White Lupin Adaptation to Moderately Calcareous Soils: Phenotypic Variation and Genome-Enabled Prediction
Abstract
:1. Introduction
2. Results
2.1. Adaptive Responses
2.2. Genome-Wide Association Study
2.3. Genome-Enabled Predictions
3. Discussion
4. Materials and Methods
4.1. Plant Material
4.2. Field Evaluation
4.3. Statistical Analysis of Phenotyping Data
4.4. DNA Isolation, GBS Library Construction, and Sequencing
4.5. Genotype SNP Calling Procedures, Data Filtering, and Imputation
4.6. Analysis of Population Structure and Genome-Wide Association Study
4.7. Genome-Enabled Predictions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ANOVA | Analysis of variance |
BL | Bayesian Lasso |
RKHS | Bayesian Reproducing Kernel Hilbert Space |
DPCA | Discriminant principal components analysis |
GEI | Genotype × environment interaction |
GBS | Genotyping-by-sequencing |
GS | Genomic selection |
LS | Lime susceptibility |
QTL | Quantitative trait loci |
REML | Restricted maximum likelihood |
rrBLUP | Ridge Regression BLUP (best linear unbiased prediction) |
SNP | Single nucleotide polymorphism |
WGBLUP | Weighted G-BLUP |
References
- Foyer, C.H.; Lam, H.-M.; Nguyen, H.T.; Siddique, K.H.M.; Varshney, R.K.; Colmer, T.D.; Cowling, W.; Bramley, H.; Mori, T.A.; Hodgson, J.M.; et al. Neglecting legumes has compromised human health and sustainable food production. Nat. Plants 2016, 2, 16112. [Google Scholar] [CrossRef]
- Watson, C.A.; Reckling, M.; Preissel, S.; Bachinger, J.; Bergkvist, G.; Kuhlman, T.; Lindström, K.; Nemecek, T.; Topp, C.F.; Vanhatalo, A.; et al. Grain legume production and use in European agricultural systems. Adv. Agron. 2017, 144, 235–303. [Google Scholar]
- Pilorgé, E.; Muel, F. What vegetable oils and proteins for 2030? Would the protein fraction be the future of oil and protein crops? OCL 2016, 23, D402. [Google Scholar] [CrossRef]
- Fehér, A.; Gazdecki, M.; Véha, M.; Szakály, M.; Szakály, Z. A comprehensive review of the benefits of and the barriers to the switch to a plant-based diet. Sustainability 2020, 12, 4136. [Google Scholar] [CrossRef]
- Lucas, M.M.; Stoddard, F.; Annicchiarico, P.; Frías, J.; Martínez-Villaluenga, C.; Sussmann, D.; Duranti, M.; Seger, A.; Zander, P.M.; Pueyo, J.J. The future of lupin as a protein crop in Europe. Front. Plant Sci. 2015, 6, 705. [Google Scholar] [CrossRef] [PubMed]
- Abraham, E.M.; Ganopoulos, I.; Madesis, P.; Mavromatis, A.; Mylona, P.; Nianiou-Obeidat, I.; Parissi, Z.; Polidoros, A.; Tani, E.; Vlachostergios, D. The use of lupin as a source of protein in animal feeding: Genomic tools and breeding approaches. Int. J. Mol. Sci. 2019, 20, 851. [Google Scholar] [CrossRef] [PubMed]
- Boukid, F.; Pasqualone, A. Lupine (Lupinus spp.) proteins: Characteristics, safety and food applications. Eur. Food. Res. Technol. 2022, 248, 345–356. [Google Scholar] [CrossRef]
