Insights into the Taxonomically Challenging Hexaploid Alpine Shrub Willows of Salix Sections Phylicifoliae and Nigricantes (Salicaceae)
Abstract
:1. Introduction
2. Results
2.1. Phylogenetic Analyses and Genetic Structure Based on RAD Sequencing Data
2.2. Infrared Spectroscopy Data
2.3. Ploidy Level Determinations for S. bicolor and S. kaptarae
2.4. Morphometric Data of S. phylicifolia, S. bicolor and S. hegetschweileri
3. Discussion
3.1. Comparison of Datasets
3.2. Evolutionary History and Biogeography
3.3. Taxonomy of the Section Nigricantes
3.4. Taxonomy of the Section Phylicifoliae
4. Materials and Methods
4.1. Studied Material
4.2. Molecular Analyses
4.3. Co-Ancestry Analysis and Genetic Structure
4.4. Leaf Spectroscopy and Spectral Analyses
4.5. Flow Cytometry
4.6. Morphometric Analyses
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Otto, S.P.; Whitton, J. Polyploid incidence and evolution. Annu. Rev. Genet. 2000, 34, 401–437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rothfels, C.J. Polyploid phylogenetics. New Phytol. 2021, 230, 66–72. [Google Scholar] [CrossRef] [PubMed]
- Van de Peer, Y.; Mizrachi, E.; Marchal, K. The evolutionary significance of polyploidy. Nat. Rev. Genet. 2017, 18, 411–424. [Google Scholar] [CrossRef] [PubMed]
- Comai, L. The advantages and disadvantages of being polyploid. Nat. Rev. Genet. 2005, 6, 836–846. [Google Scholar] [CrossRef]
- Blischak, P.D.; Mabry, M.E.; Conant, G.C.; Pires, J.C. Integrating networks, phylogenomics, and population genomics for the study of polyploidy. Annu. Rev. Ecol. Evol. Syst. 2018, 49, 253–278. [Google Scholar] [CrossRef]
- Hörandl, E. The complex causality of geographical parthenogenesis. New Phytol. 2006, 171, 525–538. [Google Scholar] [CrossRef]
- Blaine Marchant, D.; Soltis, D.E.; Soltis, P.S. Patterns of abiotic niche shifts in allopolyploids relative to their progenitors. N. Phytol. 2016, 212, 708–718. [Google Scholar] [CrossRef] [Green Version]
- Karbstein, K.; Tomasello, S.; Hodač, L.; Lorberg, E.; Daubert, M.; Hörandl, E. Moving beyond assumptions: Polyploidy and environmental effects explain a geographical parthenogenesis scenario in European plants. Mol. Ecol. 2021, 30, 2659–2675. [Google Scholar] [CrossRef]
- Te Beest, M.; Le Roux, J.J.; Richardson, D.M.; Brysting, A.K.; Suda, J.; Kubesova, M.; Pysek, P. The more the better? The role of polyploidy in facilitating plant invasions. Ann. Bot. 2012, 109, 19–45. [Google Scholar] [CrossRef] [Green Version]
- Rice, A.; Šmarda, P.; Novosolov, M.; Drori, M.; Glick, L.; Sabath, N.; Meiri, S.; Belmaker, J.; Mayrose, I. The global biogeography of polyploid plants. Nat. Ecol. Evol. 2019, 3, 265–273. [Google Scholar] [CrossRef]
- Meudt, H.M.; Albach, D.C.; Tanentzap, A.J.; Igea, J.; Newmarch, S.C.; Brandt, A.J.; Lee, W.G.; Tate, J.A. Polyploidy on islands: Its emergence and importance for diversification. Front. Plant Sci. 2021, 12, 637214. [Google Scholar] [CrossRef] [PubMed]
- Abbott, R.; Albach, D.; Ansell, S.; Arntzen, J.W.; Baird, S.J.E.; Bierne, N.; Boughman, J.; Brelsford, A.; Buerkle, C.A.; Buggs, R.; et al. Hybridization and speciation. J. Evol. Biol. 2013, 26, 229–246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van de Peer, Y.; Ashman, T.-L.; Soltis, P.S.; Soltis, D.E. Polyploidy: An evolutionary and ecological force in stressful times. Plant Cell 2021, 33, 11–26. [Google Scholar] [CrossRef] [PubMed]
