Studies on Cistanches Herba: A Bibliometric Analysis
Abstract
:1. Introduction
Pharmacological Effect | Compounds | Mechanism of Action | References |
---|---|---|---|
Neuroprotection effect | Echinacoside, acteoside | Prohibiting the apoptosis of neurons | [39,40,41] |
Bone metabolism regulation effect | Echinacoside, acteoside, C. deserticola polysaccharides (CDP), cistanoside A | Suppressing NF-κB and c-Fos pathways and downregulating NF-κB ligand receptor activator (RANKL) | [42,43,44] |
Hepatoprotection activity | Phenylethanoid glycosides (PhGs), CDP | Reducing levels of triglycerides, malondialdehyde (MDA), and low-density lipoproteins | [45,46] |
Anti-inflammation and immunoregulation activity | PhGs, CDP, oligosaccharides, cistanoside K, and tubuloside B | Promoting proliferation of T cells, reducing inflammatory hyperplastic polyps, helicobacter infection, and nitric oxide production | [18,35,47] |
Antiaging effect | Echinacoside, oligosaccharides, CDP | Suppressing reactive oxygen species production, regulating Nrf2/heme oxygenase-1-dependent antioxidative pathway | [34,48,49] |
Antifatigue effect | PhGs, CDP, acteoside | Delaying lactic acid accumulation, suppressing 5-hydroxytryptamine synthesis increase | [50,51,52] |
Reproductive regulation | Echinacoside, PhGs | Decreasing MDA content, inhibiting the transformation of androgen receptor | [28,53] |
Anticancer effect | Echinacoside, PhGs, CDP | Reducing H22 tumor-bearing liver injury and inhibiting the growth of K562 leukemia cells | [54,55] |
2. Results
2.1. Analysis of Important Literature
Topic Reviewed | Major Findings | Gaps Identified | Reference |
---|---|---|---|
Chemical constituents and analytical methods | PhGs are the main active components, and HPLC was the most widely used method | Comparative analysis of multi-component fingerprints was lacking | [7] |
Botany, traditional uses, phytochemistry, and pharmacology | The traditional use has been confirmed by modern pharmacological research | Studies on monomer components were lacking; quality control methods were not unified | [6] |
Biological characteristics, chemical constituents, and pharmacological activities | Cistanches Herba has great potential as a drug candidate for the treatment of a variety of diseases | Lack of study on the monomer components and clinical practice | [66] |
Neuropharmacological and neuroprotective mechanisms | Most of the neuropharmacological effects are closely related to antioxidant activity | The mechanisms of human absorption and bioavailability are unresolved | [38] |
Taxonomy, distribution, biological functions, and molecular mechanisms | Various Cistanches Herba products and their derivatives are widely used | Compounds with pharmacological activity lack more in-depth studies | [67] |
Anti-aging effects or anti-aging-related effects | There are significant therapeutic and economic advantages to the development of new drugs | The exact compounds responsible for the observed pharmacological effects remain unclear | [68] |
Distribution, preparation processes, pharmacokinetics, and therapeutic uses of echinacoside | Echinacoside shows a high degree of positive activity in neurological diseases | Clinical trials on the safety and the druggability of echinacoside are lacking | [69] |
Phytochemistry, pharmacology, concoction, toxicity, and safety | Most drugs focus only on phenotypic analysis, hindering the development of new drugs | Research in molecular biology, bioinformatics and chemical biotechnology remains inadequate | [8] |
Distribution and cultivation, phytochemistry, pharmacology, metabolism, and product development | Cistanche has grown to become a big brand industry from an endangered species | Some obvious bottlenecks in parasitic mechanisms, production development, and environmental balance | [24] |
Neuroprotective effects of echinacoside | Echinacoside can be used as an effective and safe substance in the treatment of neurodegenerative diseases | Clinical evidence is still lacking | [70] |
2.2. Annual Number of Publications
2.3. Main Research Forces
2.3.1. Major Countries
2.3.2. Main Institutions
2.3.3. Main Authors