- Bertoglio, J.C.; Calvo, M.A.; Hancke, J.L.; Burgos, R.A.; Riva, A.; Morazzoni, P.; Ponzone, C.; Magni, C.; Duranti, M. Hypoglycemic effect of lupin seed gamma-conglutin in experimental animals and healthy human subjects. Fitoterapia 2011, 82, 933–938. [Google Scholar] [CrossRef]
- Boschin, G.; D’Agostina, A.; Annicchiarico, P.; Arnoldi, A. Effect of genotype and environment on fatty acid composition of Lupinus albus L. seed. Food Chem. 2008, 108, 600–606. [Google Scholar] [CrossRef]
- Annicchiarico, P. Adaptation of cool-season grain legume species across climatically-contrasting environments of southern Europe. Agron. J. 2008, 100, 1647–1654. [Google Scholar] [CrossRef]
- Drouineau, G. Dosage rapide du calcaire actif du sol. Ann. Agron. 1942, 12, 411–450. [Google Scholar]
- Papineau, J.; Huyghe, C. Le Lupin Doux Protéagineux; Editions France Agricole: Paris, France, 2004. [Google Scholar]
- Tang, C.; Thomson, B.D. Effects of solution pH and bicarbonate on the growth and nodulation of a range of grain legume species. Plant Soil 1996, 186, 321–330. [Google Scholar] [CrossRef]
- Duthion, C. Comportement du lupin blanc, Lupinus albus L., cv. Lublanc, en sols calcaires. Seuils de tolérance à la chlorose. Agronomie 1992, 12, 439–445. [Google Scholar] [CrossRef]
- Liu, A.; Tang, C. Comparative performance of Lupinus albus genotypes in response to soil alkalinity. Aust. J. Agric. Res. 1999, 50, 1435–1442. [Google Scholar] [CrossRef]
- Arief, O.; Pang, J.; Shaltout, K.; Lambers, H. Performance of two Lupinus albus L. cultivars in response to three soil pH levels. Exp. Agric. 2020, 56, 321–330. [Google Scholar] [CrossRef]
- Jayasundara, H.P.S.; Thomson, B.D.; Tang, C. Responses of cool season grain legumes to soil abiotic stresses. Adv. Agron. 1998, 63, 77–151. [Google Scholar]
- Dinkelaker, B.; Römheld, V.; Marschner, H. Citric acid secretion and precipitation of calcium citrate in the rhizosphere of white lupin (Lupinus albus L.). Plant Cell Environ. 1989, 12, 285–292. [Google Scholar] [CrossRef]
- Kerley, S.J. The effect of soil liming on shoot development, root growth, and cluster root activity of white lupin. Biol. Fertil. Soils 2000, 32, 94–101. [Google Scholar] [CrossRef]
- Howieson, J.G.; Fillery, I.R.P.; Legocki, A.B.; Sikorski, M.M.; Stepkowski, T.; Minchin, F.R.; Dilworth, M.J. Nodulation, nitrogen fixation and nitrogen balance. In Lupins as Crop Plants: Biology, Production and Utilization; Gladstones, J.S., Atkins, C., Hamblin, J., Eds.; CABI: Wallingford, UK, 1998; pp. 149–180. [Google Scholar]
- Tang, C.; Zheng, S.J.; Qiao, Y.F.; Wang, G.H.; Han, X.Z. Interactions between high pH and iron supply on nodulation and iron nutrition of Lupinus albus L. genotypes differing in sensitivity to iron deficiency. Plant Soil 2006, 279, 153–162. [Google Scholar] [CrossRef]
- Annicchiarico, P.; Thami Alami, I. Enhancing white lupin (Lupinus albus L.) adaptation to calcareous soils through lime-tolerant plant germplasm and Bradyrhizobium strains. Plant Soil 2012, 350, 134–144. [Google Scholar] [CrossRef]