- Ramsey, J.; Schemske, D.W. Pathways, mechanisms, and rates of polyploid formation in flowering plants. Annu. Rev. Ecol. Syst. 1998, 29, 467–501. [Google Scholar] [CrossRef] [Green Version]
- Hörandl, E. Novel approaches for species concepts and delimitation in polyploids and hybrids. Plants 2022, 11, 204. [Google Scholar] [CrossRef]
- Melichárková, A.; Šlenker, M.; Zozomová-Lihová, J.; Skokanová, K.; Šingliarová, B.; Kačmárová, T.; Caboňová, M.; Kempa, M.; Šrámková, G.; Mandáková, T.; et al. So closely related and yet so different: Strong contrasts between the evolutionary histories of species of the Cardamine pratensis polyploid complex in Central Europe. Front. Plant Sci. 2020, 11, 1988. [Google Scholar] [CrossRef]
- Kelly, L.J.; Leitch, A.R.; Fay, M.F.; Renny-Byfield, S.; Pellicer, J.; Macas, J.; Leitch, I.J. Why size really matters when sequencing plant genomes. Plant Ecol. Divers. 2012, 5, 415–425. [Google Scholar] [CrossRef]
- Argus, G.W. Infrageneric classification of Salix (Salicaceae) in the New World. Syst. Bot. Monogr. 1997, 52, 1–121. [Google Scholar] [CrossRef]
- Chase, M.W.; Knapp, S.; Cox, A.V.; Clarkson, J.J.; Butsko, Y.; Joseph, J.; Savolainen, V.; Parokonny, A.S. Molecular Systematics, GISH and the origin of hybrid taxa in Nicotiana (Solanaceae). Ann. Bot. 2003, 92, 107–127. [Google Scholar] [CrossRef] [Green Version]
- Skvortsov, A.K. Willows of Russia and Adjacent Countries: Taxonomical and Geographical Revision; Zinovjev, A.G., Argus, G.W., Tahvanainen, J., Roininen, H., Eds.; University of Joensuu: Joensuu, Finland, 1999; Volume 39, ISBN 9517087667. [Google Scholar]
- Suda, Y.; Argus, G.W. Chromosome numbers of some North American Salix. Brittonia 1968, 20, 191–197. [Google Scholar] [CrossRef]
- Sommerville, A.H.C. Willows in the environment. Proc. R. Soc. Edinb. 1992, 98B, 215–224. [Google Scholar] [CrossRef]
- Pasteels, J.M.; Rowell-Rahier, M. The chemical ecology of herbivory on willows. Proc. R. Soc. Edinburgh. Sect. B. Biol. Sci. 1992, 98, 63–73. [Google Scholar] [CrossRef] [Green Version]
- Hörandl, E.; Florineth, F.; Hadacek, F. Weiden in Österreich und Angrenzenden Gebieten (Willows in Austria and Adjacent Regions), 2nd ed.; University of Agriculture, Vienna: Vienna, Austria, 2012. [Google Scholar]
- Wagner, N.D.; He, L.; Hörandl, E. The evolutionary history, diversity, and ecology of willows (Salix l.) in the European Alps. Diversity 2021, 13, 146. [Google Scholar] [CrossRef]
- Cronk, Q.; Ruzzier, E.; Belyaeva, I.; Percy, D. Salix transect of Europe: Latitudinal patterns in willow diversity from Greece to arctic Norway. Biodivers. Data J. 2015, 3, e6258. [Google Scholar] [CrossRef] [Green Version]
- Dickmann, D.; Kuzovkina, Y.A. Poplars and willows in the World. In Poplars and Willows: Trees for Society and the Environment; Isebrands, J.G., Richardson, J.E., Eds.; FAO UN and CABI: Rome, Italy, 2014; ISBN 978 92 5 107185 4. [Google Scholar]
- Rechinger, K.H. fil. Salix. In Flora Europaea I; Tutin, H.G., Heywood, V.H., Burges, N.A., Valentine, D.H., Walters, S.M., Webb, D.A., Eds.; University Press: Cambridge, UK, 1964; pp. 43–54. [Google Scholar]
