiation Meristem structure regulation Peptidyl-serin autophosphorylation | 8 × 10−9 |
5594 | mRNA Picea glauca | LRK1 | Protein phosphorylation | 2 × 10−151 |
Variable Group | Abbreviation | Description (Units) |
---|---|---|
Tree-level growth patterns | Age | Tree age at coring height (years) |
DBH | Tree diameter at 1.3 m from the ground (cm) | |
BAI mean 1900–2018 | Mean basal area increment for the indicated time span (cm2) | |
BAI trend 1900–2018 | Slope of the basal area increment over time (calendar year) for the indicated time span (cm2year−1) | |
Within-tree BAI autocorrelation 1900–2018 | Tree-level first-order autocorrelation of the basal area increment over time (calendar year) for the indicated time span (Pearson’s correlation coefficient) | |
CV 1900–2018 | Tree-level coefficient of variation of the basal area increment (quotient of the standard deviation divided by the mean, multiplied per 100) for the indicated time span (%) | |
Among-trees BAI inter-correlation 1900–2018 | Correlation between the tree-level basal area increment and population mean basal area increment for the indicated time span (Pearson’s correlation coefficient) | |
BAI mean 1961–2018 | As above, for the indicated time span | |
BAI trend 1961–2018 | ||
Within-tree BAI autocorrelation 1961–2018 | ||
CV 1961–2018 | ||
Among-trees BAI inter-correlation 1961–2018 | ||
Tree-level climate sensitivity (Pearson’s correlation coefficient of the tree-level basal area increment and the described climate variable for the time span 1961–2018) | p_sup | Total precipitation (P) of summer (June, July, August) prior to growing season (mm, for all P variables) |
p_aup | P of autumn (September, October, November) prior to growing season | |
p_wi | P of winter (December, January, February) prior to growing season | |
p_sp | P of growing season spring (March, April, May) | |
p_su | P of growing season summer (June, July, August) | |
p_au | P of growing season autumn (September, October, November) | |
p_yr | Total annual precipitation (prior September to current August) | |
t_sup | Mean temperature (T) of summer prior to growing season (°C, for all T variables); seasonal month’s intervals as above | |
t_aup | T of autumn prior to growing season | |
t_wi | T of winter prior to growing season (mm) | |
t_sp | T of growing season spring | |
t_su | T of growing season summer | |
t_au | T of the growing season autumn | |
t_yr | Mean annual T | |
spei_sup | Standardized Precipitation Evapotranspiration Index (SPEI) of summer prior to growing season; seasonal month’s intervals as above | |
spei_aup | SPEI of autumn prior to growing season | |
spei_wi | SPEI of winter prior to growing season (mm) | |
spei_sp | SPEI of growing season spring | |
spei_su | SPEI of growing season summer | |
spei_au | SPEI of growing season autumn | |
spei_yr | Annual SPEI |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Méndez-Cea, B.; García-García, I.; Sánchez-Salguero, R.; Lechuga, V.; Gallego, F.J.; Linares, J.C. Tree-Level Growth Patterns and Genetic Associations Depict Drought Legacies in the Relict Forests of Abies marocana. Plants 2023, 12, 873. https://doi.org/10.3390/plants12040873
Méndez-Cea B, García-García I, Sánchez-Salguero R, Lechuga V, Gallego FJ, Linares JC. Tree-Level Growth Patterns and Genetic Associations Depict Drought Legacies in the Relict Forests of Abies marocana. Plants. 2023; 12(4):873. https://doi.org/10.3390/plants12040873
Chicago/Turabian StyleMéndez-Cea, Belén, Isabel García-García, Raúl Sánchez-Salguero, Víctor Lechuga, Francisco Javier Gallego, and Juan C. Linares. 2023. "Tree-Level Growth Patterns and Genetic Associations Depict Drought Legacies in the Relict Forests of Abies marocana" Plants 12, no. 4: 873. https://doi.org/10.3390/plants12040873
APA StyleMéndez-Cea, B., García-García, I., Sánchez-Salguero, R., Lechuga, V., Gallego, F. J., & Linares, J. C. (2023). Tree-Level Growth Patterns and Genetic Associations Depict Drought Legacies in the Relict Forests of Abies marocana. Plants, 12(4), 873. https://doi.org/10.3390/plants12040873