Contrasting Dynamics of Littoral and Riparian Reed Stands within a Wetland Complex of Lake Cerknica
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Environmental Variables
2.3. Satellite Imagery and NDVI Dataset
2.4. NDVI Growth Model
2.5. Biomass at the End of the Reproductive Phase
2.6. Redundancy Analysis
3. Results
3.1. The 2017 Growing Season
3.2. The 2018 Growing Season
3.3. The 2019 Growing Season
3.4. The 2020 Growing Season
3.5. The 2021 Growing Season
3.6. The Relationship between Environmental Parameters, Model Parameters and Above-Ground Biomass (AGB)
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Eller, F.; Skálová, H.; Caplan, J.S.; Bhattarai, G.P.; Burger, M.K.; Cronin, J.T.; Guo, W.-Y.; Guo, X.; Hazelton, E.L.G.; Kettenring, K.M.; et al. Cosmopolitan Species as Models for Ecophysiological Responses to Global Change: The Common Reed Phragmites australis. Front. Plant Sci. 2017, 8, 1833. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuprina, K.; Seeber, E.; Schnittler, M.; Landeau, R.; Lambertini, C.; Bog, M. Genetic Diversity of Common Reed in the Southern Baltic Sea Region—Is There an Influence of Disturbance? Aquat. Bot. 2022, 177, 103471. [Google Scholar] [CrossRef]
- Soetaert, K.; Hoffmann, M.; Meire, P.; Starink, M.; van Oevelen, D.; Van Regenmortel, S.; Cox, T. Modeling Growth and Carbon Allocation in Two Reed Beds (Phragmites australis) in the Scheldt Estuary. Aquat. Bot. 2004, 79, 211–234. [Google Scholar] [CrossRef]
- Ji, L.; Wylie, B.K.; Nossov, D.R.; Peterson, B.; Waldrop, M.P.; McFarland, J.W.; Rover, J.; Hollingsworth, T.N. Estimating Aboveground Biomass in Interior Alaska with Landsat Data and Field Measurements. Int. J. Appl. Earth Obs. Geoinf. 2012, 18, 451–461. [Google Scholar] [CrossRef]
- Dolinar, N.; Regvar, M.; Abram, D.; Gaberščik, A. Water-Level Fluctuations as a Driver of Phragmites australis Primary Productivity, Litter Decomposition, and Fungal Root Colonisation in an Intermittent Wetland. Hydrobiologia 2016, 774, 69–80. [Google Scholar] [CrossRef]
- Tóth, V.R. Reed Stands during Different Water Level Periods: Physico-Chemical Properties of the Sediment and Growth of Phragmites australis of Lake Balaton. Hydrobiologia 2016, 778, 193–207. [Google Scholar] [CrossRef] [Green Version]
- Vretare, V.; Weisner, S.E.B. Influence of Pressurized Ventilation on Performance of an Emergent Macrophyte (Phragmites australis). J. Ecol 2000, 88, 978–987. [Google Scholar] [CrossRef]
- Vretare Strand, V.; Weisner, S.E. Interactive Effects of Pressurized Ventilation, Water Depth and Substrate Conditions on Phragmites australis. Oecologia 2002, 131, 490–497. [Google Scholar] [CrossRef]
- Armstrong, J.; Armstrong, W.; Beckett, P.M. Phragmites australis: Venturi- and Humidity-Induced Pressure Flows Enhance Rhizome Aeration and Rhizosphere Oxidation. New Phytol. 1992, 120, 197–207. [Google Scholar] [CrossRef]
- Engloner, A.I. Structure, Growth Dynamics and Biomass of Reed (Phragmites australis)—A Review. Flora Morphol. Distrib. Funct. Ecol. 2009, 204, 331–346. [Google Scholar] [CrossRef]
