Transcriptome Analysis Reveals Differentially Expressed Genes Involved in Cadmium and Arsenic Accumulation in Tea Plant (Camellia sinensis)
Abstract
:1. Introduction
2. Results
2.1. Determination of Antioxidant Enzyme Activities and MDA Content of Cd/As-Treated Tea Roots
2.2. Transcriptome Analysis of the Cd/As-Treated and Non-Treated Tea Roots
2.3. GO and KEGG Enrichment Analyses of DEGs
2.4. Identification of Differentially Expressed TFs in Cd/As-Treated Tea Roots
2.5. Identification of DEGs in Cd/As-Treated Tea Roots
2.6. Regulation Network in Tea Plants under Heavy Metal Cd/As Stress
2.7. Validation of Expression Patterns of Eight Candidate DEGs Associated with Cd/As Stress Using qRT-PCR
3. Discussion
4. Materials and Methods
4.1. Plant Growth Conditions and Heavy Metal Treatments
4.2. Library Construction and RNA-Seq
4.3. Sequencing Analysis, Transcripts Assembly, and Functional Annotation
4.4. qRT-PCR Validation of Candidate Genes Identified in RNA-Seq
4.5. Regulation Network in Tea Plants under Heavy Metal Cd/As Stress
4.6. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zaynab, M.; Al-Yahyai, R.; Ameen, A.; Sharif, Y.; Ali, L.; Fatima, M.; Khan, K.A.; Li, S. Health and Environmental Effects of Heavy Metals. J. King Saud Univ.-Sci. 2022, 34, 101653. [Google Scholar] [CrossRef]
- Islam, M.; Karim, M.R.; Zheng, X.; Li, X. Heavy Metal and Metalloid Pollution of Soil, Water and Foods in Bangladesh: A Critical Review. Int. J. Environ. Res. Public Health 2018, 15, 2825. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.; Lee, M.; Lee, J.H.; Kim, K.H.; Owens, G.; Kim, K.R. Distribution and Extent of Heavy Metal(Loid) Contamination in Agricultural Soils as Affected by Industrial Activity. Appl. Biol. Chem. 2020, 63, 31. [Google Scholar] [CrossRef]
- Wang, Y.; Yu, H.; Yi, M.; Zhou, R.; Li, H.; Xu, S.; Tang, J.; Wang, C. Spatial distribution, sources, and risks of heavy metals in soil from industrial areas of Hangzhou, eastern China. Environ Earth Sci. 2023, 82, 95. [Google Scholar] [CrossRef]
- Hegazi, H.A. Removal of Heavy Metals from Wastewater Using Agricultural and Industrial Wastes as Adsorbents. HBRC J. 2013, 9, 276–282. [Google Scholar] [CrossRef] [Green Version]
- Yaashikaa, P.R.; Kumar, P.S.; Jeevanantham, S.; Saravanan, R. A Review on Bioremediation Approach for Heavy Metal Detoxification and Accumulation in Plants. Environ. Pollut. 2022, 301, 119035. [Google Scholar] [CrossRef] [PubMed]
- Jin, C.; Fan, J.; Liu, R.; Sun, R. Single and Joint Toxicity of Sulfamonomethoxine and Cadmium on Three Agricultural Crops. Soil Sediment Contam. Int. J. 2015, 24, 454–470. [Google Scholar] [CrossRef]
- Goyal, D.; Yadav, A.; Prasad, M.; Singh, T.B.; Shrivastav, P.; Ali, A.; Dantu, P.K.; Mishra, S. Effect of Heavy Metals on Plant Growth: An Overview. In Contaminants in Agriculture; Naeem, M., Ansari, A.A., Gill, S.S., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 79–101. ISBN 978-3-030-41551-8. [Google Scholar]
- Wei, X.; Zhang, P.; Zhan, Q.; Hong, L.; Bocharnikova, E.; Matichenkov, V. Regulation of As and Cd Accumulation in Rice by Simultaneous Application of Lime or Gypsum with Si-Rich Materials. Environ. Sci. Pollut. Res. 2021, 28, 7271–7280. [Google Scholar] [CrossRef]
- Haider, F.U.; Liqun, C.; Coulter, J.A.; Cheema, S.A.; Wu, J.; Zhang, R.; Wenjun, M.; Farooq, M. Cadmium Toxicity in Plants: Impacts and Remediation Strategies. Ecotoxicol. Environ. Saf. 2021, 211, 111887. [Google Scholar] [CrossRef]
- Hermans, C.; Chen, J.; Coppens, F.; Inzé, D.; Verbruggen, N. Low Magnesium Status in Plants Enhances Tolerance to Cadmium Exposure. New Phytol. 2011, 192, 428–436. [Google Scholar] [CrossRef]
- Souza, V.L.; de Almeida, A.-A.F.; Lima, S.G.C.; de M. Cascardo, J.C.; da C. Silva, D.; Mangabeira, P.A.O.; Gomes, F.P. Morphophysiological Responses and Programmed Cell Death Induced by Cadmium in Genipa Americana L. (Rubiaceae). BioMetals 2011, 24, 59–71. [Google Scholar] [CrossRef]
