Leaf Nutrient Status of Commercially Grown Strawberries in Latvia, 2014–2022: A Possible Yield-Limiting Factor
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Study Site and Sampling
3.2. Nutrient Analysis
3.3. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Global Trends, Statistics and Insights for Strawberry. Available online: https://www.nationmaster.com/nmx/sector/strawberry (accessed on 2 December 2022).
- Agriculture of Latvia. Collection of Statistics; Central Statistical Bureau of Latvia: Riga, Latvia, 2022; 85p. [Google Scholar]
- Kalniņa, I.; Strautiņa, S. Analysis of climatic factors in connection with strawberry generative bud development. In Proceedings of the International Scientific Conference Research for Rural Development, Jelgava, Latvia, 21–23 May 2014; Volume 1, pp. 51–55. [Google Scholar]
- Kalnina, I.; Sterne, D.; Strautina, S. Strawberry (Fragaria ananassa) cv. ‘Rumba’ assessment under the northern climatic conditions. Acta Hortic. 2016, 1139, 259–264. [Google Scholar] [CrossRef]
- Kalniņa, I.; Strautiņa, S.; Laugale, V. Strawberry ‘Flair’ and ‘Felicita’ suitability for forcing under high tunnel. Acta Hortic. 2019, 1265, 153–158. [Google Scholar] [CrossRef]
- Kalnina, I.; Strautina, S.; Silina, L.; Laugale, V. The possibilities of strawberry growing under high tunnels in Latvia. Acta Hortic. 2014, 1049, 535–540. [Google Scholar] [CrossRef]
- Laugale, V.; Dane, S.; Lepse, L.; Strautina, S.; Kalnina, I. Influence of low tunnels on strawberry production time and yield. Acta Hortic. 2017, 1156, 573–578. [Google Scholar] [CrossRef]
- Domínguez, A.; Martínez, F.; Allendes, G.; Palencia, P. Evaluation of the nutritional status of strawberry during the production season. Environ. Eng. Manag. J. 2020, 19, 599–607. [Google Scholar]
- Nestby, R.; Lieten, F.; Pivot, D.; Raynal Lacroix, C.; Tagliavini, M. Influence of mineral nutrients on strawberry fruit quality and their accumulation in plant organs. Int. J. Fruit Sci. 2005, 5, 139–156. [Google Scholar] [CrossRef]
- Soppelsa, S.; Kelderer, M.; Casera, C.; Bassi, M.; Robatscher, P.; Matteazzi, A.; Andreotti, C. Foliar applications of biostimulants promote growth, yield and fruit quality of strawberry plants grown under nutrient limitation. Agronomy 2019, 9, 483. [Google Scholar] [CrossRef] [Green Version]
- Duralija, B.; Mikec, D.; Jurić, S.; Lazarević, B.; Maslov Bandić, L.; Vlahoviček-Kahlina, K.; Vinceković, M. Strawberry fruit quality with the increased iron application. Acta Hortic. 2021, 1309, 1033–1040. [Google Scholar] [CrossRef]
- Trejo-Téllez, L.I.; Gómez-Merino, F.C. Nutrient management in strawberry: Effects on yield, quality and plant health. In Strawberries: Cultivation, Antioxidant Properties and Health Benefits; Malone, N., Ed.; Nova Science Publishers: Hauppauge, NY, USA, 2014; pp. 239–267. [Google Scholar]
- Medeiros, R.F.; Pereira, W.E.; Rodrigues, R.M.; Nascimento, R.; Suassuna, J.F.; Dantas, T.A.G. Growth and yield of strawberry plants fertilized with nitrogen and phosphorus. Rev. Bras. Eng. Agric. Ambient. 2015, 19, 865–870. [Google Scholar] [CrossRef] [Green Version]
- Shirko, R.; Nazarideljou, M.J.; Akba, M.A.; Naser, G. Photosynthetic reaction, mineral uptake, and fruit quality of strawberry affected by different levels of macronutrients. J. Plant Nutr. 2018, 41, 1807–1820. [Google Scholar] [CrossRef]
- Nutritional Recommendations for Strawberry. Available online: https://www.haifa-group.com/files/Guides/Strawberry/strawberry.pdf (accessed on 24 May 2022).