2.4. Source Analysis of Journals
2.5. Hotspot Analysis
2.5.1. Outbreak Word Analysis
2.5.2. Keyword Analysis
3. Discussion
4. Data and Methods
4.1. Data Sources and Search Strategy
4.2. Research Tools and Visualization Methods
5. Conclusions and Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Piwowarczyk, R.; Carlon, L.; Kasinska, J.; Tofil, S.; Furmanczyk, P. Micromorphological intraspecific differentiation of nectar guides and landing platform for pollinators in the Iberian parasitic plant Cistanche phelypaea (Orobanchaceae). Bot. Lett. 2016, 163, 47–55. [Google Scholar] [CrossRef]
- Fu, Z.F.; Fan, X.; Wang, X.Y.; Gao, X.M. Cistanches Herba: An overview of its chemistry, pharmacology, and pharmacokinetics property. J. Ethnopharmacol. 2018, 219, 233–247. [Google Scholar] [CrossRef] [PubMed]
- Morikawa, T.; Xie, H.; Pan, Y.; Ninomiya, K.; Yuan, D.; Jia, X.; Yoshikawa, M.; Nakamura, S.; Matsuda, H.; Muraoka, O. A Review of Biologically Active Natural Products from a Desert Plant Cistanche tubulosa. Chem. Pharm. Bull. 2019, 67, 675–689. [Google Scholar] [CrossRef] [Green Version]
- Chinese Pharmacopoeia, C. Pharmacopoeia of the People’s Republic of China; China Medical Science Press: Beijing, China, 2020; Volume 1, p. 140. ISBN 978-7-5214-1574-2. [Google Scholar]
- Song, Y.; Song, Q.; Li, J.; Zhang, N.; Zhao, Y.; Liu, X.; Jiang, Y.; Tu, P. An integrated strategy to quantitatively differentiate chemome between Cistanche deserticola and C. tubulosa using high performance liquid chromatography-hybrid triple quadrupole-linear ion trap mass spectrometry. J. Chromatogr. A 2016, 1429, 238–247. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Zhang, X.Y.; Xie, W.Y. Cistanche deserticola Y. C. Ma, “Desert ginseng”: A review. Am. J. Chin. Med. 2012, 40, 1123–1141. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Tu, P.F. Analysis of chemical constituents in Cistanche species. J. Chromatogr. A 2009, 1216, 1970–1979. [Google Scholar] [CrossRef]
- Lei, H.; Wang, X.; Zhang, Y.; Cheng, T.; Mi, R.; Xu, X.; Zu, X.; Zhang, W. Herba Cistanche (Rou Cong Rong): A review of its phytochemistry and pharmacology. Chem. Pharm. Bull. 2020, 68, 694–712. [Google Scholar] [CrossRef]
- Li, L.; Tsao, R.; Yang, R.; Liu, C.; Young, J.C.; Zhu, H. Isolation and purification of phenylethanoid glycosides from Cistanche deserticola by high-speed counter-current chromatography. Food Chem. 2008, 108, 702–710. [Google Scholar] [CrossRef]
- Han, L.; Ji, L.; Boakye-Yiadom, M.; Li, W.; Song, X.; Gao, X. Preparative isolation and purification of four compounds from Cistanches deserticola Y.C. Ma by high-speed counter-current chromatography. Molecules 2012, 17, 8276–8284. [Google Scholar] [CrossRef]
- Zhao, X.; Pei, W.; Guo, R.; Li, X. Selective Adsorption and Purification of the Acteoside in Cistanche tubulosa by Molecularly Imprinted Polymers. Front. Chem. 2019, 7, 903. [Google Scholar] [CrossRef] [Green Version]
- Xu, H.; Pei, W.; Li, X.; Zhang, J. Highly efficient adsorption of phenylethanoid glycosides on mesoporous carbon. Front. Chem. 2019, 7, 781. [Google Scholar] [CrossRef]
- Cui, Q.; Pan, Y.; Bai, X.; Zhang, W.; Chen, L.; Liu, X. Systematic characterization of the metabolites of echinacoside and acteoside from Cistanche tubulosa in rat plasma, bile, urine and feces based on UPLC-ESI-Q-TOF-MS. Biomed. Chromatogr. 2016, 30, 1406–1415. [Google Scholar] [CrossRef]
- Cui, Q.; Pan, Y.; Xu, X.; Zhang, W.; Wu, X.; Qu, S.; Liu, X. The metabolic profile of acteoside produced by human or rat intestinal bacteria or intestinal enzyme in vitro employed UPLC-Q-TOF-MS. Fitoterapia 2016, 109, 67–74. [Google Scholar] [CrossRef]
- Li, Y.; Peng, Y.; Ma, P.; Wang, M.; Peng, C.; Tu, P.; Li, X. In vitro and in vivo metabolism of Cistanche tubulosa extract in normal and chronic unpredictable stress-induced depressive rats. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2019, 1125, 121728. [Google Scholar] [CrossRef]
