Phytochemical Profile of Trigonella caerulea (Blue Fenugreek) Herb and Quantification of Aroma-Determining Constituents
Abstract
:1. Introduction
2. Results
2.1. Primary Metabolites
2.1.1. Polar Metabolites
2.1.2. Fatty Acid Profile
2.1.3. Quantification of α-Keto Acids
2.2. Secondary (Specialized) Metabolites
2.2.1. Quantification of Volatile Constituents in Commercial Samples
2.2.2. Isolation and Identification of Flavonoids
3. Discussion
4. Materials and Methods
4.1. Plant Material and Chemical Reagents
4.2. General Experimental Procedures
4.3. Extraction and Isolation of Secondary Metabolites
4.4. Qualitative and Quantitative Analyses
4.4.1. Analysis of Polar Metabolites
4.4.2. Analysis of Fatty Acid Profile
4.4.3. Analysis of Volatile Constituents
4.4.4. Analysis of α-Keto Acids
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Trigonella caerulea (L.) Ser. Available online: http://www.worldfloraonline.org/taxon/wfo-0000214019 (accessed on 9 February 2023).
- Dangi, R.S.; Lagu, M.D.; Choudhary, L.B.; Ranjekar, P.K.; Gupta, V.S. Assessment of Genetic Diversity in Trigonella foenum-graecum and Trigonella caerulea using ISSR and RAPD Markers. BMC Plant Biol. 2004, 4, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farag, M.A.; Rasheed, D.M.; Kropf, M.; Heiss, A.G. Metabolite Profiling in Trigonella Seeds via UPLC-MS and GC-MS Analyzed Using Multivariate Data Analyses. Anal. Bioanal. Chem. 2016, 408, 8065–8078. [Google Scholar] [CrossRef] [PubMed]
- Hanelt, P. Mansfeld’s Encyclopedia of Agricultural and Horticultural Crops: (Except Ornamentals); Springer: Berlin/Heidelberg, Germany, 2001; pp. 864–866. [Google Scholar]
- Siener, R.; Seidler, A.; Hönow, R. Oxalate-Rich Foods. Food Sci. Technol. 2021, 41, 169–173. [Google Scholar] [CrossRef]
- Rodov, V.; Vinokur, Y.; Gogia, N.; Chkhikvishvili, I.D. Hydrophilic and Lipophilic Antioxidant Capacities of Georgian Spices for Meat and their Possible Health Implication. Georgian Med. News 2010, 179, 61–65. [Google Scholar]
- Ranjbar, M.; Karamian, R.; Hajmoradi, Z. Composition of the Essential Oil of Trigonella disperma from Iran. Chem. Nat. Compd. 2009, 45, 116–117. [Google Scholar] [CrossRef]
- Ney, K.H. Untersuchung des Aromas von Ziegerklee (Coerulea mellilotus), der Schlüsselverbindungen des Aromas von Schabzieger Käse (Schweizer Kräuterkäse). Gordian 1986, 86, 9–10. [Google Scholar]
- Gasteiger, H.; Wieser, G.; Bachmann, H. So Kocht Südtirol. Eine Kulinarische Reise von den Alpen in den Süden, 8th ed.; Athesia-Tappeiner: Bolzano, Italy, 2003; p. 452. [Google Scholar]
- Brenac, P.; Sauvaire, Y. Chemotaxonomic Value of Sterols and Steroidal Sapogenins in the Genus Trigonella. Biochem. Syst. Ecol. 1996, 24, 157–164. [Google Scholar] [CrossRef]
- Dinu, M.; Ancuceanu, R.; Ilie, D.-C.; Munteanu, C.; Aram, C. A Comparative Morphological and Chemical Study of the Seeds from Trigonella foenum-graecum (L.) and T. caerulea (L.) Ser. Species. Farmacia 2013, 61, 13. [Google Scholar]