- Christiansen, J.L.; Raza, S.; Jørnsgaard, B.; Mahmoud, S.A.; Ortiz, R. Potential of landrace germplasm for genetic enhancement of white lupin in Egypt. Genet. Res. Crop Evol. 2000, 47, 425–430. [Google Scholar] [CrossRef]
- Raza, S.; Abdel-Wahab, A.; Jørnsgaard, B.; Christiansen, J.L. Calcium tolerance and ion uptake of Egyptian lupin landraces on calcareous soils. Afr. Crop Sci. J. 2000, 9, 393–400. [Google Scholar] [CrossRef]
- Kerley, S.J.; Norgaard, C.; Leach, J.E.; Christiansen, J.L.; Huyghe, C.; Römer, P. The development of potential screens based on shoot calcium and iron concentrations for the evaluation of tolerance in Egyptian genotypes of white lupin (Lupinus albus L.) to limed soils. Ann. Botany 2002, 89, 341–349. [Google Scholar] [CrossRef] [PubMed]
- Annicchiarico, P.; Harzic, N.; Carroni, A.M. Adaptation, diversity, and exploitation of global white lupin (Lupinus albus L.) landrace genetic resources. Field Crops Res. 2010, 119, 114–124. [Google Scholar] [CrossRef]
- Kerley, S.J.; Shield, I.F.; Huyghe, C. Specific and genotypic variation in the nutrient content of lupin species in soils of neutral and alkaline pH. Aust. J. Agric. Res. 2001, 52, 93–102. [Google Scholar] [CrossRef]
- Brand, J.D.; Tang, C.; Rathjen, A.J. Screening rough-seeded lupins (Lupinus pilosus Murr. and Lupinus atlanticus Glads.) for tolerance to calcareous soils. Plant Soil 2002, 245, 261–275. [Google Scholar] [CrossRef]
- Kerley, S.J.; Huyghe, C. Comparison of acid and alkaline soil and liquid culture growth systems for studies of shoot and root characteristics of white lupin (Lupinus albus L.) genotypes. Plant Soil 2001, 236, 275–286. [Google Scholar] [CrossRef]
- Meuwissen, T.H.E.; Hayes, B.J.; Goddard, M.E. Prediction of total genetic value using genome-wide dense marker maps. Genetics 2001, 157, 1819–1829. [Google Scholar] [CrossRef]
- Heffner, E.L.; Sorrells, M.E.; Jannink, J.-L. Genomic selection for crop improvement. Crop Sci. 2009, 49, 1–12. [Google Scholar] [CrossRef]
- Elshire, R.J.; Glaubitz, J.C.; Sun, Q.; Poland, J.A.; Kawamoto, K.; Buckler, E.S.; Mitchell, S.E. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE 2011, 6, e19379. [Google Scholar] [CrossRef]
- Elbasyoni, I.S.; Lorenz, A.J.; Guttieri, M.; Frels, K.; Baenziger, P.S.; Poland, J.; Akhunov, E. A comparison between genotyping-by-sequencing and array-based scoring of SNPs for genomic prediction accuracy in winter wheat. Plant Sci. 2018, 270, 123–130. [Google Scholar] [CrossRef]
- Książkiewicz, M.; Nazzicari, N.; Yang, H.; Nelson, N.; Renshaw, D.; Rychel, S.; Ferrari, B.; Carelli, M.; Tomaszewska, M.; Stawiński, S.; et al. A high-density consensus linkage map of white lupin highlights synteny with narrow-leafed lupin and provides markers tagging key agronomic traits. Sci. Rep. 2017, 7, 15335. [Google Scholar] [CrossRef]
- Annicchiarico, P.; Nazzicari, N.; Ferrari, B.; Harzic, N.; Carroni, A.M.; Romani, M.; Pecetti, L. Genomic prediction of grain yield in contrasting environments for white lupin genetic resources. Mol. Breed. 2019, 39, 142. [Google Scholar] [CrossRef]