- Dong, Q.; Yao, J.; Fang, J.N.; Ding, K. Structural characterization and immunological activity of two cold-water extractable polysaccharides from Cistanche deserticola Y. C. Ma. Carbohydr. Res. 2007, 342, 1343–1349. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Chen, C.; Yang, M.; Deng, B.; Kirby, G.M.; Zhang, X. Cistanche tubulosa ethanol extract mediates rat sex hormone levels by induction of testicular steroidgenic enzymes. Pharm. Biol. 2016, 54, 481–487. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nan, Z.D.; Zeng, K.W.; Shi, S.P.; Zhao, M.B.; Jiang, Y.; Tu, P.F. Phenylethanoid glycosides with anti-inflammatory activities from the stems of Cistanche deserticola cultured in Tarim desert. Fitoterapia 2013, 89, 167–174. [Google Scholar] [CrossRef] [PubMed]
- You, S.P.; Ma, L.; Zhao, J.; Zhang, S.L.; Liu, T. Phenylethanol Glycosides from Cistanche tubulosa Suppress Hepatic Stellate Cell Activation and Block the Conduction of Signaling Pathways in TGF-β1/smad as Potential Anti-Hepatic Fibrosis Agents. Molecules 2016, 21, 102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, C.R.; Lin, H.C.; Su, M.H. Reversal by aqueous extracts of Cistanche tubulosa from behavioral deficits in Alzheimer’s disease-like rat model: Relevance for amyloid deposition and central neurotransmitter function. BMC Complement. Altern. Med. 2014, 14, 202. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Zhou, S.N.; Zhang, Y.M.; Feng, Y.L.; Wang, S. Glycosides of cistanche improve learning and memory in the rat model of vascular dementia. Eur. Rev. Med. Pharmacol. Sci. 2015, 19, 1234–1240. [Google Scholar]
- Liang, H.; Yu, F.; Tong, Z.; Huang, Z. Effect of Cistanches Herba aqueous extract on bone loss in ovariectomized rat. Int. J. Mol. Sci. 2011, 12, 5060–5069. [Google Scholar] [CrossRef] [Green Version]
- Liang, H.D.; Yu, F.; Tong, Z.H.; Zhang, H.Q.; Liang, W. Cistanches Herba aqueous extract affecting serum BGP and TRAP and bone marrow Smad1 mRNA, Smad5 mRNA, TGF-β1 mRNA and TIEG1 mRNA expression levels in osteoporosis disease. Mol. Biol. Rep. 2013, 40, 757–763. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.L.; Zeng, K.W.; Jiang, Y.; Tu, P.F. Cistanches Herba, from an endangered species to a big brand of Chinese medicine. Med. Res. Rev. 2021, 41, 1539–1577. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Peng, X.M.; Huo, S.X.; Liu, X.M.; Yan, M. Memory Enhancement of Acteoside (Verbascoside) in a Senescent Mice Model Induced by a Combination of D-gal and AlCl3. Phytother. Res. 2015, 29, 1131–1136. [Google Scholar] [CrossRef]
- Peng, X.M.; Gao, L.; Huo, S.X.; Liu, X.M.; Yan, M. The Mechanism of Memory Enhancement of Acteoside (Verbascoside) in the Senescent Mouse Model Induced by a Combination of D-gal and AlCl3. Phytother. Res. 2015, 29, 1137–1144. [Google Scholar] [CrossRef]
- Jiang, Z.; Wang, J.; Li, X.; Zhang, X. Echinacoside and Cistanche tubulosa (Schenk) R. wight ameliorate bisphenol A-induced testicular and sperm damage in rats through gonad axis regulated steroidogenic enzymes. J. Ethnopharmacol. 2016, 193, 321–328. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.; Zhou, B.; Li, X.; Kirby, G.M.; Zhang, X. Echinacoside increases sperm quantity in rats by targeting the hypothalamic androgen receptor. Sci. Rep. 2018, 8, 3839. [Google Scholar] [CrossRef] [Green Version]
- Yan, F.; Dou, X.; Zhu, G.; Xia, M.; Liu, Y.; Liu, X.; Wu, G.; Wang, H.; Zhang, B.; Shao, Q.; et al. Cistanoside of Cistanche Herba ameliorates hypoxia-induced male reproductive damage via suppression of oxidative stress. Am. J. Transl. Res. 2021, 13, 4342–4359. [Google Scholar]
- Lan, T.W.; Yu, Q. Cistanches deserticola PhG-RE through Inhibiting ERS Apoptosis Mechanism to Protect Myocardial Cell Apoptosis from H(2)O(2)-Induced Endoplasmic Reticulum Stress. Evid. Based Complement. Alternat. Med. 2020, 2020, 8219296. [Google Scholar] [CrossRef]
- Guo, Y.; Cui, Q.; Ren, S.; Hao, D.; Morikawa, T.; Wang, D.; Liu, X.; Pan, Y. The hepatoprotective efficacy and biological mechanisms of three phenylethanoid glycosides from cistanches herba and their metabolites based on intestinal bacteria and network pharmacology. J. Nat. Med. 2021, 75, 784–797. [Google Scholar] [CrossRef]