- Hidalgo, F.J.; Navarro, J.L.; Delgado, R.M.; Zamora, R. Determination of α-Keto Acids in Pork Meat and Iberian Ham via Tandem Mass Spectrometry. Food Chem. 2013, 140, 183–188. [Google Scholar] [CrossRef]
- Kappler, K.; Grothe, T.; Srivastava, S.; Jagtap, M. Evaluation of the Efficacy and Safety of Blue Fenugreek Kale Extract on Skin Health and Aging: In-vitro and Clinical Evidences. Clin. Cosmet. Investig. Dermatol. 2022, 15, 2051–2064. [Google Scholar] [CrossRef]
- Fiehn, O. Metabolomics by Gas Chromatography–Mass Spectrometry: Combined Targeted and Untargeted Profiling. Curr. Protoc. Mol. Biol. 2016, 114, 30.4.1–30.4.32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noguchi, K.; Mizukoshi, T.; Miyano, H.; Yamada, N. Development of a new LC-MS/MS method for the quantification of keto acids. Chromatography 2014, 35, 117–123. [Google Scholar] [CrossRef]
- Lee, S.H.; Kim, S.O.; Chung, B.C. Gas Chromatographic-Mass Spectrometric Determination of Urinary Oxoacids Using O-(2,3,4,5,6-Pentafluorobenzyl)oxime-Trimethylsilyl Ester Derivatization and Cation-Exchange Chromatography. J. Chromatogr. B Biomed. Sci. Appl. 1998, 719, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Abraham, M.H.; Sánchez-Moreno, R.; Cometto-Muñiz, J.E.; Cain, W.S. An Algorithm for 353 Odor Detection Thresholds in Humans. Chem. Senses 2012, 37, 207–218. [Google Scholar] [CrossRef] [Green Version]
- Kelley, L.E.; Cadwallader, K.R. Identification and Quantitation of Potent Odorants in Spearmint Oils. J. Agric. Food Chem. 2018, 66, 2414–2421. [Google Scholar] [CrossRef]
- Liu, C.; Wang, C.; Zheng, T.; Zhao, M.; Gong, W.; Wang, Q.; Yan, L.; Zhang, W. Characterization of Key Odor-Active Compounds in Sun-Dried Black Tea by Sensory and Instrumental-Directed Flavor Analysis. Foods 2022, 11, 1740. [Google Scholar] [CrossRef]
- Chen, C.; Zhou, W.; Yu, H.; Yuan, J.; Tian, H. Evaluation of the Perceptual Interactions among Aldehydes in a Cheddar Cheese Matrix According to Odor Threshold and Aroma Intensity. Molecules 2020, 25, 4308. [Google Scholar] [CrossRef]
- Lin, H.; Liu, Y.; He, Q.; Liu, P.; Che, Z.; Wang, X.; Huang, J. Characterization of Odor Components of Pixian Douban (Broad Bean Paste) by Aroma Extract Dilute Analysis and Odor Activity Values. Int. J. Food Prop. 2019, 22, 1223–1234. [Google Scholar] [CrossRef] [Green Version]
- Sosa-Moguel, O.; Pino, J.A.; Sauri-Duch, E.; Cuevas-Glory, L. Characterization of Odor-Active Compounds in Three Varieties of Ciruela (Spondias purpurea L.) Fruit. Int. J. Food Prop. 2018, 21, 1008–1016. [Google Scholar] [CrossRef] [Green Version]
- Niu, Y.; Wang, P.; Xiao, Q.; Xiao, Z.; Mao, H.; Zhang, J. Characterization of Odor-Active Volatiles and Odor Contribution Based on Binary Interaction Effects in Mango and Vodka Cocktail. Molecules 2020, 25, 1083. [Google Scholar] [CrossRef] [Green Version]
- Lillard, D.A. Aqueous Odor Thresholds of Organic Pollutants in Industrial Effluents; National Environmental Research Center: Springfield, VA, USA, 1975; p. 8.
