Production of Two Isomers of Sphaeralcic Acid in Hairy Roots from Sphaeralcea angustifolia
Abstract
:1. Introduction
2. Results and Discussion
2.1. S. angustifolia Hairy Root Cultures
Scopoletin and Sphaeralcic Acid Production
2.2. Chemical Profiles of Dichloromethane–Methanol Extracts from S. angustifolia Hairy Roots Lines
2.2.1. Stigmasterol and β-Sitosterol Identification
2.2.2. Isolation and Identification of Iso-Sphaeralcic Acid (6) and 8-Methyl-Iso-Sphaeralcic Acid (7)
2.3. Gastroprotector Effect of Dichloromethane–Methanol Extracts from SaTRN7.1 Hairy Roots Line of S. angustifolia
3. Materials and Methods
3.1. S. angustifolia Hairy Root Cultures
3.2. Chemical Profiles of Dichloromethane–Methanol Extracts from S. angustifolia Hairy Roots Lines
3.2.1. Extract Preparation of Hairy Root Lines
3.2.2. Quantification of Scopoletin and Sphaeralcic Acid
3.2.3. HPLC Conditions
3.2.4. Isolation of Compounds from the SaTRN12.2 (Line 1) and SaTRN7.1 (Line 2) Hairy Roots
3.2.5. NMR Equipment and Masses
3.3. Gastric Ulcers Induced with Absolute Ethanol in Mice
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aguilar, A.; Camacho, R.; Chino, S. Herbario Medicinal del Instituto Mexicano del Seguro Social; Instituto Mexicano del Seguro Social: Mexico City, Mexico, 1994; Volume 1, pp. 30–35.
- Argueta, V.A.; Cano, L.; Rodarte, M. Atlas de Las Plantas de la Medicina Tradicional Mexicana; Instituto Nacional Indigenista (INI): Mexico City, Mexico, 1994; Volumen III. [Google Scholar]
- Meckes-Fischer, M.; Nicasio-torres, P. The Journey of a Medicinal Plant throughout Science: Sphaeralcea angustifoilia (Cav.) G. Don (Malvaceae). Plants 2023, 12, 321. [Google Scholar] [CrossRef]
- Meckes, M.; David-Rivera, A.D.; Nava-Aguilar, V.; Jimenez, A. Activity of Some Mexican Medicinal Plant Extracts on Carrageenan-Induced Rat Paw Edema. Phytomedicine 2004, 11, 446–451. [Google Scholar] [CrossRef]
- Juárez-Ciriaco, M.; Román-Ramos, R.; González-Márquez, H.; Meckes-Fischer, M. Efecto de Sphaeralcea angustifolia Sobre La Expresión de Citocinas pro y Antiinflamatorias. LabCiencia 2008, 2, 21–23. [Google Scholar]
- García-Rodríguez, R.V.; Chamorro Cevallos, G.; Siordia, G.; Jiménez-Arellanes, M.A.; Chávez-Soto, M.A.; Meckes-Fischer, M. Sphaeralcea angustifolia (Cav.) G. Don Extract, a Potential Phytomedicine to Treat Chronic Inflammation. Bol. Latinoam. Caribe Plantas Med. Aromat. 2012, 11, 454–463. [Google Scholar]
- Romero-Cerecero, O.; Meckes-Fischer, M.; Zamilpa, A.; Enrique Jiménez-Ferrer, J.; Nicasio-Torres, P.; Pérez-García, D.; Tortoriello, J. Clinical Trial for Evaluating the Effectiveness and Tolerability of Topical Sphaeralcea angustifolia Treatment in Hand Osteoarthritis. J. Ethnopharmacol. 2013, 147, 467–473. [Google Scholar] [CrossRef]
- Jain, D.C.; Pant, N.; Gupta, M.M.; Bhakuni, R.S.; Verma, R.K.; Tandon, S.; Kumar, S. Process for the Isolation of Compound Scopoletin Useful as Nitric Oxide Synthesis Inhibitor. U.S. Patent 6 337 095, 8 January 2002. [Google Scholar]