- Yuan, P.; Li, J.; Aipire, A.; Yang, Y.; Xia, L.; Wang, X.; Li, Y.; Li, J. Cistanche tubulosa phenylethanoid glycosides induce apoptosis in H22 hepatocellular carcinoma cells through both extrinsic and intrinsic signaling pathways. BMC Complement. Altern. Med. 2018, 18, 275. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Li, J.; Aipire, A.; Gao, L.; Huo, S.; Luo, J.; Zhang, F. Phenylethanoid Glycosides from Cistanche tubulosa Inhibits the Growth of B16-F10 Cells both in Vitro and in Vivo by Induction of Apoptosis via Mitochondria-dependent Pathway. J. Cancer 2016, 7, 1877–1887. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, Y.; Huang, J.; Li, Y.; Jiang, L.; Ouyang, Y.; Li, Y.; Yang, L.; Zhao, X.; Huang, L.; Xiang, H.; et al. Cistanche deserticola polysaccharide induces melanogenesis in melanocytes and reduces oxidative stress via activating NRF2/HO-1 pathway. J. Cell Mol. Med. 2020, 24, 4023–4035. [Google Scholar] [CrossRef] [PubMed]
- Zhang, A.; Yang, X.; Li, Q.; Yang, Y.; Zhao, G.; Wang, B.; Wu, D. Immunostimulatory activity of water-extractable polysaccharides from Cistanche deserticola as a plant adjuvant in vitro and in vivo. PLoS ONE 2018, 13, e0191356. [Google Scholar] [CrossRef] [Green Version]
- Xiao, W.; Wei, Y.Y.; Yang, F.; Lu, X.Y.; Liu, S.W.; Long, Y.L.; Yu, Y. Cistanche deserticola polysaccharide inhibits OVX-induced bone loss in mice and RANKL-induced osteoclastogenesis. J. Funct. Foods 2021, 81, 104464. [Google Scholar] [CrossRef]
- Wang, F.; Tu, P.; Zeng, K.; Jiang, Y. Total glycosides and polysaccharides of Cistanche deserticola prevent osteoporosis by activating Wnt/β-catenin signaling pathway in SAMP6 mice. J. Ethnopharmacol. 2021, 271, 113899. [Google Scholar] [CrossRef]
- Gu, C.M.; Yang, X.Y.; Huang, L.F. Cistanches Herba: A neuropharmacology review. Front. Pharmacol. 2016, 7, 289. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.; Li, H.; Wang, J.B. Echinacoside inhibits amyloid fibrillization of HEWL and protects against Aβ-induced neurotoxicity. Int. J. Biol. Macromol. 2015, 72, 243–253. [Google Scholar] [CrossRef]
- Zheng, H.; Su, Y.; Sun, Y.; Tang, T.; Zhang, D.; He, X.; Wang, J. Echinacoside alleviates hypobaric hypoxia-induced memory impairment in C57 mice. Phytother. Res. 2019, 33, 1150–1160. [Google Scholar] [CrossRef]
- Kurisu, M.; Miyamae, Y.; Murakami, K.; Han, J.; Isoda, H.; Irie, K.; Shigemori, H. Inhibition of amyloid β aggregation by acteoside, a phenylethanoid glycoside. Biosci. Biotechnol. Biochem. 2013, 77, 1329–1332. [Google Scholar] [CrossRef]
- Zhang, B.; Yang, L.L.; Ding, S.Q.; Liu, J.J.; Dong, Y.H.; Li, Y.T.; Li, N.; Zhao, X.J.; Hu, C.L.; Jiang, Y.; et al. Anti-Osteoporotic Activity of an Edible Traditional Chinese Medicine Cistanche deserticola on Bone Metabolism of Ovariectomized Rats Through RANKL/RANK/TRAF6-Mediated Signaling Pathways. Front. Pharmacol. 2019, 10, 1412. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.L.; Ding, S.Q.; Zhang, B.; Liu, J.J.; Dong, Y.H.; Tang, Q.W.; Yang, P.P.; Ma, X.Q. Beneficial Effects of Total Phenylethanoid Glycoside Fraction Isolated from Cistanche deserticola on Bone Microstructure in Ovariectomized Rats. Oxid. Med. Cell Longev. 2019, 2019, 2370862. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, S.Y.; Lee, K.S.; Yi, S.H.; Kook, S.H.; Lee, J.C. Acteoside suppresses RANKL-mediated osteoclastogenesis by inhibiting c-Fos induction and NF-κB pathway and attenuating ROS production. PLoS ONE 2013, 8, e80873. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Cao, L.; Zhao, Q.; Zhang, L.; Chen, J.; Liu, B.; Zhao, B. Preliminary characterizations, antioxidant and hepatoprotective activity of polysaccharide from Cistanche deserticola. Int. J. Biol. Macromol. 2016, 93, 678–685. [Google Scholar] [CrossRef]
- Guo, Y.H.; Cao, L.L.; Zhao, B.; Zhao, Q.S.; Huang, Y.R.; Xiao, C.M. Hepatoprotective effect of phenylethanoid glycosides from Cistanche deserticola against chronic hepatic injury induced by alcohol. Food Sci. 2018, 39, 176–183. [Google Scholar] [CrossRef]
- Jia, Y.; Guan, Q.; Guo, Y.; Du, C. Reduction of inflammatory hyperplasia in the intestine in colon cancer-prone mice by water-extract of Cistanche deserticola. Phytother. Res. 2012, 26, 812–819. [Google Scholar] [CrossRef]