- Mulinacci, N.; Vincieri, F.F.; Baldi, A.; Bambagiotti-Alberti, M.; Sendl, A.; Wagner, H. Flavonol Glycosides from Sedum telephium subspecies maximum Leaves. Phytochemistry 1995, 38, 531–533. [Google Scholar] [CrossRef]
- Kazuma, K.; Noda, N.; Suzuki, M. Malonylated Flavonol Glycosides from the Petals of Clitoria ternatea. Phytochemistry 2003, 62, 229–237. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Peng, J.; Fan, G.; Wu, Y. Isolation and Purification of Flavonoid Glycosides from Trollius ledebouri Using High-Speed Counter-Current Chromatography by Stepwise Increasing the Flow-Rate of the Mobile Phase. J. Chromatogr. A 2005, 1092, 216–221. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.J.; Kim, B.-G.; Ahn, J.H. Regioselective Synthesis of Flavonoid Biglycosides Using Escherichia coli Harboring Two Glycosyltransferases. Appl. Microbiol. Biotechnol. 2013, 97, 5275–5282. [Google Scholar] [CrossRef]
- Iwashina, T.; Yamaguchi, M.A.; Nakayama, M.; Onozaki, T.; Yoshida, H.; Kawanobu, S.; Ono, H.; Okamura, M. Kaempferol Glycosides in the Flowers of Carnation and their Contribution to the Creamy White Flower Color. Nat. Prod. Commun. 2010, 5, 1903–1906. [Google Scholar] [CrossRef]
- Lahuta, L.B.; Szablińska, J.; Ciak, M.; Górecki, R.J. The Occurrence and Accumulation of D-Pinitol in Fenugreek (Trigonella foenum graecum L.). Acta Physiol. Plant 2018, 40, 155. [Google Scholar] [CrossRef] [Green Version]
- Narayanan, C.R.; Joshi, D.D.; Mujumdar, A.M.; Dhekne, V.V. Pinitol—A New Anti-Diabetic Compound from the Leaves of Bougainvillea spectabilis. Curr. Sci. 1987, 56, 139–141. [Google Scholar]
- Hernández-Mijares, A.; Bañuls, C.; Peris, J.E.; Monzó, N.; Jover, A.; Bellod, L.; Victor, V.M.; Rocha, M. A Single Acute Dose of Pinitol from a Naturally-Occurring Food Ingredient Decreases Hyperglycaemia and Circulating Insulin Levels in Healthy Subjects. Food Chem. 2013, 141, 1267–1272. [Google Scholar] [CrossRef]
- Do, G.-M.; Choi, M.-S.; Kim, H.-J.; Woo, M.-N.; Lee, M.-K.; Jeon, S.-M. Soy Pinitol Acts Partly as an Insulin Sensitizer or Insulin Mediator in 3T3-L1 Preadipocytes. Genes Nutr. 2008, 2, 359–364. [Google Scholar] [CrossRef] [Green Version]
- Grosch, W. Detection of Potent Odorants in Foods by Aroma Extract Dilution Analysis. Trends Food Sci. Technol. 1993, 4, 68–73. [Google Scholar] [CrossRef]
Compound Name | tR 1 | RIexp 2 | RIlit 3 | TC1 | TC2 | TC3 |
---|---|---|---|---|---|---|
myristic acid methyl ester | 35.14 | 1729 | 1725 | 1.01 | 1.51 | 0.81 |
palmitic acid methyl ester | 39.53 | 1931 | 1928 | 42.35 | 41.87 | 43.31 |
margaric acid methyl ester | 41.52 | 2024 | 2021 | 0.78 | 0.51 | 0.91 |
linoleic acid methyl ester | 42.90 | 2094 | 2093 | 11.37 | 12.36 | 11.26 |
α-linolenic acid methyl ester | 43.05 | 2112 | 2108 | 36.26 | 35.34 | 36.11 |
stearic acid methyl ester | 43.43 | 2134 | 2127 | 6.88 | 7.11 | 6.47 |
arachidic acid methyl ester | 46.99 | 2341 | 2329 | 1.36 | 1.31 | 1.22 |
Compound Name | TC1 | TC2 | TC3 |
---|---|---|---|
glyoxylic acid | 74.11 ± 3.14 | 85.95 ± 2.31 | 42.59 ± 2.78 |
pyruvic acid | 8.12 ± 0.91 | 14.48 ± 1.40 | 9.69 ± 0.75 |