- Ding, Z.; Dai, Y.; Hao, H.; Pan, R.; Yao, X.; Wang, Z. Anti-Inflammatory Effects of Scopoletin and Underlying Mechanisms. Pharm. Biol. 2008, 46, 854–860. [Google Scholar] [CrossRef]
- Moon, P.D.; Lee, B.H.; Jeong, H.J.; An, H.J.; Park, S.J.; Kim, H.R.; Ko, S.G.; Um, J.Y.; Hong, S.H.; Kim, H.M. Use of Scopoletin to Inhibit the Production of Inflammatory Cytokines through Inhibition of the IκB/NF-ΚB Signal Cascade in the Human Mast Cell Line HMC-1. Eur. J. Pharmacol. 2007, 555, 218–225. [Google Scholar] [CrossRef]
- Gwak, M.K.; Choi, H.S.; Manochai, B.; Hong, J.H. Extraction procedures for free radical scavenging activity from Noni fruit (Morinda citrifolia). Korean J. Med. Crop Sci. 2011, 19, 38–46. [Google Scholar] [CrossRef] [Green Version]
- Shaw, C.Y.; Chen, C.H.; Hsu, C.C.; Chen, C.C.; Tsai, Y.C. Antioxidant Properties of Scopoletin Isolated from Sinomonium acutum. Phyther. Res. 2003, 17, 823–825. [Google Scholar] [CrossRef]
- Kim, H.J.; Jang, S.I.; Kim, Y.J.; Chung, H.T.; Yun, Y.G.; Kang, T.H.; Jeong, O.S.; Kim, Y.C. Scopoletin Suppresses Pro-Inflammatory Cytokines and PGE2 from LPS-Stimulated Cell Line, RAW 264.7 Cells. Fitoterapia 2004, 75, 261–266. [Google Scholar] [CrossRef]
- Deng, S.; Palu, K.; West, B.J.; Su, C.X.; Zhou, B.N.; Jensen, J.C. Lipoxygenase Inhibitory Constituents of the Fruits of Noni (Morinda citrifolia) Collected in Tahiti. Nat. Prod. 2007, 70, 859–862. [Google Scholar] [CrossRef]
- Pan, R.; Dai, Y.; Yang, J.; Li, Y.; Yao, X.; Xia, Y. Anti-Angiogenic Potential of Scopoletin Is Associated with the Inhibition of ERK1/2 Activation. Drug Dev. Res. 2009, 70, 214–219. [Google Scholar] [CrossRef]
- Thani, W.; Vallisuta, O.; Siripong, P.; Ruangwises, N. Anti-Proliferative and Antioxidative Activities of Thai Noni/Yor (Morinda citrifolia Linn.) Leaf Extract. Southeast. Asian J. Trop. Med. Public Health 2010, 41, 482–489. [Google Scholar]
- Mahattanadul, S.; Ridtitid, W.; Nima, S.; Phdoongsombut, N.; Ratanasuwon, P.; Kasiwong, S. Effects of Morinda citrifolia Aqueous Fruit Extract and Its Biomarker Scopoletin on Reflux Esophagitis and Gastric Ulcer in Rats. J. Ethnopharmacol. 2011, 134, 243–250. [Google Scholar] [CrossRef]
- Pérez-Hernández, J.; González-Cortazar, M.; Marquina, S.; Herrera-Ruiz, M.; Meckes-Fischer, M.; Tortoriello, J.; Cruz-Sosa, F.; Nicasio-Torres, M.D.P. Sphaeralcic Acid and Tomentin, Anti-Inflammatory Compounds Produced in Cell Suspension Cultures of Sphaeralcea angustifolia. Planta Med. 2014, 80, 209–214. [Google Scholar] [CrossRef] [Green Version]
- Nicasio-Torres, M.P.; Pérez-Hernández, J.; González-Cortazar, M.; Meckes-Fischer, M.; Tortoriello, J.; Cruz-Sosa, F. Production of Potential Anti-Inflammatory Compounds in Cell Suspension Cultures of Sphaeralcea angustifolia (Cav.) G. Don. Acta Physiol. Plant. 2016, 38, 209. [Google Scholar] [CrossRef]