- Zhang, H.; Xiang, Z.; Duan, X.; Jiang, J.L.; Xing, Y.M.; Zhu, C.; Song, Q.; Yu, Q.R. Antitumor and anti-inflammatory effects of oligosaccharides from Cistanche deserticola extract on spinal cord injury. Int. J. Biol. Macromol. 2019, 124, 360–367. [Google Scholar] [CrossRef]
- Xue, J.; Zhu, C.; Song, A. GW28-e0646 Echinacoside protects against high glucose-induced oxidative stress in vascular endothelial cells through Nrf2/HO-1 dependent pathway. J. Am. Coll. Cardiol. 2017, 70, C22–C23. [Google Scholar] [CrossRef]
- Cai, R.L.; Yang, M.H.; Shi, Y.; Chen, J.; Li, Y.C.; Qi, Y. Antifatigue activity of phenylethanoid-rich extract from Cistanche deserticola. Phytother. Res. 2010, 24, 313–315. [Google Scholar] [CrossRef]
- Yan, L.; Hu, J.P.; Sun, X.D.; Cai, K.R. Study on the anti-fatigue effect and mechanism of Cistanche deserticola polysaccharide on D-galactose-induced aging mice. Hebei J. Tradit. Chin. Med. 2019, 41, 96–100. [Google Scholar]
- Zhu, M.J.; Zhu, H.Z.; Tan, N.H.; Wang, H.; Chu, H.B.; Zhang, C.L. Central anti-fatigue activity of verbascoside. Neurosci. Lett. 2016, 616, 75–79. [Google Scholar] [CrossRef] [PubMed]
- Liang, H.; Jiang, X.; Li, B.; Chen, D. Investigation of protective effect of phenethyl alcohol glycosides extracted from herba Cistanchis on human sperm DNA with oxidative damage by raman spectroscopy. J. Guangzhou Univ. Tradit. Chin. Med. 2015, 32, 121–125. [Google Scholar]
- Hu, Q.; You, S.; Liu, T.; Wang, B.; Liu, X.; Jiang, Y. An investigation on the anti-liver cancer effect of Cistanche. Carcinog. Teratog. Mutagen. 2018, 30, 194–199. [Google Scholar]
- Zhang, T.; Xu, W.; Ren, K.; Cui, L.; Yu, G. Comparison of the effect of Cistanche deserticola polysaccharide and echinacoside on growth inhibition and cell cycle of K562. China Health Stand. Manag. 2016, 18, 141–143. [Google Scholar]
- Wang, J.; Baskin, J.M.; Baskin, C.C.; Liu, G.; Yang, X.; Huang, Z. Seed dormancy and germination of the medicinal holoparasitic plant Cistanche deserticola from the cold desert of northwest China. Plant Physiol. Biochem. 2017, 115, 279–285. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.M.; Zhuo, B.Y.; Wang, S.; Lou, J.; Zhang, Y.; Chen, Q.L.; Shi, Z.Y.; Song, Y.L.; Tu, P.F. Atriplex canescens: A new host for Cistanche deserticola. Heliyon 2021, 7, e07368. [Google Scholar] [CrossRef] [PubMed]
- Cao, Z.; Zhao, W.; Wu, X. Studies on the chemical constituents of the cultivated Cistanche deserticola YC Ma. Nat. Prod. Res. Dev. 2004, 16, 518–520. [Google Scholar]
- Feng, S.S.; Yang, X.M.; Weng, X.; Wang, B.; Zhang, A.L. Aqueous extracts from cultivated Cistanche deserticola Y.C. Ma as polysaccharide adjuvant promote immune responses via facilitating dendritic cell activation. J. Ethnopharmacol. 2021, 277, 114256. [Google Scholar] [CrossRef]
- Li, M.X.; Tian, X.Y.; Li, X.L.; Mao, T.; Liu, T.L. Anti-fatigue activity of gardenia yellow pigment and Cistanche phenylethanol glycosides mixture in hypoxia. Food Biosci. 2021, 40, 100902. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, L.; Li, X.; He, Z.Z.; Chen, S.F.; Zhang, D.L. Response surface methodology for optimizing twin-screw prepared Cistanche deserticola-potato composite rice. Starch-Starke 2021, 73, 1900330. [Google Scholar] [CrossRef]
- Chen, X.L.; Deng, Z.T.; Huang, X.Y.; Geng, C.A.; Chen, J.J. Liquid chromatography-mass spectrometry combined with xanthine oxidase inhibition profiling for identifying the bioactive constituents from Cistanche deserticola. Int. J. Mass Spectrom. 2018, 430, 1–7. [Google Scholar] [CrossRef]
- Cui, Q.; Pan, Y.; Zhang, W.; Zhang, Y.; Ren, S.; Wang, D.; Wang, Z.; Liu, X.; Xiao, W. Metabolites of dietary acteoside: Profiles, isolation, identification, and hepatoprotective capacities. J. Agric. Food Chem. 2018, 66, 2660–2668. [Google Scholar] [CrossRef] [PubMed]
- National Health Commission of the People’s Republic of China. Notice on the Pilot Work of Substance Management of 9 Substances Such As Dangshen, Which Are both Food and Traditional Chinese Medicine According to Tradition. Available online: http://www.nhc.gov.cn/sps/s7885/202001/1ec2cca04146450d9b14acc2499d854f.shtml (accessed on 25 November 2019).