- Wagner, N.D.; Gramlich, S.; Hörandl, E. RAD sequencing resolved phylogenetic relationships in European shrub willows (Salix L. subg. Chamaetia and subg. Vetrix) and revealed multiple evolution of dwarf shrubs. Ecol. Evol. 2018, 8, 8243–8255. [Google Scholar] [CrossRef] [Green Version]
- Wagner, N.D.; He, L.; Hörandl, E. Phylogenomic relationships and evolution of polyploid Salix species revealed by RAD sequencing data. Front. Plant Sci. 2020, 11, 1077. [Google Scholar] [CrossRef]
- Stasinski, L.; White, D.M.; Nelson, P.R.; Ree, R.H.; Meireles, J.E. Reading light: Leaf spectra capture fine-scale diversity of closely related, hybridizing arctic shrubs. N. Phytol. 2021, 232, 2283–2294. [Google Scholar] [CrossRef]
- Paiva, D.N.A.; Perdiz, R.d.O.; Almeida, T.E. Using Near-Infrared Spectroscopy to discriminate closely related species: A case study of neotropical ferns. J. Plant Res. 2021, 134, 509–520. [Google Scholar] [CrossRef]
- Buono, D.; Albach, D.C. Infrared spectroscopy for ploidy estimation—An example in two species of Veronica (Plantaginaceae) using fresh and herbarium specimens. Appl. Plant Sci. 2023; accepted. [Google Scholar]
- Wang, Y.; Xiang, J.; Tang, Y.; Chen, W.; Xu, Y. A Review of the application of Near-Infrared Spectroscopy (NIRS) in forestry. Appl. Spectrosc. Rev. 2022, 57, 300–317. [Google Scholar] [CrossRef]
- Neumann, A. Die Mitteleuropäischen Salix-Arten; Mitteilung; Oesterreichischer Agrarverlag: Wien, Austria, 1981. [Google Scholar]
- Jensen, R.J.; Ciofani, K.M.; Miramontes, L.C. Lines, outlines, and landmarks: Morphometric analyses of leaves of Acer rubrum, Acer saccharinum (Aceraceae) and their hybrid. Taxon 2002, 51, 475–492. [Google Scholar] [CrossRef]
- Aeschimann, D.; Lauber, K. Flora Alpina: Ein Atlas Sämtlicher 4500 Gefäßpflanzen der Alpen; Haupt Verlag: Bern, Switzerland, 2004. [Google Scholar]
- Eaton, D.A.R.; Spriggs, E.L.; Park, B.; Donoghue, M.J. Misconceptions on missing data in RAD-Seq phylogenetics with a deep-scale example from flowering plants. Syst. Biol. 2017, 66, 399–412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malinsky, M.; Trucchi, E.; Lawson, D.J.; Falush, D. RADpainter and fineRADstructure: Population inference from RADseq data. Mol. Biol. Evol. 2018, 35, 1284–1290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frichot, E.; Mathieu, F.; Trouillon, T.; Bouchard, G.; François, O. Fast and efficient estimation of individual ancestry coefficients. Genetics 2014, 196, 973–983. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karbstein, K.; Tomasello, S.; Hodač, L.; Wagner, N.; Marinček, P.; Barke, B.H.; Paetzold, C.; Hörandl, E. Untying gordian knots: Unraveling reticulate polyploid plant evolution by genomic data using the large Ranunculus auricomus species complex. N. Phytol. 2022, 235, 2081–2098. [Google Scholar] [CrossRef]
- Spriggs, E.L.; Fertakos, M.E. Evolution of Castanea in North America: Restriction-site-associated DNA sequencing and ecological modeling reveal a history of radiation, range shifts, and disease. Am. J. Bot. 2021, 108, 1692–1704. [Google Scholar] [CrossRef]
- Stobie, C.S.; Oosthuizen, C.J.; Cunningham, M.J.; Bloomer, P. Exploring the phylogeography of a hexaploid freshwater fish by RAD Sequencing. Ecol. Evol. 2018, 8, 2326–2342. [Google Scholar] [CrossRef] [Green Version]