- Pérez-Hernández, J.; Martínez-Trujillo, A.; Nicasio-Torres, P. Optimization of Active Compounds Production by Interaction between Nitrate and Copper in Sphaeralcea angustifolia Cell Suspension Using Response Surface Methodology. Plant. Cell Tissue Organ. Cult. 2019, 136, 407–413. [Google Scholar] [CrossRef]
- Pérez-Hernández, J.; Nicasio-Torres, M.d.P.; Sarmiento-López, L.G.; Rodríguez-Monroy, M. Production of Anti-Inflammatory Compounds in Sphaeralcea angustifolia Cell Suspension Cultivated in Stirred Tank Bioreactor. Eng. Life Sci. 2019, 19, 196–205. [Google Scholar] [CrossRef] [Green Version]
- Nicasio-Torres, M.P.; Serrano-Román, J.; Pérez-Hernández, J.; Jiménez-Ferrer, E.; Herrera-Ruiz, M. Effect of Dichloromethane-Methanol Extract and Tomentin Obtained from Sphaeralcea angustifolia Cell Suspensions in a Model of Kaolin/Carrageenan-Induced Arthritis. Planta Medica Int. Open 2017, 4, e35–e42. [Google Scholar]
- Serrano-Román, J. Caracterización Farmacológica de Tomentina y Ácido Sphaerálcico Aislados de Suspensiones Celulares de Sphaeralcea angustifolia en un Modelo de Artritis Experimental. Master’s Thesis, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico, 2015. [Google Scholar]
- Reyes-Pérez, R.; Herrera-Ruiz, M.; Perea-Arango, I.; Martínez-Morales, F.; De Jesús Arellano García, J.; Nicasio-Torres, P. Anti-Inflammatory Compounds Produced in Hairy Roots Culture of Sphaeralcea angustifolia. Plant. Cell Tissue Organ. Cult. 2022, 149, 351–361. [Google Scholar] [CrossRef]
- Peñaloza-Atuesta, G.; Peláez-Jaramillo, C. Aislamiento Del Estigmasterol de Las Semillas de Crotalaria juncea L. (Cascabelito) y Su Bioactividad Sobre Drosophila melanogaster. Rev. Cuba. Plant. Med. 2017, 22, 3. Available online: https://revplantasmedicinales.sld.cu/index.php/pla/article/view/537/261 (accessed on 15 December 2022).
- Miao, G.P.; Han, J.; Zhang, J.F.; Zhu, C.S.; Zhang, X. A MDR Transporter Contributes to the Different Extracellular Production of Sesquiterpene Pyridine Alkaloids between Adventitious Root and Hairy Root Liquid Cultures of Tripterygium wilfordii Hook.F. Plant. Mol. Biol. 2017, 95, 51–62. [Google Scholar] [CrossRef] [PubMed]
- Faraz, R.; Gokhale, M. Hairy Root Culture Through Agrobacterium rhizogenes for Enhancement of Secondary Metabolites Production in Medicinal Plants: A Review. JAM 2020, 4, 45–58. [Google Scholar]
- Sarkar, S.; Ghosh, I.; Roychowdhury, D.; Jha, S. The effects of rol genes of Agrobacterium rhizogenes on morphogenesis and secondary metabolite accumulation in medicinal plants. In Biotechnological Approaches for Medicinal and Aromatic Plants; Springer: Singapore, 2018; Volume 1, pp. 27–51. [Google Scholar]
- Shi, M.; Liao, P.; Nile, S.H.; Georgiev, M.I.; Kai, G. Biotechnological Exploration of Transformed Root Culture for Value-Added Products. Trends Biotechnol. 2021, 39, 137–149. [Google Scholar] [CrossRef]
- Li, C.; Wang, M. Application of Hairy Root Culture for Bioactive Compounds Production in Medicinal Plants. Curr. Pharm. Biotechnol. 2021, 22, 592–608. [Google Scholar] [CrossRef]