- Armstrong, J.; Armstrong, W.; Armstrong, I.B.; Pittaway, G.R. Senescence, and Phytotoxin, Insect, Fungal and Mechanical Damage: Factors Reducing Convective Gas-Flows in Phragmites australis. Aquat. Bot. 1996, 54, 211–226. [Google Scholar] [CrossRef]
- Koppitz, H.; Dewender, M.; Ostendorp, W.; Schmieder, K. Amino Acids as Indicators of Physiological Stress in Common Reed Phragmites australis Affected by an Extreme Flood. Aquat. Bot. 2004, 79, 277–294. [Google Scholar] [CrossRef] [Green Version]
- Tomasek, A.A.; Hondzo, M.; Kozarek, J.L.; Staley, C.; Wang, P.; Lurndahl, N.; Sadowsky, M.J. Intermittent Flooding of Organic-rich Soil Promotes the Formation of Denitrification Hot Moments and Hot Spots. Ecosphere 2019, 10, e02549. [Google Scholar] [CrossRef]
- Kumar, L.; Mutanga, O. Remote Sensing of Above-Ground Biomass. Remote Sens. 2017, 9, 935. [Google Scholar] [CrossRef] [Green Version]
- Santin-Janin, H.; Garel, M.; Chapuis, J.-L.; Pontier, D. Assessing the Performance of NDVI as a Proxy for Plant Biomass Using Non-Linear Models: A Case Study on the Kerguelen Archipelago. Polar Biol. 2009, 32, 861–871. [Google Scholar] [CrossRef]
- Misra, G.; Cawkwell, F.; Wingler, A. Status of Phenological Research Using Sentinel-2 Data: A Review. Remote Sens. 2020, 12, 2760. [Google Scholar] [CrossRef]
- Lumbierres, M.; Méndez, P.; Bustamante, J.; Soriguer, R.; Santamaría, L. Modeling Biomass Production in Seasonal Wetlands Using MODIS NDVI Land Surface Phenology. Remote Sens. 2017, 9, 392. [Google Scholar] [CrossRef] [Green Version]
- Rupasinghe, P.A.; Chow-Fraser, P. Identification of Most Spectrally Distinguishable Phenological Stage of Invasive Phramites australis in Lake Erie Wetlands (Canada) for Accurate Mapping Using Multispectral Satellite Imagery. Wetl. Ecol. Manag. 2019, 27, 513–538. [Google Scholar] [CrossRef]
- Yan, J.; Zhang, G.; Ling, H.; Han, F. Comparison of Time-Integrated NDVI and Annual Maximum NDVI for Assessing Grassland Dynamics. Ecol. Indic. 2022, 136, 108611. [Google Scholar] [CrossRef]
- Huang, S.; Tang, L.; Hupy, J.P.; Wang, Y.; Shao, G. A Commentary Review on the Use of Normalized Difference Vegetation Index (NDVI) in the Era of Popular Remote Sensing. J. For. Res. 2021, 32, 1–6. [Google Scholar] [CrossRef]
- Zhu, X.; Liu, D. Improving Forest Aboveground Biomass Estimation Using Seasonal Landsat NDVI Time-Series. ISPRS J. Photogramm Remote Sens. 2015, 102, 222–231. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Camarero, J.J.; Olano, J.M.; Martín-Hernández, N.; Peña-Gallardo, M.; Tomás-Burguera, M.; Gazol, A.; Azorin-Molina, C.; Bhuyan, U.; el Kenawy, A. Diverse Relationships between Forest Growth and the Normalized Difference Vegetation Index at a Global Scale. Remote Sens. Environ. 2016, 187, 14–29. [Google Scholar] [CrossRef] [Green Version]