- Annicchiarico, P.; Nazzicari, N.; Ferrari, B. Genetic and genomic resources in white lupin and the application of genomic selection. In The Lupin Genome; Singh, K.B., Kamphuis, L.G., Nelson, M.N., Eds.; Springer Nature Switzerland AG: Cham, Switzerland, 2020; pp. 139–149. [Google Scholar]
- Hufnagel, B.; Marques, A.; Soriano, A.; Marquès, L.; Divol, F.; Doumas, P.; Sallet, E.; Mancinotti, D.; Carrere, S.; Marande, W.; et al. High-quality genome sequence of white lupin provides insight into soil exploration and seed quality. Nat. Commun. 2020, 11, 492. [Google Scholar] [CrossRef]
- Rubio, J.; Cubero, J.I.; Martín, L.M.; Suso, M.J.; Flores, F. Biplot analysis of trait relations of white lupin in Spain. Euphytica 2004, 135, 217–224. [Google Scholar] [CrossRef]
- González-Andrés, F.; Casquero, P.A.; San-Pedro, C.; Hernández-Sánchez, E. Diversity in white lupin (Lupinus albus L.) landraces from northwest Iberian plateau. Genet. Res. Crop Evol. 2007, 54, 27–44. [Google Scholar] [CrossRef]
- Pecetti, L.; Annicchiarico, P.; Crosta, M.; Notario, T.; Ferrari, B.; Nazzicari, N. White lupin drought tolerance: Genetic variation, trait genetic architecture, and genome-enabled prediction. Int. J. Mol. Sci. 2023, 24, 2351. [Google Scholar] [CrossRef] [PubMed]
- Hufnagel, B.; Soriano, A.; Taylor, J.; Divol, F.; Kroc, M.; Sanders, H.; Yeheyis, L.; Nelson, M.; Péret, B. Pangenome of white lupin provides insights into the diversity of the species. Plant Biotechnol. J. 2021, 19, 2532–2543. [Google Scholar] [CrossRef]
- Vasconcelos, M.; Eckert, H.; Arahana, V.; Graef, G.; Grusak, M.A.; Clemente, T. Molecular and phenotypic characterization of transgenic soybean expressing the Arabidopsis ferric chelate reductase gene, FRO2. Planta 2006, 224, 1116–1128. [Google Scholar] [CrossRef]
- Tian, Q.; Zhang, X.; Yang, A.; Wang, T.; Zhang, W.H. CIPK23 is involved in iron acquisition of Arabidopsis by affecting ferric chelate reductase activity. Plant Sci. 2016, 246, 70–79. [Google Scholar] [CrossRef]
- Pestana, M.; David, M.; De Varennes, A.; Abadía, J.; Faria, E.A. Responses of “Newhall” orange trees to iron deficiency in hydroponics: Effects on leaf chlorophyll, photosynthetic efficiency, and root ferric chelate reductase activity. J. Plant Nutr. 2001, 24, 1609–1620. [Google Scholar] [CrossRef]
- Zhao, Y.; Liu, S.; Li, F.; Sun, M.; Liang, Z.; Sun, Z.; Yu, F.; Li, H. The low ferric chelate reductase activity and high apoplastic pH in leaves cause iron deficiency chlorosis in ‘Huangguan’ pears grafted onto quince A grown in calcareous soil. Sci. Hortic. 2023, 310, 111754. [Google Scholar] [CrossRef]
- Ishimaru, Y.; Kim, S.; Tsukamoto, T.; Oki, H.; Kobayashi, T.; Watanabe, S.; Matsuhashi, S.; Takahashi, M.; Nakanishi, H.; Mori, S.; et al. Mutational reconstructed ferric chelate reductase confers enhanced tolerance in rice to iron deficiency in calcareous soil. Proc. Natl. Acad. Sci. USA 2007, 104, 7373–7378. [Google Scholar] [CrossRef] [PubMed]