- Chen, C.M. CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature. J. Am. Soc. Inf. Sci. Technol. 2006, 57, 359–377. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.L.; Ding, H.; Yu, H.S.; Han, L.F.; Lai, Q.H.; Zhang, L.J.; Song, X.B. Cistanches Herba: Chemical constituents and pharmacological effects. Chin. Herb. Med. 2015, 7, 135–142. [Google Scholar] [CrossRef]
- Li, Z.; Lin, H.; Gu, L.; Gao, J.; Tzeng, C.M. Herba Cistanche (Rou Cong-Rong): One of the best pharmaceutical gifts of traditional Chinese medicine. Front. Pharmacol. 2016, 7, 41. [Google Scholar] [CrossRef] [Green Version]
- Wang, N.; Ji, S.; Zhang, H.; Mei, S.; Qiao, L.; Jin, X. Herba Cistanches: Anti-aging. Aging Dis. 2017, 8, 740–759. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Yang, L.; Dong, Y.; Zhang, B.; Ma, X. Echinacoside, an inestimable natural product in treatment of neurological and other disorders. Molecules 2018, 23, 1213. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Yu, H.; Yang, C.; Ma, T.; Dai, Y. Therapeutic potential and molecular mechanisms of echinacoside in neurodegenerative diseases. Front. Pharmacol. 2022, 13, 841110. [Google Scholar] [CrossRef]
- Maina, M.B.; Ahmad, U.; Ibrahim, H.A.; Hamidu, S.K.; Nasr, F.E.; Salihu, A.T.; Abushouk, A.I.; Abdurrazak, M.; Awadelkareem, M.A.; Amin, A.; et al. Two decades of neuroscience publication trends in Africa. Nat. Commun. 2021, 12, 3429. [Google Scholar] [CrossRef]
- Ouyang, J.; Wang, X.; Zhao, B.; Yuan, X.; Wang, Y. Effects of rare earth elements on the growth of Cistanche deserticola cells and the production of phenylethanoid glycosides. J. Biotechnol. 2003, 102, 129–134. [Google Scholar] [CrossRef]
- Wu, Y.; Yang, D.Y.; Tu, P.F.; Tian, Y.Z.; Guo, Y.H.; Wang, X.M.; Li, X.B. Genetic differentiation induced by spaceflight treatment of Cistanche deserticola and identification of inter-simple sequence repeat markers associated with its medicinal constituent contents. Adv. Space Res. 2011, 47, 591–599. [Google Scholar] [CrossRef]
- Jiang, L.; Zhou, B.; Wang, X.; Bi, Y.; Guo, W.; Wang, J.; Yao, R.; Li, M. The Quality Monitoring of Cistanches Herba (Cistanche deserticola Ma): A Value Chain Perspective. Front. Pharmacol. 2021, 12, 782962. [Google Scholar] [CrossRef] [PubMed]
- Morikawa, T.; Pan, Y.; Ninomiya, K.; Imura, K.; Matsuda, H.; Yoshikawa, M.; Yuan, D.; Muraoka, O. Acylated phenylethanoid oligoglycosides with hepatoprotective activity from the desert plant Cistanche tubulosa. Bioorg. Med. Chem. 2010, 18, 1882–1890. [Google Scholar] [CrossRef] [PubMed]
- Yoshikawa, M.; Matsuda, H.; Morikawa, T.; Xie, H.; Nakamura, S.; Muraoka, O. Phenylethanoid oligoglycosides and acylated oligosugars with vasorelaxant activity from Cistanche tubulosa. Bioorg. Med. Chem. 2006, 14, 7468–7475. [Google Scholar] [CrossRef]
- Schneeweiss, G.M.; Colwell, A.; Park, J.M.; Jang, C.G.; Stuessy, T.F. Phylogeny of holoparasitic Orobanche (Orobanchaceae) inferred from nuclear ITS sequences. Mol. Phylogenetics Evol. 2004, 30, 465–478. [Google Scholar] [CrossRef]
- Park, J.M.; Manen, J.F.; Colwell, A.E.; Schneeweiss, G.M. A plastid gene phylogeny of the non-photosynthetic parasitic Orobanche (Orobanchaceae) and related genera. J. Plant. Res. 2008, 121, 365–376. [Google Scholar] [CrossRef] [PubMed]
- Piwowarczyk, R.; Schneider, A.C.; Góralski, G.; Kwolek, D.; Denysenko-Bennett, M.; Burda, A.; Ruraż, K.; Joachimiak, A.J.; Pedraja, Ó.S. Phylogeny and historical biogeography analysis support Caucasian and Mediterranean centres of origin of key holoparasitic Orobancheae (Orobanchaceae) lineages. PhytoKeys 2021, 174, 165–194. [Google Scholar] [CrossRef]
- Chen, C.; Hu, Z.; Liu, S.; Tseng, H. Emerging trends in regenerative medicine: A scientometric analysis in CiteSpace. Expert. Opin. Biol. Ther. 2012, 12, 593–608. [Google Scholar] [CrossRef]
- Moriya, A. Pharmacognostical studies of Cistanche herba (II) comparison of the components of Cistanche plants. Nat. Med. 1995, 49, 394–400. [Google Scholar]