- Chávez, R.O.; Clevers, J.G.P.W.; Decuyper, M.; de Bruin, S.; Herold, M. 50 Years of Water Extraction in the Pampa Del Tamarugal Basin: Can Prosopis tamarugo Trees Survive in the Hyper-Arid Atacama Desert (Northern Chile)? J. Arid. Environ. 2016, 124, 292–303. [Google Scholar] [CrossRef]
- Dong, X.; Peng, B.; Sieckenius, S.; Raman, R.; Conley, M.M.; Leskovar, D.I. Leaf Water Potential of Field Crops Estimated Using NDVI in Ground-Based Remote Sensing—Opportunities to Increase Prediction Precision. PeerJ 2021, 9, e12005. [Google Scholar] [CrossRef] [PubMed]
- Pan, Z.; Huang, J.; Zhou, Q.; Wang, L.; Cheng, Y.; Zhang, H.; Blackburn, G.A.; Yan, J.; Liu, J. Mapping Crop Phenology Using NDVI Time-Series Derived from HJ-1 A/B Data. Int. J. Appl. Earth Obs. Geoinf. 2015, 34, 188–197. [Google Scholar] [CrossRef] [Green Version]
- Tóth, V.R. Monitoring Spatial Variability and Temporal Dynamics of Phragmites Using Unmanned Aerial Vehicles. Front. Plant. Sci. 2018, 9, 728. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Badr, G.; Hoogenboom, G.; Davenport, J.; Smithyman, J. Estimating Growing Season Length Using Vegetation Indices Based on Remote Sensing: A Case Study for Vineyards in Washington State. Trans. ASABE 2015, 3, 551–564. [Google Scholar] [CrossRef]
- Chen, S.; Johnson, F.; Glamore, W. Integrating Remote Sensing and Numerical Modeling to Quantify the Water Balance of Climate-induced Intermittent Wetlands. Water Resour Res. 2021, 57, e2020WR029310. [Google Scholar] [CrossRef]
- Dolinar, N.; Rudolf, M.; Šraj, N.; Gaberščik, A. Environmental Changes Affect Ecosystem Services of the Intermittent Lake Cerknica. Ecol. Complex. 2010, 7, 403–409. [Google Scholar] [CrossRef]
- Dolinar, N.; Šraj, N.; Gaberščik, A. Water Regime Changes and the Function of an Intermittent Wetland. In Water and Nutrient Management in Natural and Constructed Wetlands; Springer Netherlands: Dordrecht, The Netherlands, 2011; pp. 251–262. ISBN 978-90-481-9584-8. [Google Scholar]
- Casanova, M.T.; Brock, M.A. How Do Depth, Duration and Frequency of Flooding Influence the Establishment of Wetland Plant Communities? Plant. Ecol. 2000, 147, 237–250. [Google Scholar] [CrossRef]
- Gaberščik, A.; Krek, J.L.; Zelnik, I. Habitat Diversity along a Hydrological Gradient in a Complex Wetland Results in High Plant Species Diversity. Ecol. Eng. 2018, 118, 84–92. [Google Scholar] [CrossRef]
- Gaberščik, A. (Ed.) Urbanc-Berčič Olga Water Level Fluctuations—Driving Force and Limiting Factor. In The Vanishing Lake—Monograph on Lake Cerknica; Društvo Ekologov Slovenije: Ljubljana, Slovenia, 2003; pp. 51–57. [Google Scholar]
- Kranjc, A. Geology and Geomorphology. In The Vanishing Lake—Monograph on Lake Lake Cerknica; Gaberščik, A., Ed.; Društvo Ekologov Slovenije: Ljubljana, Slovenia, 2003; pp. 18–26. [Google Scholar]
- Krzyk, M.; Drev, D.; Kolbl, S.; Panjan, J. Self-Purification Processes of Lake Cerknica as a Combination of Wetland and SBR Reactor. Environ. Sci. Pollut. Res. 2015, 22, 20177–20185. [Google Scholar] [CrossRef]