- Moreno-Anzúrez, N.E.; Marquina, S.; Alvarez, L.; Zamilpa, A.; Castillo-España, P.; Perea-Arango, I.; Nicasio-Torres, P.; Herrera-Ruiz, M.; Díaz García, E.R.; García-Tortoriello, J.; et al. A Cytotoxic and Anti-Inflammatory Campesterol Derivative from Genetically Transformed Hairy Roots of Lopezia racemosa Cav. (Onagraceae). Molecules 2017, 22, 118. [Google Scholar] [CrossRef] [Green Version]
- Asyakina, L.; Sukhikh, S.; Ivanova, S.; Prosekov, A.; Ulrikh, E.; Chupahin, E.; Babich, O. Determination of the Qualitative Composition of Biologically-Active Substances of Extracts of in Vitro Callus, Cell Suspension, and Root Cultures of the Medicinal Plant Rhodiola rosea. Biomolecules 2021, 11, 365. [Google Scholar] [CrossRef]
- Herrera-Ruiz, M.; González-Cortazar, M.; Jiménez-Ferrer, E.; Zamilpa, A.; Alvarez, L.; Ramírez, G.; Tortoriello, J. Anxiolytic Effect of Natural Galphimines from Galphimia glauca and Their Chemical Derivatives. J. Nat. Prod. 2006, 69, 59–61. [Google Scholar] [CrossRef]
- González-Cortazar, M.; Herrera-Ruiz, M.; Zamilpa, A.; Jiménez-Ferrer, E.; Marquina, S.; Álvarez, L.; Tortoriello, J. Anti-Inflammatory Activity and Chemical Profile of Galphimia glauca. Planta Med. 2014, 80, 90–96. [Google Scholar] [CrossRef] [Green Version]
- Xie, Y.; Yang, W.; Tang, F.; Chen, X.; Ren, L. Antibacterial Activities of Flavonoids: Structure–Activity Relationship and Mechanism. Curr. Med. Chem. 2015, 22, 132–149. [Google Scholar] [CrossRef]
- Amić, D.; Davidović-Amić, D.; Bešlo, D.; Trinajstić, N. Structure-Radical Scavenging Activity Relationships of Flavonoids. Croat. Chem. Acta 2003, 76, 55–61. [Google Scholar]
- Kaur, N.; Chaudhary, J.; Jain, A.; Kishore, L. Stigmasterol: A Comprehensive Review. Int. J. Pharm. Sci. Res. 2011, 2, 2259–2265. [Google Scholar]
- García, M.D.; Sáenz, M.T.; Gómez, M.A.; Fernández, M.A. Topical Antiinflammatory Activity of Phytosterols Isolated from Eryngium foetidum on Chronic and Acute Inflammation Models. Phytother. Res. 1999, 13, 78–80. [Google Scholar] [CrossRef]
- Gabay, O.; Sanchez, C.; Salvat, C.; Chevy, F.; Breton, M.; Nourissat, G.; Wolf, C.; Jacques, C.; Berenbaum, F. Stigmasterol: A Phytosterol with Potential Anti-Osteoarthritic Properties. Osteoarthr. Cart. 2010, 18, 106–116. [Google Scholar] [CrossRef]
- Githinji, C.G.; Mbugua, P.M.; Kanui, T.I.; Kariuki, D.K. No TitlAnalgesic and Anti-Inflammatory Activities of 9-Hexacosene and Stigmasterol Isolated from Mondia whytei. E. Phytopharmacology 2012, 2, 212–223. [Google Scholar]
- Bouic, P.J.; Lamprecht, J.H. Plant Sterols and Sterolins: A Review of Their Immune-Modulating Properties. Altern. Med. Rev. 1999, 4, 170–177. [Google Scholar]
- Gómez, M.A.; Sáenz, M.T.; García, M.D.; Fernández, M.A. Study of the Topical Anti-Inflammatory Activity of Achillea ageratum on Chronic and Acute Inflammation Models. Z. Naturforsch. C J. Biosci. 1999, 54, 937–941. [Google Scholar] [CrossRef] [Green Version]