- Bottoms, T.G.; Bolda, M.P.; Gaskell, M.L.; Hartz, T.K. Determination of strawberry nutrient optimum ranges through diagnosis and recommendation integrated system analysis. Horttechnology 2013, 23, 312–318. [Google Scholar] [CrossRef] [Green Version]
- Pritts, M.P. Nutrient management practices in perennial strawberry are informed by understanding the relationships among carbohydrate status, nitrogen availability, and soil composition. Horttechnology 2015, 25, 447–451. [Google Scholar] [CrossRef] [Green Version]
- Dixon, E.; Strik, B.; Fernandez-Salvador, J.; DeVetter, L.W. Strawberry Nutrient Management Guide for Oregon and Washington; EM 9234; Oregon State University: Corvallis, OR, USA, 2019. [Google Scholar]
- Niskanen, R.; Dris, R. Nutritional status of strawberry fields. Acta Hortic. 2002, 567, 439–442. [Google Scholar] [CrossRef]
- Kimptom, T. Determine Optimum Nitrogen and Potassium Requirement to Maximise Yield and Quality of Day-Neutral Victorian Strawberries; Final report of Project BS12010; Horticulture Innovations Australia: Sydney, Australia, 2016. [Google Scholar]
- Nollendorfs, V. Strawberry fertilization. Agrotops 2003, 5, 34–37. [Google Scholar]
- Sprogis, K.; Kince, T.; Muizniece-Brasava, S. Investigation of fertilisation impact on fresh strawberries yield and quality parameters. In Proceedings of the 11th Baltic Conference on Food Science and Technology “Food Science and Technology in a Changing World”, Jelgava, Latvia, 27–28 April 2017; pp. 26–129. [Google Scholar]
- Laugale, V.; Dane, S.; Lepse, L.; Strautiņa, S. Fruit quality and resistance of strawberry cultivars and hybrids and the effect of calcite fertilizer. Proc. Latv. Acad. Sci. Sect. B 2017, 71, 198–202. [Google Scholar]
- Laugale, V.; Dane, S.; Strautina, S.; Kalnina, I. Influence of wermicompost on strawberry plant growth and dehydrogenase activity in soil. Agron. Res. 2020, 18, 2742–2751. [Google Scholar]
- Marschner, P. (Ed.) Mineral Nutrition of Higher Plants, 3rd ed.; Academic Press: London, UK, 2012. [Google Scholar]
- Hochmuth, G.; Albregts, E. Fertilization of Strawberries in Florida; IFAS Ext. CIR. 1141; University of Florida: Gainesville, FL, USA, 2019. [Google Scholar]
- Narayan, O.P.; Kumar, P.; Yadav, B.; Dua, M.; Johri, A.K. Sulfur nutrition and its role in plant growth and development. Plant Signal. Behav. 2022, 2030082. [Google Scholar] [CrossRef]
- Tripathi, R.; Tewari, R.; Singh, K.P.; Keswan, i.C.; Minkina, T.; Srivastava, A.K.; De Corato, U.; Sansinenea, E. Plant mineral nutrition and disease resistance: A significant linkage for sustainable crop protection. Front. Plant Sci. 2022, 13, 883970. [Google Scholar] [CrossRef]
- Campbell, C.R.; Miner, G.S. Strawberry, annual hill culture. In Reference Sufficiency Ranges for Plant Analysis in the Southern Region of the United States; Campbell, C.R., Ed.; Southern Region Agricultural Experiment Station: Fayetteville, AR, USA, 2000; Volume 394, pp. 111–112. [Google Scholar]
- Hick, K. Optimize Strawberry Fertility with Plant Tissue Testing. Available online: https://smallfruits.org/2022/04/optimize-strawberry-fertility-with-plant-tissue-testing/ (accessed on 20 December 2022).