- Gaberščik, A.; Urbanc-Berčič, O. Monitoring Approach to Evaluate Water Quality of Intermittent Lake Cerknica. Water Sci. Technol. 1996, 33, 357–362. [Google Scholar] [CrossRef]
- Gaberščik, A.; Urbanc-Berčič, O.; Kržič, N.; Kosi, G.; Brancelj, A. The Intermittent Lake Cerknica: Various Faces of the Same Ecosystem. Lake Reserv. Manag. 2003, 8, 159–168. [Google Scholar] [CrossRef]
- Gaberščik, A.; Grašič, M.; Abram, D.; Zelnik, I. Water Level Fluctuations and Air Temperatures Affect Common Reed Habitus and Productivity in an Intermittent Wetland Ecosystem. Water 2020, 12, 2806. [Google Scholar] [CrossRef]
- Lu, L.; Luo, J.; Xin, Y.; Duan, H.; Sun, Z.; Qiu, Y.; Xiao, Q. How Can UAV Contribute in Satellite-Based Phragmites australis Aboveground Biomass Estimating? Int. J. Appl. Earth Obs. Geoinf. 2022, 114, 103024. [Google Scholar] [CrossRef]
- Luo, S.; Wang, C.; Xi, X.; Pan, F.; Qian, M.; Peng, D.; Nie, S.; Qin, H.; Lin, Y. Retrieving Aboveground Biomass of Wetland Phragmites australis (Common Reed) Using a Combination of Airborne Discrete-Return LiDAR and Hyperspectral Data. Int. J. Appl. Earth Obs. Geoinf. 2017, 58, 107–117. [Google Scholar] [CrossRef]
- Du, Y.; Wang, J.; Lin, Y.; Liu, Z.; Yu, H.; Yi, H. Estimating the Aboveground Biomass of Phragmites australis (Common Reed) Based on Multi-Source Data. In Proceedings of the IGARSS 2018—2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 9241–9244. [Google Scholar]
- Schmieder, K.; Dienst, M.; Ostendorp, W.; Jöhnk, K. Effects of Water Level Variations on the Dynamics of the Reed Belts of Lake Constance. Ecohydrol. Hydrobiol. 2004, 4, 469–480. [Google Scholar]
- Yi, Y.; Xie, H.; Yang, Y.; Zhou, Y.; Yang, Z. Suitable Habitat Mathematical Model of Common Reed (Phragmites australis) in Shallow Lakes with Coupling Cellular Automaton and Modified Logistic Function. Ecol. Modell. 2020, 419, 108938. [Google Scholar] [CrossRef]
- Ostendorp, W. Damage by Episodic Flooding to Phragmites Reeds in a Prealpine Lake: Proposal of a Model. Oecologia 1991, 86, 119–124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Urbanc-Berčič, O.; Gaberščik, A. The Influence of Water Table Fluctuations on Nutrient Dynamics in the Rhizosphere of Common Reed (Phragmites australis). Water Sci. Technol. 2001, 44, 245–250. [Google Scholar] [CrossRef] [PubMed]
- Björn, L.O.; Middleton, B.A.; Germ, M.; Gaberščik, A. Ventilation Systems in Wetland Plant Species. Diversity 2022, 14, 517. [Google Scholar] [CrossRef]
- Deegan, B.M.; White, S.D.; Ganf, G.G. The Influence of Water Level Fluctuations on the Growth of Four Emergent Macrophyte Species. Aquat. Bot. 2007, 86, 309–315. [Google Scholar] [CrossRef]
- Vega, A.; O’Brien, J.A.; Gutiérrez, R.A. Nitrate and Hormonal Signaling Crosstalk for Plant Growth and Development. Curr. Opin. Plant Biol. 2019, 52, 155–163. [Google Scholar] [CrossRef]
- Chu, X.; Yang, L.; Wang, S.; Liu, J.; Yang, H. Physiological and Metabolic Profiles of Common Reed Provide Insights into Plant Adaptation to Low Nitrogen Conditions. Biochem. Syst. Ecol. 2017, 73, 3–10. [Google Scholar] [CrossRef]