- Mori, S. Iron acquisition by plants. Curr. Opin. Plant Biol. 1999, 2, 250–253. [Google Scholar] [CrossRef] [PubMed]
- Annicchiarico, P. Feed legumes for truly sustainable crop-animal systems. Ital. J. Agron. 2017, 12, 880. [Google Scholar] [CrossRef]
- Annicchiarico, P.; Romani, M.; Pecetti, L. White lupin variation for adaptation to severe drought stress. Plant Breed. 2018, 137, 782–789. [Google Scholar] [CrossRef]
- Aniszewski, T. Alkaloids-Secrets of Life: Alkaloid Chemistry, Biological Significance, Applications and Ecological Role, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2007. [Google Scholar]
- Wink, M.; Hartmann, T. Sites of enzymatic synthesis of quinolizidine alkaloids and their accumulation in Lupinus polyphyllus. Z. Pflanzenphysiol. 1981, 102, 337–344. [Google Scholar] [CrossRef]
- Wink, M. Quinolizidine alkaloids. In Methods in Plant Biochemistry; Waterman, P., Ed.; Academic Press: London, UK, 1993; Volume 8, pp. 197–239. [Google Scholar]
- DeLacy, I.H.; Basford, K.E.; Cooper, M.; Bull, J.K.; McLaren, C.G. Analysis of multi-environment data–an historical perspective. In Plant Adaptation and Crop Improvement; Cooper, M., Hammer, G.L., Eds.; CAB International: Wallingford, UK, 1996; pp. 39–124. [Google Scholar]
- Itoh, Y.; Yamada, Y. Relationships between genotype × environment interaction and genetic correlation of the same trait measured in different environments. Theor. Appl. Genet. 1990, 80, 11–16. [Google Scholar] [CrossRef]
- SAS Institute. SAS/STAT® 9.3 User’s Guide; SAS Institute Inc.: Cary, NC, USA, 2011. [Google Scholar]
- Murray, K.D.; Borevitz, J.O. Axe: Rapid, competitive sequence read demultiplexing using a trie. Bioinformatics 2018, 34, 3924–3925. [Google Scholar] [CrossRef]
- Puritz, J.B.; Hollenbeck, C.M.; Gold, J.R. dDocent: A RADseq, variant-calling pipeline designed for population genomics of nonmodel organisms. PeerJ 2014, 2, e431. [Google Scholar] [CrossRef] [PubMed]
- Danecek, P.; Auton, A.; Abecasis, G.; Albers, C.A.; Banks, E.; DePristo, M.A.; Handsaker, R.E.; Lunter, G.; Marth, G.T.; Sherry, S.T.; et al. The variant call format and VCFtools. Bioinformatics 2011, 27, 2156–2158. [Google Scholar] [CrossRef]
- Nazzicari, N.; Biscarini, F.; Cozzi, P.; Brummer, E.C.; Annicchiarico, P. Marker imputation efficiency for genotyping-by-sequencing data in rice (Oryza sativa) and alfalfa (Medicago sativa). Mol. Breed. 2016, 36, 69. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Stekhoven, D.J.; Bühlmann, P. MissForest–non-parametric missing value imputation for mixed-type data. Bioinformatics 2012, 28, 112–118. [Google Scholar] [CrossRef] [PubMed]
- Yendle, P.W.; Macfie, H.J.H. Discriminant principal components analysis. J. Chemom. 1989, 3, 589–600. [Google Scholar] [CrossRef]
- Jombart, T.; Ahmed, I. Adegenet 1.3-1: New tools for the analysis of genome-wide SNP data. Bioinformatics 2011, 27, 3070–3071. [Google Scholar] [CrossRef] [PubMed]