- Jamal, A.; Moon, Y.; Abdin, M.Z. Sulphur—A general overview and interaction with nitrogen. Aust. J. Crop Sci. 2010, 4, 523–529. [Google Scholar]
- Liu, S.; Cui, S.; Zhang, X.; Wang, Y.; Mi, G.; Gao, Q. Synergistic regulation of nitrogen and sulfur on redox balance of maize leaves and amino acids balance of grains. Front. Plant Sci. 2020, 11, 576718. [Google Scholar] [CrossRef]
- Zenda, T.; Liu, S.; Dong, A.; Duan, H. Revisiting sulphur—The once neglected nutrient: It’s roles in plant growth, metabolism, stress tolerance and crop production. Agriculture 2021, 11, 626. [Google Scholar] [CrossRef]
- Santos, B.M. Response of strawberries to preplant sulphur fertilization in sandy soils. Int. J. Fruit Sci. 2013, 13, 326–333. [Google Scholar] [CrossRef]
- Aas, W.; Mortier, A.; Bowersox, V.; Cherian, R.; Faluvegi, G.; Fagerli, H.; Hand, J.; Klimont, Z.; Galy-Lacaux, C.; Lehmann, C.M.B.; et al. Global and regional trends of atmospheric sulfur. Sci. Rep. 2019, 9, 953. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, R.; Sharma, R.R.; Tyagi, S.K. Pre-harvest foliar application of calcium and boron influences physiological disorders, fruit yield and quality of strawberry. Sci. Hortic. 2007, 112, 215–220. [Google Scholar] [CrossRef]
- Valentinuzzi, F.; Mason, M.; Scampicchio, M.; Andreotti, C.; Cesco, S.; Mimmo, T. Enhancement of the bioactive compound content in strawberry fruits grown under iron and phosphorus deficiency. J. Sci. Food Agric. 2015, 95, 2088–2094. [Google Scholar] [CrossRef] [PubMed]
- Bieniasz, M.; Małodobry, M.; Dziedzic, E. The effect of foliar fertilization with calcium on quality of strawberry cultivars ‘Luna’ and ‘Zanta’. Acta Hortic. 2012, 926, 457–461. [Google Scholar] [CrossRef]
- Sidhu, R.S.; Singh, N.P.; Singh, S.; Sharda, R. Foliar nutrition with calcium nitrate in strawberries (Fragaria × ananassa Duch.): Effect on fruit quality and yield. Indian J. Ecol. 2020, 47, 87–91. [Google Scholar]
- Vance, A.J.; Jones, P.; Strik, B.C. Foliar calcium applications do not improve quality or shelf life of strawberry, raspberry, blackberry, or blueberry fruit. Hortscience 2017, 52, 382–387. [Google Scholar] [CrossRef]
- Alloway, B.J. Soil factors associated with zinc deficiency in crops and humans. Environ. Geochem. Health 2009, 31, 537–548. [Google Scholar] [CrossRef]
- Valujeva, K.; Nipers, A.; Lupikis, A.; Schulte, R.P.O. Assessment of soil functions: An example of meeting competing national and international obligations by harnessing regional differences. Front. Environ. Sci. 2020, 8, 591695. [Google Scholar] [CrossRef]
- López-Herrera, A.; Castillo-González, A.M.; Trejo-Téllez, L.I.; Avitia-García, E.; Valdez-Aguilar, L.A. Strawberry response cv. Albion at increasing doses of zinc. Rev. Mex. Cienc. Agríc. 2018, 9, 1591–1601. [Google Scholar]
- Bhatti, S.M.; Panhwar, M.A.; Bughio, Z.R.; Sarki, M.S.; Gandahi, A.W.; Wahocho, N.A. Influence of foliar application of zinc on growth, yield and zinc concentration in strawberry. Pakistan J. Agri. Res. 2021, 34, 486–493. [Google Scholar] [CrossRef]
- Mahmood, M.M.; Al-Dulaimy, A.F. Response of strawberry CV Festival to culture media and foliar application of nano and normal micronutrients. IOP Conf. Ser. Earth Environ. Sci. 2021, 904, 012067. [Google Scholar] [CrossRef]
- Prasad, R.; Lisiecka, J.; Kleiber, T. Morphological and yield parameters, dry matter distribution, nutrients uptake, and distribution in strawberry (Fragaria × ananassa Duch.) cv. ‘Elsanta’ as influenced by spent mushroom substrates and planting seasons. Agronomy 2022, 12, 854. [Google Scholar] [CrossRef]