- Rickey, M.A.; Anderson, R.C. Effects of Nitrogen Addition on the Invasive Grass Phragmites australis and a Native Competitor Spartina pectinata. J. Appl. Eco. 2004, 41, 888–896. [Google Scholar] [CrossRef]
- Zemlin, R. Effects of Seasonal Temperature on Shoot Growth Dynamics and Shoot Morphology of Common Reed (Phragmites australis). Wetl. Ecol. Manag. 2000, 8, 447–457. [Google Scholar] [CrossRef]
- Eller, F.; Lambertini, C.; Nguyen, L.X.; Achenbach, L.; Brix, H. Interactive Effects of Elevated Temperature and CO2 on Two Phylogeographically Distinct Clones of Common Reed (Phragmites australis). AoB Plants 2013, 5, pls051. [Google Scholar] [CrossRef]
- Nechwatal, J.; Wielgoss, A.; Mendgen, K. Flooding Events and Rising Water Temperatures Increase the Significance of the Reed Pathogen Pythium phragmitis as a Contributing Factor in the Decline of Phragmites australis. In Ecological Effects of Water-Level Fluctuations in Lakes; Springer Netherlands: Dordrecht, The Netherlands, 2008; pp. 109–115. [Google Scholar]
- Pagter, M.; Bragato, C.; Brix, H. Tolerance and Physiological Responses of Phragmites australis to Water Deficit. Aquat. Bot. 2005, 81, 285–299. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Gao, H.; Li, Y.H.; Wang, L.; Kong, D.S.; Guo, Y.Y.; Yan, F.; Wang, Y.W.; Lu, K.; Tian, J.W.; et al. Effect of Water Stress on Photosynthesis, Chlorophyll Fluorescence Parameters and Water Use Efficiency of Common Reed in the Hexi Corridor. Russ. J. Plant Physiol. 2019, 66, 556–563. [Google Scholar] [CrossRef]
- Tóth, V.R.; Szabó, K. Morphometric Structural Analysis of Phragmites australis Stands in Lake Balaton. Ann. Limnol. 2012, 48, 241–251. [Google Scholar] [CrossRef] [Green Version]
- Linderholm, H.W. Growing Season Changes in the Last Century. Agric. For. Meteorol. 2006, 137, 1–14. [Google Scholar] [CrossRef]
- Zhou, L.; Tucker, C.J.; Kaufmann, R.K.; Slayback, D.; Shabanov, N.V.; Myneni, R.B. Variations in Northern Vegetation Activity Inferred from Satellite Data of Vegetation Index during 1981 to 1999. J. Geophys. Res. Atmos. 2001, 106, 20069–20083. [Google Scholar] [CrossRef]
- Gong, D.-Y. Detection of Large-Scale Climate Signals in Spring Vegetation Index (Normalized Difference Vegetation Index) over the Northern Hemisphere. J. Geophys. Res. 2003, 108, 4498. [Google Scholar] [CrossRef]
- Wang, C.; Fu, B.; Zhang, L.; Xu, Z. Soil Moisture–Plant Interactions: An Ecohydrological Review. J. Soils Sediments 2019, 19, 1–9. [Google Scholar] [CrossRef]
- Asbjornsen, H.; Goldsmith, G.R.; Alvarado-Barrientos, M.S.; Rebel, K.; van Osch, F.P.; Rietkerk, M.; Chen, J.; Gotsch, S.; Tobon, C.; Geissert, D.R.; et al. Ecohydrological Advances and Applications in Plant-Water Relations Research: A Review. J. Plant Ecol. 2011, 4, 3–22. [Google Scholar] [CrossRef]
- Liu, L.; Gudmundsson, L.; Hauser, M.; Qin, D.; Li, S.; Seneviratne, S.I. Soil Moisture Dominates Dryness Stress on Ecosystem Production Globally. Nat. Commun. 2020, 11, 4892. [Google Scholar] [CrossRef]