- Marinček, P.; Pittet, L.; Wagner, N.D.; Hörandl, E. Evolution of a hybrid zone of two willow species (Salix L.) in the European Alps analyzed by RAD-seq and morphometrics. Ecol. Evol. 2023, 13, e9700. [Google Scholar] [CrossRef]
- Wang, Y.Z.; Dong, W.Y.; Kouba, A.J. Fast Discrimination of Bamboo Species Using VIS/NIR Spectroscopy. J. Appl. Spectrosc. 2016, 83, 826–831. [Google Scholar] [CrossRef]
- Lang, C.; Costa, F.R.C.; Camargo, J.L.C.; Durgante, F.M.; Vicentini, A. Near infrared spectroscopy facilitates rapid identification of both young and mature Amazonian tree species. PLoS ONE 2015, 10, e0134521. [Google Scholar] [CrossRef]
- Gaem, P.H.; Andrade, A.; Mazine, F.F.; Vicentini, A. tree species delimitation in tropical forest inventories: Perspectives from a taxonomically challenging case study. For. Ecol. Manage. 2022, 505, 119900. [Google Scholar] [CrossRef]
- Neumann, A. Die Mitteleuropaeischen Salix-Arten. Mitt. Der Forstl. Bundes-Vers. 1981, 134, 1–151. [Google Scholar]
- Hardig, T.M.; Brunsfeld, S.J.; Fritz, R.S.; Morgan, M.; Orians, C.M. Morphological and molecular evidence for hybridization and introgression in a willow (Salix) hybrid zone. Mol. Ecol. 2000, 9, 9–24. [Google Scholar] [CrossRef] [PubMed]
- Triest, L. Hybridization in staminate and pistillate Salix alba and S. fragilis (Salicaceae): Morphology versus RAPDs. Plant Syst. Evol. 2001, 226, 143–154. [Google Scholar] [CrossRef]
- Lihová, J.; Kudoh, H.; Marhold, K. Morphometric Studies of polyploid Cardamine species (Brassicaceae) from Japan: Solving a long-standing taxonomic and nomenclatural controversy. Aust. Syst. Bot. 2010, 23, 94. [Google Scholar] [CrossRef]
- Morales, M.; Giannoni, F.; Inza, M.V.; Soldati, M.C.; Bessega, C.F.; Poggio, L.; Zelener, N.; Fortunato, R.H. Genetic and morphological diversity and population structure of a polyploid complex of Mimosa (Leguminosae). Syst. Biodivers. 2020, 18, 237–254. [Google Scholar] [CrossRef]
- Laport, R.G.; Ramsey, J. Morphometric analysis of the North American creosote bush (Larrea tridentata, Zygophyllaceae) and the microspatial distribution of its chromosome races. Plant Syst. Evol. 2015, 301, 1581–1599. [Google Scholar] [CrossRef]
- Hörandl, E. Die Gattung Salix in Österreich (mit Berücksichtigung angrenzender Gebiete). Abh. Zool. Bot. Ges. Österreich 1992, 27, 1–170. [Google Scholar]
- Schönswetter, P.; Stehlik, I.; Holderegger, R.; Tribsch, A. Molecular evidence for glacial refugia of mountain plants in the European Alps. Mol. Ecol. 2005, 14, 3547–3555. [Google Scholar] [CrossRef]
- Cambria, S.; Brullo, C.; Brullo, S. Salix kaptarae sp. nov. (Salicaceae) from Crete. Nord. J. Bot. 2019, 37, 1–9. [Google Scholar] [CrossRef]
- Neumann, A.; Polatschek, A. Cytotaxonomischer Beitrag zur Gattung Salix. Ann. Naturhist. Mus. Wien 1972, 76, 612–633. [Google Scholar]
- Büchler, W. Neue Chromosomenzählungen in der Gattung Salix. II. Bot. Helv. 1986, 96, 135–143. [Google Scholar] [CrossRef]
- Dobeš, C.; Vitek, E. Documented Chromosome Number Checklist of Austrian Vascular Plants; Museum of Natural History Vienna: Vienna, Austria, 2000. [Google Scholar]
- Barclay, C. Crete: Checklist of the vascular plants. Englera 1986, 6, I-XIII+1-138. [Google Scholar] [CrossRef]