- Covarrubias-Pazaran, G. Genome-assisted prediction of quantitative traits using the R package sommer. PLoS ONE 2016, 11, e0156744. [Google Scholar] [CrossRef]
- Marroni, F.; Pinosio, S.; Zaina, G.; Fogolari, F.; Felice, N.; Cattonaro, F.; Morgante, M. Nucleotide diversity and linkage disequilibrium in Populus nigra cinnamyl alcohol dehydrogenase (CAD4) gene. Tree Genet. Genomes 2011, 7, 1011–1023. [Google Scholar] [CrossRef]
- Huang, M.; Liu, X.; Zhou, Y.; Summers, R.M.; Zhang, Z. BLINK: A package for the next level of genome-wide association studies with both individuals and markers in the millions. Gigascience 2019, 8, 154. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhang, Z. GAPIT Version 3: Boosting power and accuracy for genomic association and prediction. GBP 2021, 19, 629–640. [Google Scholar] [CrossRef]
- Nazzicari, N.; Biscarini, F. Stacked kinship CNN vs. GBLUP for genomic predictions of additive and complex continuous phenotypes. Sci. Rep. 2022, 12, 19889. [Google Scholar] [CrossRef] [PubMed]
- Endelman, J.B. Ridge regression and other kernels for genomic selection with R package rrBLUP. Plant Genome 2011, 4, 250–255. [Google Scholar] [CrossRef]
- Park, T.; Casella, G. The bayesian lasso. J. Am. Stat. Assoc. 2008, 103, 681–686. [Google Scholar] [CrossRef]
- Astle, W.; Balding, D.J. Population structure and cryptic relatedness in genetic association studies. Stat. Sci. 2009, 24, 451–471. [Google Scholar] [CrossRef]
- Lopez, B.I.; Lee, S.H.; Park, J.E.; Shin, D.H.; Oh, J.D.; de Las Heras-Saldana, S.; Van Der Werf, J.; Chai, H.H.; Park, W.; Lim, D. Weighted genomic best linear unbiased prediction for carcass traits in Hanwoo cattle. Genes 2019, 10, 1019. [Google Scholar] [CrossRef]
- van Rossum, B.J.; Kruijer, W. statgenGWAS: Genome Wide Association Studies. R Package Version 1.0.5. 2020. Available online: https://CRAN.R-project.org/package=statgenGWAS (accessed on 15 December 2022).
Variable | Larissa (Greece) | Ens (The Netherlands) |
---|---|---|
Soil total CaCO3 content (g/kg) 1 | 61 | 50 |
Soil active CaCO3 content (g/kg) 1,2 | 22 | 18 |
Soil pH (in H2O) 1 | 7.6 | 7.9 |
Soil P2O5 (mg/kg) 1 | 11.0 | 5.2 |
Soil N (g/kg) 1 | 0.10 | 1.22 |
Soil texture class 1 | Clay | Clay-loam |
Rainfall over crop cycle (mm) | 269 | 433 |
Mean 1 | CVg 2 | H2 | ||||||
---|---|---|---|---|---|---|---|---|
Trait | Larissa | Ens | Larissa | Ens | Larissa | Ens | GEI p Value 3 | rg4 |
Dry grain yield (t/ha) | 0.481 b | 2.347 a | 28.1 ** | 15.2 ** | 0.48 | 0.36 | ** | 0.32 † |
LS, mean of two scores (1–9) | 6.65 a | 2.53 b | 13.3 ** | 16.4 ** | 0.77 | 0.39 | ** | 0.03 |
LS, last score (1–9) | 7.49 a | 2.78 b | 8.2 ** | 21.4 ** | 0.55 | 0.39 | ** | 0.03 |
Proportion of plants with seeds | 0.797 b | 0.905 a | 15.0 * | 0.0 NS | 0.64 | 0.00 | ** | − |
Plant height (cm) | 36.2 b | 76.3 a | 13.7 ** | 7.2 ** | 0.68 | 0.46 | * | 0.73 ** |
Number of pods per plant | 2.63 b | 9.23 a | 19.0 ** | 16.0 ** | 0.43 | 0.48 | ** | 0.33 † |
Number of seeds per pod | 2.56 b | 2.76 a | 20.8 ** | 13.7 ** | 0.57 | 0.58 | ** | −0.13 |