Data | Measuring Station | Corresponding Stand |
---|---|---|
Water level data | Dolenje Jezero (45.765512, 14.361263) | Littoral stand (Zadnji kraj) |
Gorenje Jezero (45.728317, 14.404899) | Riparian stand (Gorenje Jezero) | |
Temperature data | Postojna (45.766049, 14.193119) | Both stands |
Correlation between Variables | p-Value | Correlation Coefficient |
---|---|---|
AGB and mNDVImax | 0.875 | 0.026 |
AGB and rNDVImax | 0.028 | 0.347 |
Location | Season | GS | rNDVImax | mNDVImax | GRmax | α | AGB (g/m2) |
---|---|---|---|---|---|---|---|
Riparian stand Gorenje Jezero | 2017 | 2017-04-25 | 0.855 ab ± 0.003 | 0.856 abc ± 0.027 | 2017-05-05 | 0.217 a ± 0.032 | 594.3 ab ± 125.7 |
2018 | 2018-04-24 | 0.880 a ± 0.005 | 0.866 abc ± 0.005 | 2018-05-02 | 0.136 ab ± 0.002 | 625.6 ab ± 102.5 | |
2019 | 2019-04-12 | 0.867 ab ± 0.004 | 0.857 abc ± 0.011 | 2019-04-29 | 0.067 abcd ± 0.002 | 804.3 a ± 241.2 | |
2020 | 2020-04-19 | 0.889 a ± 0.001 | 0.877 ab ± 0.025 | 2020-05-06 | 0.08 abc ± 0.007 | 761.4 ab ± 282.2 | |
2021 | 2021-05-02 | 0.853 abc ± 0.006 | 0.874 ab ± 0.017 | 2021-05-23 | 0.07 abc ±0.004 | 867.4 a ± 239.5 | |
Littoral stand Zadnji kraj | 2017 | 2017-04-28 | 0.854 abc ± 0.013 | 0.868 abc ± 0.07 | 2017-05-26 | 0.034 d ± 0.006 | 366.9 ab ± 29.8 |
2018 | 2018-04-26 | 0.764 bc ± 0.034 | 0.747 c ± 0.006 | 2018-05-13 | 0.045 cd ± 0.001 | 390 ab ± 147.4 | |
2019 | 2019-06-05 | 0.849 abc ± 0.019 | 0.893 a ± 0.003 | 2019-06-24 | 0.05 bcd ± 0.001 | 215.3 b ± 36.4 | |
2020 | 2020-05-15 | 0.617 c ± 0.092 | 0.648 c ± 0.006 | 2020-06-07 | 0.035 d ± 0.001 | 476.5 ab ± 141.2 | |
2021 | 2021-05-30 | 0.805 bc ± 0.032 | 0.813 bc ± 0.015 | 2021-06-22 | 0.046 cd ± 0.002 | 534.6 ab ± 164.7 |
Group Variables | Variable | % of Explained Variance |
---|---|---|
Water level—flood | FD3 | 10.8 |
FD2 | 28.6 | |
FD1 | 5.7 | |
Water level—dry | DD3 | 9.9 |
DD1 | 7.5 | |
Temperatures | AvgT1 | 7.4 |
AvgT1max | 4.2 | |
AvgT2 | 5 | |
AvgT2max | 8.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ojdanič, N.; Zelnik, I.; Holcar, M.; Gaberščik, A.; Golob, A. Contrasting Dynamics of Littoral and Riparian Reed Stands within a Wetland Complex of Lake Cerknica. Plants 2023, 12, 1006. https://doi.org/10.3390/plants12051006
Ojdanič N, Zelnik I, Holcar M, Gaberščik A, Golob A. Contrasting Dynamics of Littoral and Riparian Reed Stands within a Wetland Complex of Lake Cerknica. Plants. 2023; 12(5):1006. https://doi.org/10.3390/plants12051006
Chicago/Turabian StyleOjdanič, Nik, Igor Zelnik, Matej Holcar, Alenka Gaberščik, and Aleksandra Golob. 2023. "Contrasting Dynamics of Littoral and Riparian Reed Stands within a Wetland Complex of Lake Cerknica" Plants 12, no. 5: 1006. https://doi.org/10.3390/plants12051006
APA StyleOjdanič, N., Zelnik, I., Holcar, M., Gaberščik, A., & Golob, A. (2023). Contrasting Dynamics of Littoral and Riparian Reed Stands within a Wetland Complex of Lake Cerknica. Plants, 12(5), 1006. https://doi.org/10.3390/plants12051006