- Greuter, W.; Raus, T. Med-Checklist Notulae, 19. Willdenowia 2000, 30, 229–243. [Google Scholar] [CrossRef]
- Bergmeier, E.; Abrahamczyk, S. Current and historical diversity and new records of wetland plants in Crete, Greece. Willdenowia 2008, 38, 433–453. [Google Scholar] [CrossRef] [Green Version]
- Lautenschlager-Fleury, D.; Lautenschlager-Fleury, E. Zur Abklärung der Salix hegetschweileri Heer. Bauhinia 1991, 9, 265–271. [Google Scholar]
- Asker, S.; Jerling, L. Apomixis in Plants; CRC Press: Boca Raton, FL, USA, 1992. [Google Scholar]
- He, L.; Hörandl, E. Does polyploidy inhibit sex chromosome evolution in Angiosperms? Front. Plant Sci. 2022, 13. [Google Scholar] [CrossRef]
- Hörandl, E.; Stuessy, T.F. Paraphyletic groups as natural units of biological classification. Taxon 2010, 59, 1641–1653. [Google Scholar] [CrossRef]
- Rieseberg, L.H.; Brouillet, L. Are many plant species paraphyletic? Taxon 1994, 43, 21–32. [Google Scholar] [CrossRef]
- Buser, R. Kritische Beiträge zur Kenntnis der Schweizerischen Weiden. Ber. Schweiz. Bot. Ges. 1940, 50, 567–788. [Google Scholar]
- Rechinger, K.H. fil. Salix. In Illustrierte Flora von Mitteleuropa III/1; Hegi, G., Ed.; Carl Hanser: Munich, Germany, 1957. [Google Scholar]
- Floderus, B. Two Linnean species of Salix and their allies. Ark. f. Bot. 1939, 29A, 1–54. [Google Scholar]
- Baird, N.A.; Etter, P.D.; Atwood, T.S.; Currey, M.C.; Shiver, A.L.; Lewis, Z.A.; Selker, E.U.; Cresko, W.A.; Johnson, E.A. Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS ONE 2008, 3, e3376. [Google Scholar] [CrossRef] [PubMed]
- Hirsch, C.N.; Buell, C.R. Tapping the promise of genomics in species with complex, nonmodel genomes. Annu. Rev. Plant Biol. 2013, 64, 89–110. [Google Scholar] [CrossRef] [PubMed]
- Clevenger, J.P.; Korani, W.; Ozias-Akins, P.; Jackson, S. Haplotype-based genotyping in polyploids. Front. Plant Sci. 2018, 9, 564. [Google Scholar] [CrossRef] [Green Version]
- Andrews, S. FastQC: A Quality Control Tool for High Throughput Sequence Data. 2010. Available online: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (accessed on 8 January 2023).
- Eaton, D.A.R.; Overcast, I. Ipyrad: Interactive assembly and analysis of RADseq datasets. Bioinformatics 2020, 36, 2592–2594. [Google Scholar] [CrossRef]
- Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014, 30, 1312–1313. [Google Scholar] [CrossRef] [Green Version]
- Pease, J.B.; Brown, J.W.; Walker, J.F.; Hinchliff, C.E.; Smith, S.A. Quartet sampling distinguishes lack of support from conflicting support in the green plant tree of life. Am. J. Bot. 2018, 105, 385–403. [Google Scholar] [CrossRef] [Green Version]
- Frichot, E.; François, O. LEA: An R package for landscape and ecological association studies. Methods Ecol. Evol. 2015, 6, 925–929. [Google Scholar] [CrossRef]
- Weiss, M.; Weigand, H.; Weigand, A.M.; Leese, F. Genome-wide single-nucleotide polymorphism data reveal cryptic species within cryptic freshwater snail species-The case of the Ancylus fluviatilis species complex. Ecol. Evol. 2018, 8, 1063–1072. [Google Scholar] [CrossRef] [Green Version]
- Cavender-Bares, J.; Meireles, J.; Couture, J.; Kaproth, M.; Kingdon, C.; Singh, A.; Serbin, S.; Center, A.; Zuniga, E.; Pilz, G.; et al. Associations of leaf spectra with genetic and phylogenetic variation in oaks: Prospects for remote detection of biodiversity. Remote Sens. 2016, 8, 221. [Google Scholar] [CrossRef] [Green Version]