- Tomari, N.; Ishizuka, Y.; Moriya, A.; Kojima, S.; Deyama, T.; Mizukami, H.; Tu, P. Pharmacognostical studies of cistanchis herba (III) phylogenetic relationship of the Cistanche plants based on plastid rps2 gene and rpl16-rpl14 intergenic spacer sequences. Biol. Pharm. Bull. 2002, 25, 218–222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ataei, N.; Schneeweiss, G.M.; García, M.A.; Krug, M.; Lehnert, M.; Valizadeh, J.; Quandt, D. A multilocus phylogeny of the non-photosynthetic parasitic plant Cistanche (Orobanchaceae) refutes current taxonomy and identifies four major morphologically distinct clades. Mol. Phylogenet. Evol. 2020, 151, 106898. [Google Scholar] [CrossRef] [PubMed]
- Lei, L.; Yang, F.; Zhang, T.; Tu, P.; Wu, L.; Ito, Y. Preparative isolation and purification of acteoside and 2’-acetyl acteoside from Cistanches salsa (C.A. Mey.) G. Beck by high-speed counter-current chromatography. J. Chromatogr. A 2001, 912, 181–185. [Google Scholar] [CrossRef]
- Xie, C.Y.; Xu, X.J.; Liu, Q.D.; Xie, Z.S.; Yang, M.; Huang, J.Y.; Yang, D.P. Isolation and purification of echinacoside and acteoside from Cistanche tubulosa (Schrenk) Wight by high-speed counter-current chromatography. J. Liq. Chromatogr. Relat. Technol. 2012, 35, 2602–2609. [Google Scholar] [CrossRef]
- Han, L.; Boakye-Yiadom, M.; Liu, E.; Zhang, Y.; Li, W.; Song, X.; Fu, F.; Gao, X. Structural characterisation and identification of phenylethanoid glycosides from Cistanches deserticola Y.C. Ma by UHPLC/ESI-QTOF-MS/MS. Phytochem. Anal. 2012, 23, 668–676. [Google Scholar] [CrossRef]
- Nan, Z.D.; Zhao, M.B.; Zeng, K.W.; Tian, S.H.; Wang, W.N.; Jiang, Y.; Tu, P.F. Anti-inflammatory iridoids from the stems of Cistanche deserticola cultured in Tarim Desert. Chin. J. Nat. Med. 2016, 14, 61–65. [Google Scholar] [CrossRef]
- Wang, X.; Wang, J.; Guan, H.; Xu, R.; Luo, X.; Su, M.; Chang, X.; Tan, W.; Chen, J.; Shi, Y. Comparison of the Chemical Profiles and Antioxidant Activities of Different Parts of Cultivated Cistanche deserticola Using Ultra Performance Liquid Chromatography-Quadrupole Time-of-Flight Mass Spectrometry and a 1,1-Diphenyl-2-picrylhydrazyl-Based Assay. Molecules 2017, 22, 2011. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bouzayani, B.; Koubaa, I.; Frikha, D.; Samet, S.; Ben Younes, A.; Chawech, R.; Maalej, S.; Allouche, N.; Jarraya, R.M. Spectrometric analysis, phytoconstituents isolation and evaluation of in vitro antioxidant and antimicrobial activities of Tunisian Cistanche violacea (Desf). Chem. Pap. 2022, 76, 3031–3050. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, J.; Lu, L.; Zhou, L. The longevity effect of echinacoside in Caenorhabditis elegans mediated through daf-16. Biosci. Biotechnol. Biochem. 2015, 79, 1676–1683. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.; Lin, H.R.; Wei, C.M.; Luo, X.H.; Sun, M.L.; Yang, Z.Z.; Chen, X.Y.; Wang, H.B. Echinacoside, a phenylethanoid glycoside from Cistanche deserticola, extends lifespan of Caenorhabditis elegans and protects from Aβ-induced toxicity. Biogerontology 2018, 19, 47–65. [Google Scholar] [CrossRef]
- Ma, H.; Liu, Y.; Tang, L.; Ding, H.; Bao, X.; Song, F.; Zhu, M.; Li, W. Echinacoside selectively rescues complex I inhibition-induced mitochondrial respiratory impairment via enhancing complex II activity. Neurochem. Int. 2019, 125, 136–143. [Google Scholar] [CrossRef]
- Wei, W.; Lan, X.B.; Liu, N.; Yang, J.M.; Du, J.; Ma, L.; Zhang, W.J.; Niu, J.G.; Sun, T.; Yu, J.Q. Echinacoside Alleviates Hypoxic-Ischemic Brain Injury in Neonatal Rat by Enhancing Antioxidant Capacity and Inhibiting Apoptosis. Neurochem. Res. 2019, 44, 1582–1592. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Georgiev, M.I.; Cao, H.; Nahar, L.; El-Seedi, H.R.; Sarker, S.D.; Xiao, J.; Lu, B. Therapeutic potential of phenylethanoid glycosides: A systematic review. Med. Res. Rev. 2020, 40, 2605–2649. [Google Scholar] [CrossRef]
- Shiao, Y.J.; Su, M.H.; Lin, H.C.; Wu, C.R. Echinacoside ameliorates the memory impairment and cholinergic deficit induced by amyloid beta peptides via the inhibition of amyloid deposition and toxicology. Food Funct. 2017, 8, 2283–2294. [Google Scholar] [CrossRef] [PubMed]