- Tohidloo, G.; Souri, M.K.; Eskandarpour, S. Growth and fruit biochemical characteristics of three strawberry genotypes under different potassium concentrations of nutrient solution. Open Agric. 2018, 3, 356–362. [Google Scholar] [CrossRef]
- Salman, M.; Ullah, S.; Razzaq, K.; Rajwana, I.A.; Akhtar, G.; Faried, H.N.; Hussain, A.; Amin, M.; Khalid, S. Combined foliar application of calcium, zinc, boron and time influence leaf nutrient status, vegetative growth, fruit yield, fruit biochemical and anti-oxidative attributes of “Chandler” strawberry. J. Plant Nutr. 2022, 45, 1837–1848. [Google Scholar] [CrossRef]
- Evans, I.; Solberg, E.; Huber, D.M. Copper and plant diseases. In Mineral Nutrition and Plant Disease; Datnoff, L.E., Elmer, W.H., Huber, D.M., Eds.; APS Press—The American Phytopathological Society: St. Paul, MN, USA, 2007; pp. 177–188. [Google Scholar]
- Sabahat, S.; Abbasi, J.; Mumtaz, S.; Tariq, S.; Imran, M.; Ahmad, M.; Khan, T.N. Role of micronutrients in improving fruit quality and yield of strawberry cv. Chandler under microclimatic conditions. Pak. J. Agri. Res. 2021, 34, 897–904. [Google Scholar] [CrossRef]
- Fageria, V.D. Nutrient interactions in crop plants. J. Plant Nutr. 2001, 24, 1269–1290. [Google Scholar] [CrossRef]
- Fanasca, S.; Rouphael, Y.; Cardarelli, M.; Colla, G. The influence of K:Ca:Mg:Na ratio and total concentration on yield and fruit quality of soilless-grown tomatoes: A modelling approach. Acta Hortic. 2005, 697, 345–350. [Google Scholar] [CrossRef]
- Bonomelli, C.; de Freitas, S.T.; Aguilera, C.; Palma, C.; Garay, R.; Dides, M.; Brossard, N.; O’Brien, J.A. Ammonium excess leads to Ca restrictions, morphological changes, and nutritional imbalances in tomato plants, which can be monitored by the N/Ca ratio. Agronomy 2021, 11, 1437. [Google Scholar] [CrossRef]
- Yu, B.G.; Chen, X.X.; Cao, W.Q.; Liu, Y.M.; Zou, C.Q. Responses in zinc uptake of different mycorrhizal and non-mycorrhizal crops to varied levels of phosphorus and zinc applications. Front. Plant Sci. 2020, 11, 606472. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.M.; Lee, C.W. Influence of elevated phosphorus levels in nutrient solution on micronutrient uptake and deficiency symptom development in strawberry cultured with fertigation system. J. Plant Nutr. 2012, 35, 1349–1358. [Google Scholar] [CrossRef]
- Astolfi, S.; Celletti, S.; Vigani, G.; Mimmo, T.; Cesco, S. Interaction between sulfur and iron in plants. Front. Plant Sci. 2021, 12, 670308. [Google Scholar] [CrossRef] [PubMed]
- Wójcik, P.; Lewandovski, M. Effect of calcium and boron sprays on yield and quality of “Elsanta” strawberry. J. Plant Nutr. 2003, 26, 671–682. [Google Scholar] [CrossRef]
- Kaufmane, E.; Skrīvele, M.; Rubauskis, E.; Strautiņa, S.; Ikase, L.; Lācis, G.; Segliņa, D.; Moročko-Bičevska, I.; Ruisa, S.; Priekule, I. Development of fruit science in Latvia. Proc. Latvian Acad. Sci. Sect. B 2013, 67, 71–83. [Google Scholar] [CrossRef] [Green Version]
- SLLC “Latvian Environment, Geology and Meteorology Centre”. Latvijas Klimats. Available online: https://videscentrs.lvgmc.lv/lapas/latvijas-klimats (accessed on 15 October 2022).
- Cekstere, G.; Osvalde, A.; Elferts, D.; Rose, C.; Lucas, F.; Vollenweider, P. Salt accumulation and effects within foliage of Tilia x vulgaris trees from the street greenery of Riga, Latvia. Sci. Total Environ. 2020, 747, 140921. [Google Scholar] [CrossRef]
2014–2016 n = 46 | 2017–2019 n = 65 | 2020–2022 n = 89 | Nutrient Sufficiency Range 2 | ||||