- Phatangare, N.D.; Deshmukh, K.K.; Murade, V.D.; Naikwadi, P.H.; Hase, D.P.; Chavhan, M.J.; Velis, H.E. Isolation and Characterization of β-Sitosterol from Justicia gendarussa Burm. F.-An Anti-Inflammatory Compound. Int. J. Pharmacogn. Phytochem. Res. 2017, 9, 1280–1287. [Google Scholar] [CrossRef] [Green Version]
- Murashige, T.; Skoog, F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Laine, L.; Takeuchi, K.; Tarnawski, A. Gastric Mucosal Defense and Cytoprotection: Bench to Bedside. Gastroenterology 2008, 135, 41–60. [Google Scholar] [CrossRef]
Hairy Root Lines | |||
---|---|---|---|
SaTRN12.2 (Line 1) | SaTRN7.1 (Line 2) | ||
Scopoletin | 0.0022 mg g−1 | ||
Sphaeralcic acid | 0.22 mg g−1 | Sphaeralcic acid | 3.07 mg g−1 |
Stigmasterol | Stigmasterol | ||
β-sitosterol | β-sitosterol | ||
Iso-sphaeralcic acid | |||
8-methyl-iso-sphaeralcic acid |
Position | δ 1H (J in Hz, CD3OD) (6) | δ 13C, (CD3OD) (6) | δ 1H (J in Hz, CDCl3) (7) | δ 13C, (CDCl3) (7) |
---|---|---|---|---|
1 | 6.96, s | 115.7 | 7.06, s | 110.9 |
2 | 106.1 | 106.9 | ||
3 | 120.2 | 119.5 | ||
4 | 156.0 | 154.8 | ||
5 | 7.49, s | 119.7 | 7.46, s | 118.7 |
6 | 130.8 | 130.2 | ||
7 | 142.8 | 141.2 | ||
8 | 158.1 | 158.4 | ||
9 | 123.8 | 121.5 | ||
10 | 130.3 | 129.6 | ||
11 | 3.67, spt (6.9) | 30.3 | 3.7, spt (6.9) | 29.6 |
12 | 170.4 | 167.9 | ||
13 | 1.37, d (6.9) | 24.0 | 1.41, d (6.9) | 23.8 |
14 | 1.37, d (6.9) | 24.0 | 1.41, d (6.9) | 23.8 |
15 | 2.40, s | 17.7 | 2.42, s | 17.9 |
OCH3-7 | 4.0, s | 60.7 | 4.09, s | 57.8 |
OCH3-8 | 4.23, s | 59.9 |
Treatment | Dose (mg/kg) | Ulcer Index | Protection (%) |
---|---|---|---|
Vehicle | 1% Tween | 0.664 ± 0.044 | - |
Omeprazole | 20 | 0.403 ± 0.067 ** | 39.30 ± 10.05 |
SaTRN7.1 hairy root (line 2) CH2Cl2:CH3OH (9:1) extract | 100 | 0.052 ± 0.006 ** | 92.11 ± 0.93 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barrera, K.; González-Cortazar, M.; Reyes-Pérez, R.; Pérez-García, D.; Herrera-Ruiz, M.; Arellano-García, J.; Cruz-Sosa, F.; Nicasio-Torres, P. Production of Two Isomers of Sphaeralcic Acid in Hairy Roots from Sphaeralcea angustifolia. Plants 2023, 12, 1090. https://doi.org/10.3390/plants12051090
Barrera K, González-Cortazar M, Reyes-Pérez R, Pérez-García D, Herrera-Ruiz M, Arellano-García J, Cruz-Sosa F, Nicasio-Torres P. Production of Two Isomers of Sphaeralcic Acid in Hairy Roots from Sphaeralcea angustifolia. Plants. 2023; 12(5):1090. https://doi.org/10.3390/plants12051090
Chicago/Turabian StyleBarrera, Karen, Manasés González-Cortazar, Rogelio Reyes-Pérez, Dolores Pérez-García, Maribel Herrera-Ruiz, Jesús Arellano-García, Francisco Cruz-Sosa, and Pilar Nicasio-Torres. 2023. "Production of Two Isomers of Sphaeralcic Acid in Hairy Roots from Sphaeralcea angustifolia" Plants 12, no. 5: 1090. https://doi.org/10.3390/plants12051090
APA StyleBarrera, K., González-Cortazar, M., Reyes-Pérez, R., Pérez-García, D., Herrera-Ruiz, M., Arellano-García, J., Cruz-Sosa, F., & Nicasio-Torres, P. (2023). Production of Two Isomers of Sphaeralcic Acid in Hairy Roots from Sphaeralcea angustifolia. Plants, 12(5), 1090. https://doi.org/10.3390/plants12051090