- Dai, Y.; Han, G.; Xu, S.; Yuan, Y.; Zhao, C.; Ma, T. Echinacoside suppresses amyloidogenesis and modulates F-actin remodeling by targeting the ER stress sensor PERK in a mouse model of Alzheimer’s. Front. Cell Dev. Biol. 2020, 8, 593659. [Google Scholar] [CrossRef]
- Simon, D.K.; Tanner, C.M.; Brundin, P. Parkinson Disease Epidemiology, Pathology, Genetics, and Pathophysiology. Clin. Geriatr. Med. 2020, 36, 1–12. [Google Scholar] [CrossRef]
- Ho, M.S. Microglia in Parkinson’s Disease. Adv. Exp. Med. Biol. 2019, 1175, 335–353. [Google Scholar] [CrossRef] [PubMed]
- Gao, M.R.; Wang, M.; Jia, Y.Y.; Tian, D.D.; Liu, A.; Wang, W.J.; Yang, L.; Chen, J.Y.; Yang, Q.; Liu, R.; et al. Echinacoside protects dopaminergic neurons by inhibiting NLRP3/Caspase-1/IL-1β signaling pathway in MPTP-induced Parkinson’s disease model. Brain Res. Bull. 2020, 164, 55–64. [Google Scholar] [CrossRef]
- Zhang, K.; Ma, X.; He, W.; Li, H.; Han, S.; Jiang, Y.; Wu, H.; Han, L.; Ohno, T.; Uotsu, N.; et al. Extracts of Cistanche deserticola Can Antagonize Immunosenescence and Extend Life Span in Senescence-Accelerated Mouse Prone 8 (SAM-P8) Mice. Evid. Based Complement. Alternat. Med. 2014, 2014, 601383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, Q.H.; Wang, G.; Luo, L.; Shi, Q.; Xie, J.X.; Meng, X.H. Mapping the managerial areas of Building Information Modeling (BIM) using scientometric analysis. Int. J. Proj. Manag. 2017, 35, 670–685. [Google Scholar] [CrossRef] [Green Version]
Rank | Agency | Number of Records | Percentage (%) |
---|---|---|---|
1 | National Natural Science Foundation of China Nsfc | 154 | 34.76 |
2 | Ministry Of Education Culture Sports Science and Technology Japan Mext | 13 | 2.94 |
3 | Ministry Of Science and Technology China | 10 | 2.26 |
4 | China Postdoctoral Science Foundation | 7 | 1.58 |
5 | Grants In Aid for Scientific Research Kakenhi | 7 | 1.58 |
6 | Japan Society for The Promotion of Science | 7 | 1.58 |
7 | National Key Technology R D Program | 7 | 1.58 |
8 | Quality Guarantee System of Chinese Herbal Medicines | 7 | 1.58 |
9 | Beijing Natural Science Foundation | 6 | 1.35 |
10 | Chinese Academy of Sciences | 6 | 1.35 |
Cluster ID | Silhouette | Citation Year | Label (LLR) | Included Keywords |
---|---|---|---|---|
0 | 0.742 | 2011 | Parkinsons disease | Parkinsons disease; endoplasmic reticulum stress; Orobanche genus; Chinese tonic herb; hepatoprotective action |
1 | 0.844 | 2005 | Cistanoside a | Cistanche deserticola; Abeliophyllum distichum; Chinese herbal medicine; deserticola; tissue |
2 | 0.794 | 2012 | Antioxidant activity | Cistanche deserticola; precursor feeding; comprehensive habitat suitability; 3-acetic acid; Betula platyphylla |
3 | 0.906 | 2012 | Phylogeny | Taxonomy; Cistanche; host; systematics; parasite |
4 | 0.821 | 2011 | Phenylalanine ammonia lyase (PAL) | Cistanche deserticola; total glycosides; permeability; mitochondrial precursor protein; antiviral agent |
5 | 0.933 | 2007 | Cistanche tubulosa | Cistanche tubulosa; phenylethanoid glycoside; Abeliophyllum distichum; Rubia yunnanensis; psoralea corylifolia |
6 | 0.811 | 2007 | Cistanche deserticola | Cistanche deserticola; agent; systemic fungal infection; Candida albican; flow cytometry |
7 | 0.766 | 2016 | Cistanche Herba | Cistanche tubulosa; upper limit; wide polarity span; simultaneous determination; interaction chromatography |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, L.; Xiang, T.; Chen, C.; Isah, M.B.; Zhang, X. Studies on Cistanches Herba: A Bibliometric Analysis. Plants 2023, 12, 1098. https://doi.org/10.3390/plants12051098
Wu L, Xiang T, Chen C, Isah MB, Zhang X. Studies on Cistanches Herba: A Bibliometric Analysis. Plants. 2023; 12(5):1098. https://doi.org/10.3390/plants12051098
Chicago/Turabian StyleWu, Longjiang, Tian Xiang, Chen Chen, Murtala Bindawa Isah, and Xiaoying Zhang. 2023. "Studies on Cistanches Herba: A Bibliometric Analysis" Plants 12, no. 5: 1098. https://doi.org/10.3390/plants12051098
APA StyleWu, L., Xiang, T., Chen, C., Isah, M. B., & Zhang, X. (2023). Studies on Cistanches Herba: A Bibliometric Analysis. Plants, 12(5), 1098. https://doi.org/10.3390/plants12051098