---|---|---|---|---|---|---|---|
Mean ± SE Range | CV 1 | Mean ± SE Range | CV | Mean ± SE Range | CV | ||
Macronutrients, % | |||||||
N | 2.44 ± 0.10 a 3 | 27.23 | 2.32 ± 0.08 a | 27.86 | 2.62 ± 0.06 a | 21.00 | 2.0–3.0 |
1.33–4.07 | 1.05–3.60 | 1.30–4.70 | |||||
P | 0.30 ± 0.01 a | 31.00 | 0.30 ± 0.01 a | 32.19 | 0.40 ± 0.01 b | 30.11 | 0.2–0.4 |
0.18–0.56 | 0.17–0.68 | 0.20–0.78 | |||||
K | 1.67 ± 0.06 a | 26.27 | 1.55 ± 0.06 a | 29.15 | 1.70 ± 0.05 a | 28.37 | 1.5–2.5 |
0.74–3.10 | 0.84–2.66 | 0.80–2.91 | |||||
Ca | 0.70 ± 0.06 a | 60.00 | 0.68 ± 0.03 a | 37.75 | 0.73 ± 0.03 a | 35.39 | 0.7–2.0 |
0.20–1.82 | 0.23–1.40 | 0.34–1.72 | |||||
Mg | 0.32 ± 0.01 a | 31.03 | 0.32 ± 0.01 a | 25.29 | 0.28 ± 0.01 a | 24.39 | 0.2–0.5 |
0.18–0.54 | 0.19–0.50 | 0.17–0.47 | |||||
S | 0.13 ± 0.01 a | 35.99 | 0.12 ± 0.01 a | 34.05 | 0.15 ± 0.01 a | 42.84 | 0.2–0.8 |
0.05–0.34 | 0.06–0.28 | 0.07–0.50 | |||||
Micronutrients, mg kg−1 | |||||||
Fe | 83.7 ± 5.3 a | 43.09 | 88.1 ± 6.0 a | 55.16 | 85.9 ± 4.2 a | 47.77 | 50–250 |
44–184 | 46–358 | 41–230 | |||||
Mn | 56.3 ± 6.1 a | 73.94 | 77.5 ± 5.8 b | 60.71 | 74.9 ± 8.2 b | 102.88 | 25–200 |
10.6–204.0 | 17–248 | 7.6–480 | |||||
Zn | 18.1 ± 0.9 a | 32.82 | 18.6 ± 0.8 a | 34.13 | 21.6 ± 0.9 b | 37.03 | 20–50 |
9.8–36.0 | 804–40.0 | 9.0–44.0 | |||||
Cu | 3.97 ± 0.21 a | 35.32 | 5.36 ± 0.20 b | 29.96 | 5.93 ± 0.25 b | 39.29 | 6–20 |
2.0–10.2 | 1.0–9.2 | 2.8–14.7 | |||||
Mo | 1.05 ± 0.28 a | 177.67 | 0.78 ± 0.08 a | 86.95 | 1.17 ± 0.15 a | 122.05 | >0.5 |
0.18–10.2 | 0.25–4.8 | 0.20–10.80 | |||||
B | 24.4 ± 1.4 a | 39.70 | 29.1 ± 1.3 b | 34.79 | 38.2 ± 2.5 b | 60.55 | 20–70 |
10–63 | 10–54 | 9–180 |
N | P | K | Ca | Mg | S | Fe | Mn | Zn | Cu | Mo | |
---|---|---|---|---|---|---|---|---|---|---|---|
P | 0.675 * | ||||||||||
K | 0.567 * | 0.639 * | |||||||||
Ca | −0.024 | 0.016 | −0.028 | ||||||||
Mg | 0.338 * | 0.329 * | 0.311 * | 0.650 * | |||||||
S | 0.566 * | 0.552 * | 0.419 * | −0.035 | 0.271 * | ||||||
Fe | 0.259 * | 0.165 | 0.002 | 0.081 | 0.163 | 0.044 | |||||
Mn | 0.136 | 0.104 | 0.108 | 0.116 | 0.078 | 0.024 | 0.148 | ||||
Zn | 0.648 * | 0.680 * | 0.607 * | −0.059 | 0.255 * | 0.536 * | 0.192 * | 0.275 * | |||
Cu | 0.419 * | 0.524 * | 0.311 * | −0.088 | 0.085 | 0.372 * | 0.096 | 0.097 | 0.508 * | ||
Mo | 0.139 | 0.167 | 0.084 | 0.284 * | 0.202 * | 0.031 | 0.172 | 0.142 | 0.086 | −0.112 | |
B | 0.219 * | 0.321 * | 0.253 * | 0.319 * | 0.200 * | 0.259 * | 0.116 | 0.190 * | 0.165 | 0.166 | 0.297 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Osvalde, A.; Karlsons, A.; Cekstere, G.; Āboliņa, L. Leaf Nutrient Status of Commercially Grown Strawberries in Latvia, 2014–2022: A Possible Yield-Limiting Factor. Plants 2023, 12, 945. https://doi.org/10.3390/plants12040945
Osvalde A, Karlsons A, Cekstere G, Āboliņa L. Leaf Nutrient Status of Commercially Grown Strawberries in Latvia, 2014–2022: A Possible Yield-Limiting Factor. Plants. 2023; 12(4):945. https://doi.org/10.3390/plants12040945
Chicago/Turabian StyleOsvalde, Anita, Andis Karlsons, Gunta Cekstere, and Laura Āboliņa. 2023. "Leaf Nutrient Status of Commercially Grown Strawberries in Latvia, 2014–2022: A Possible Yield-Limiting Factor" Plants 12, no. 4: 945. https://doi.org/10.3390/plants12040945
APA StyleOsvalde, A., Karlsons, A., Cekstere, G., & Āboliņa, L. (2023). Leaf Nutrient Status of Commercially Grown Strawberries in Latvia, 2014–2022: A Possible Yield-Limiting Factor. Plants, 12(4), 945. https://doi.org/10.3390/plants12040945