Individual seed weight (g) | 0.253 a | 0.248 a | 18.7 ** | 11.9 ** | 0.72 | 0.71 | ** | 0.68 ** |
Trait | Larissa | Ens |
---|---|---|
LS, mean of two scores | −0.68 ** | −0.41 ** |
LS, last score | −0.72 ** | −0.36 ** |
Proportion of plants with seeds | 0.30 ** | − |
Plant height | 0.52 ** | 0.00 NS |
Number of pods per plant | 0.63 ** | 0.41 ** |
Number of seeds per pod | −0.03 NS | 0.36 ** |
Individual seed weight | 0.32 ** | 0.01 NS |
Trait [Prediction, Site] | Model 1 | Population Structure Included | Maximum Missing Rate per SNP Marker | Predictive Ability 2 |
---|---|---|---|---|
Dry grain yield [IP, GR] | rrBLUP | No | 0.15 | 0.341 |
Dry grain yield [IP, NL] | RKHS | No | 0.30 | 0.226 |
LS score [IP, GR] | rrBLUP | No | 0.15 | 0.338 |
LS score [IP, NL] | RKHS | No | 0.30 | 0.538 |
Number of pods per plant [IP, GR] | WGBLUP | No | 0.15 | 0.275 |
Number of pods per plant [IP, NL] | RKHS | No | 0.15 | 0.386 |
Number of seeds per pod [IP, GR] | WGBLUP | No | 0.15 | 0.367 |
Number of seeds per pod [IP, NL] | WGBLUP | Yes | 0.20 | 0.639 |
Individual seed weight [IP, GR] | WGBLUP | Yes | 0.30 | 0.636 |
Individual seed weight [IP, NL] | RKHS | No | 0.30 | 0.690 |
Plant height [IP, GR] | BL | Yes | 0.15 | 0.387 |
Plant height [IP, NL] | RKHS | No | 0.30 | 0.413 |
Individual seed weight [CP] | RKHS | No | 0.15/0.20 | 0.486 |
Plant height [CP] | rrBLUP/BL | Yes | 0.30 | 0.331 |
Model 1 | Maximum Missing Rate per SNP Marker | |||
---|---|---|---|---|
0.15 | 0.20 | 0.30 | Average | |
BL | 0.411 | 0.402 | 0.400 | 0.405 |
RKHS | 0.415 | 0.413 | 0.405 | 0.411 |
rrBLUP | 0.416 | 0.412 | 0.407 | 0.412 |
WGBLUP | 0.409 | 0.408 | 0.404 | 0.407 |
Average | 0.413 | 0.409 | 0.404 | 0.409 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Annicchiarico, P.; de Buck, A.J.; Vlachostergios, D.N.; Heupink, D.; Koskosidis, A.; Nazzicari, N.; Crosta, M. White Lupin Adaptation to Moderately Calcareous Soils: Phenotypic Variation and Genome-Enabled Prediction. Plants 2023, 12, 1139. https://doi.org/10.3390/plants12051139
Annicchiarico P, de Buck AJ, Vlachostergios DN, Heupink D, Koskosidis A, Nazzicari N, Crosta M. White Lupin Adaptation to Moderately Calcareous Soils: Phenotypic Variation and Genome-Enabled Prediction. Plants. 2023; 12(5):1139. https://doi.org/10.3390/plants12051139
Chicago/Turabian StyleAnnicchiarico, Paolo, Abco J. de Buck, Dimitrios N. Vlachostergios, Dennis Heupink, Avraam Koskosidis, Nelson Nazzicari, and Margherita Crosta. 2023. "White Lupin Adaptation to Moderately Calcareous Soils: Phenotypic Variation and Genome-Enabled Prediction" Plants 12, no. 5: 1139. https://doi.org/10.3390/plants12051139
APA StyleAnnicchiarico, P., de Buck, A. J., Vlachostergios, D. N., Heupink, D., Koskosidis, A., Nazzicari, N., & Crosta, M. (2023). White Lupin Adaptation to Moderately Calcareous Soils: Phenotypic Variation and Genome-Enabled Prediction. Plants, 12(5), 1139. https://doi.org/10.3390/plants12051139