α-ketobutyric acid | 0.83 ± 0.13 | 4.26 ± 0.02 | 1.42 ± 0.11 |
α-ketoisocaproic acid | 1.09 ± 0.53 | 1.29 ± 0.37 | 1.81 ± 0.31 |
α-ketoglutaric acid | 42.31 ±1.84 | 68.17 ± 5.26 | 50.46 ± 0.67 |
phenylpyruvic acid | 0.39 ± 0.14 | 0.61 ± 0.35 | 0.41 ± 0.22 |
4-hydroxyphenylpyruvic acid | 0.54 ± 0.33 | 0.80 ± 0.16 | 0.68 ± 0.07 |
α-ketovaleric acid | 2.78 ± 0.76 | 3.28 ± 0.83 | 1.66 ± 0.97 |
α-ketoanteisocaproic acid | 1.47 ± 0.64 | 2.56 ± 0.73 | 1.66 ± 0.71 |
α-ketoisovaleric acid | 3.20 ± 1.07 | 3.82 ± 0.95 | 3.53 ± 0.64 |
total content | 134.8 | 185.2 | 115.3 |
Compound Name | TC1 | TC2 | TC3 | Olfactory Thresholds |
---|---|---|---|---|
tiglic aldehyde | 8.44 ± 0.58 | 16.91 ± 1.75 | 6.78 ± 0.34 | 0.01 [17] * |
n-hexanal | 0.36 ± 0.04 | 0.35 ± 0.02 | 0.53 ± 0.01 | 0.0045–0.01 [18,19] |
benzaldehyde | 1.06 ± 0.05 | 0.95 ± 0.04 | 1.04 ± 0.10 | 0.35 [20] |
phenylacetaldehyde | 1.02 ± 0.02 | 1.04 ± 0.01 | 1.05 ± 0.04 | 0.004 [21] |
methyl benzoate | 0.43 ± 0.01 | 0.44 ± 0.00 | 0.47 ± 0.02 | 0.005 [22] |
menthol | 0.09 ± 0.01 | 0.09 ± 0.00 | 0.09 ± 0.02 | 0.022 [17] |
trans-menthone | 8.41 ± 0.11 | 8.55 ± 0.09 | 8.28 ± 0.38 | 0.17 [18] |
safranal | 1.25 ± 0.00 | 1.25 ± 0.00 | 1.25 ± 0.00 | 1 [19] |
p-cymene | 0.08 ± 0.01 | 0.08 ± 0.01 | 1.53 ± 0.12 | 0.1 [17] |
isobornyl acetate | 2.22 ± 0.01 | 2.22 ± 0.01 | 2.70 ± 0.02 | 1.8 [23] |
camphor | 10.23 ± 0.35 | 10.30 ± 0.40 | 10.41± 0.30 | 1.29 [24] |
Compound Name | TC1 | TC2 | TC3 | Odor Description |
---|---|---|---|---|
tiglic aldehyde | 844 | 1691 | 678 | green, fruity |
n-hexanal | 50 | 48 | 73 | green, grassy |
benzaldehyde | 3 | 3 | 3 | almond, nutty |
phenylacetaldehyde | 255 | 260 | 263 | sweet, rose |
methyl benzoate | 86 | 88 | 94 | fruity, sweet |
menthol | 4 | 4 | 4 | minty |
trans-menthone | 49 | 50 | 49 | minty |
safranal | 1 | 1 | 1 | herbaceous, sweet |
p-cymene | <1 | <1 | 15 | sweet, citrusy |
isobornyl acetate | 1 | 1 | 2 | herb, woody, sweet, minty |
camphor | 8 | 8 | 8 | piquant |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ayvazyan, A.; Stegemann, T.; Galarza Pérez, M.; Pramsohler, M.; Çiçek, S.S. Phytochemical Profile of Trigonella caerulea (Blue Fenugreek) Herb and Quantification of Aroma-Determining Constituents. Plants 2023, 12, 1154. https://doi.org/10.3390/plants12051154
Ayvazyan A, Stegemann T, Galarza Pérez M, Pramsohler M, Çiçek SS. Phytochemical Profile of Trigonella caerulea (Blue Fenugreek) Herb and Quantification of Aroma-Determining Constituents. Plants. 2023; 12(5):1154. https://doi.org/10.3390/plants12051154
Chicago/Turabian StyleAyvazyan, Arpine, Thomas Stegemann, Mayra Galarza Pérez, Manuel Pramsohler, and Serhat Sezai Çiçek. 2023. "Phytochemical Profile of Trigonella caerulea (Blue Fenugreek) Herb and Quantification of Aroma-Determining Constituents" Plants 12, no. 5: 1154. https://doi.org/10.3390/plants12051154
APA StyleAyvazyan, A., Stegemann, T., Galarza Pérez, M., Pramsohler, M., & Çiçek, S. S. (2023). Phytochemical Profile of Trigonella caerulea (Blue Fenugreek) Herb and Quantification of Aroma-Determining Constituents. Plants, 12(5), 1154. https://doi.org/10.3390/plants12051154