- Otto, F. DAPI staining of fixed cells for high-resolution flow cytometry of nuclear DNA. In Method in Cell Biology; Darzynkiewicz, Z., Crissman, H.A., Eds.; Academic Press: San Diego, CA, USA, 1990; Volume 33, pp. 105–110. [Google Scholar]
- Zander, M. Untersuchungen zur Identifizierung ausgewählter Vertreter der Gattung Salix L. im NO-deutschen Tiefland, unter besonderer Berücksichtigung des Salix-repens-Komplexes. Mitt. florist. Kart. Sachs. Anhalt. 2000, 5, 3–137. [Google Scholar]
- Willdenow, C.L. 2. Salix. In Berl. Baumz. In Species Plantarum Bd. 4; Nabu Press: Berlin, Germany, 1796; p. 691. [Google Scholar]
- Hammer, O.; Harper, D.A.T.; Ryan, P.D. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 2001, 4, 9. [Google Scholar]
Skvortsov (1999) [20] | Rechinger (1964) [28]; Aeschimann et al. (2004) [37] | Results of This Study | Distribution | ||
---|---|---|---|---|---|
Subsect. Bicolores | S. phylicifolia Group | Sect. Phylicifoliae | |||
S. phylicifolia | subsp. phylicifolia | S. phylicifolia | N. Europe, Russia | S. phylicifolia | N. Eurasia |
S. phylicifolia | subsp. rhaetica (incl. S. bicolor) | S. hegetschweileri | Alps | (incl. S. bicolor, excl. S. hegetschweileri) | and Central European Mts. |
S. basaltica (? incl. S. cantabrica) | S. bicolor (incl. S. basaltica) | European mts. | not analyzed | Not analyzed Pyrenees, Massif Central | |
Sect. Nigricantes | S. myrsinifolia group | Sect. Nigricantes | |||
S. hegetschweileri | Alps (endemic) | ||||
S. myrsinifolia | subsp. myrsinifolia | S. myrsinifolia | Eurasia | S. myrsinifolia s.l. | Eurasia |
S. myrsinifolia | subsp. borealis | S. borealis | N. Europe | S. myrsinifolia s.l. | Eurasia |
S. mielichhoferi | S. mielichhoferi | Alps | S. mielichhoferi | Alps (endemic) | |
S. apennina | S. apennina | Apennines, S. Alps | S. apennina | Apennines, S. Alps | |
Sect. Vetrix | |||||
- | S. cantabrica | Iberian Peninsula | S. cantabrica | Iberian Peninsula (endemic) | |
- | S. kaptarae (syn. of S. cinerea?) | Crete |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wagner, N.D.; Marinček, P.; Pittet, L.; Hörandl, E. Insights into the Taxonomically Challenging Hexaploid Alpine Shrub Willows of Salix Sections Phylicifoliae and Nigricantes (Salicaceae). Plants 2023, 12, 1144. https://doi.org/10.3390/plants12051144
Wagner ND, Marinček P, Pittet L, Hörandl E. Insights into the Taxonomically Challenging Hexaploid Alpine Shrub Willows of Salix Sections Phylicifoliae and Nigricantes (Salicaceae). Plants. 2023; 12(5):1144. https://doi.org/10.3390/plants12051144
Chicago/Turabian StyleWagner, Natascha D., Pia Marinček, Loïc Pittet, and Elvira Hörandl. 2023. "Insights into the Taxonomically Challenging Hexaploid Alpine Shrub Willows of Salix Sections Phylicifoliae and Nigricantes (Salicaceae)" Plants 12, no. 5: 1144. https://doi.org/10.3390/plants12051144
APA StyleWagner, N. D., Marinček, P., Pittet, L., & Hörandl, E. (2023). Insights into the Taxonomically Challenging Hexaploid Alpine Shrub Willows of Salix Sections Phylicifoliae and Nigricantes (Salicaceae). Plants, 12(5), 1144. https://doi.org/10.3390/plants12051144