- Perfus-Barbeoch, L.; Leonhardt, N.; Vavasseur, A.; Forestier, C. Heavy Metal Toxicity: Cadmium Permeates through Calcium Channels and Disturbs the Plant Water Status. Plant J. 2002, 32, 539–548. [Google Scholar] [CrossRef]
- Anjum, S.A.; Tanveer, M.; Hussain, S.; Ashraf, U.; Khan, I.; Wang, L. Alteration in Growth, Leaf Gas Exchange, and Photosynthetic Pigments of Maize Plants Under Combined Cadmium and Arsenic Stress. Water Air Soil Pollut. 2017, 228, 13. [Google Scholar] [CrossRef]
- Gallego, S.M.; Pena, L.B.; Barcia, R.A.; Azpilicueta, C.E.; Iannone, M.F.; Rosales, E.P.; Zawoznik, M.S.; Groppa, M.D.; Benavides, M.P. Unravelling Cadmium Toxicity and Tolerance in Plants: Insight into Regulatory Mechanisms. Environ. Exp. Bot. 2012, 83, 33–46. [Google Scholar] [CrossRef]
- Ghosh, N.; Das, A.; Chaffee, S.; Roy, S.; Sen, C.K. Reactive Oxygen Species, Oxidative Damage and Cell Death. In Immunity and Inflammation in Health and Disease; Elsevier: Amsterdam, The Netherlands, 2018; pp. 45–55. ISBN 978-0-12-805417-8. [Google Scholar]
- Khaliq, M.A.; James, B.; Chen, Y.H.; Ahmed Saqib, H.S.; Li, H.H.; Jayasuriya, P.; Guo, W. Uptake, Translocation, and Accumulation of Cd and Its Interaction with Mineral Nutrients (Fe, Zn, Ni, Ca, Mg) in Upland Rice. Chemosphere 2019, 215, 916–924. [Google Scholar] [CrossRef] [PubMed]
- Guo, T.R.; Zhang, G.P.; Zhou, M.X.; Wu, F.B.; Chen, J.X. Influence of Aluminum and Cadmium Stresses on Mineral Nutrition and Root Exudates in Two Barley Cultivars. Pedosphere 2007, 17, 505–512. [Google Scholar] [CrossRef]
- Zhang, Q.; Wen, Q.; Ma, T.; Zhu, Q.; Huang, D.; Zhu, H.; Xu, C.; Chen, H. Cadmium-Induced Iron Deficiency Is a Compromise Strategy to Reduce Cd Uptake in Rice. Environ. Exp. Bot. 2023, 206, 105155. [Google Scholar] [CrossRef]
- Tiwari, S.; Patel, A.; Pandey, N.; Raju, A.; Singh, M.; Prasad, S.M. Deficiency of Essential Elements in Crop Plants. In Sustainable Solutions for Elemental Deficiency and Excess in Crop Plants; Mishra, K., Tandon, P.K., Srivastava, S., Eds.; Springer: Singapore, 2020; pp. 19–52. ISBN 9789811586354. [Google Scholar]
- Jiang, X.J.; Luo, Y.M.; Liu, Q.; Liu, S.L.; Zhao, Q.G. Effects of Cadmium on Nutrient Uptake and Translocation by Indian Mustard. Environ. Geochem. Health 2004, 26, 319–324. [Google Scholar] [CrossRef]
- Flora, S.J.S. Arsenic: Chemistry, Occurrence, and Exposure. In Handbook of Arsenic Toxicology; Elsevier: Amsterdam, The Netherlands, 2015; pp. 1–49. ISBN 978-0-12-418688-0. [Google Scholar]
- Garg, N.; Singla, P. Arsenic Toxicity in Crop Plants: Physiological Effects and Tolerance Mechanisms. Environ. Chem. Lett. 2011, 9, 303–321. [Google Scholar] [CrossRef]
- Stoeva, N.; Berova, M.; Zlatev, Z. Effect of Arsenic on Some Physiological Parameters in Bean Plants. Biol. Plant. 2005, 49, 293–296. [Google Scholar] [CrossRef]
- Nutt, L.K.; Gogvadze, V.; Uthaisang, W.; Mirnikjoo, B.; McConkey, D.J.; Orrenius, S. Bax and Bak Are Required for Cytochrome c Release during Arsenic Trioxide-Induced Apoptosis. Cancer Biol. Ther. 2005, 4, 465–473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeinvand-Lorestani, M.; Kalantari, H.; Khodayar, M.J.; Teimoori, A.; Saki, N.; Ahangarpour, A.; Rahim, F.; Khorsandi, L. Dysregulation of Sqstm1, Mitophagy, and Apoptotic Genes in Chronic Exposure to Arsenic and High-Fat Diet (HFD). Environ. Sci. Pollut. Res. 2018, 25, 34351–34359. [Google Scholar] [CrossRef] [PubMed]
- Kosakivska, I.V.; Babenko, L.M.; Romanenko, K.O.; Korotka, I.Y.; Potters, G. Molecular Mechanisms of Plant Adaptive Responses to Heavy Metals Stress. Cell Biol. Int. 2021, 45, 258–272. [Google Scholar] [CrossRef]
- Suzuki, N.; Koizumi, N.; Sano, H. Screening of Cadmium-Responsive Genes in Arabidopsis thaliana. Plant Cell Environ. 2001, 24, 1177–1188. [Google Scholar] [CrossRef]
- Mohanpuria, P.; Rana, N.K.; Yadav, S.K. Cadmium Induced Oxidative Stress Influence on Glutathione Metabolic Genes of Camellia sinensis (L.) O. Kuntze. Environ. Toxicol. 2007, 22, 368–374. [Google Scholar] [CrossRef]
- Sun, L.; Wang, J.; Song, K.; Sun, Y.; Qin, Q.; Xue, Y. Transcriptome Analysis of Rice (Oryza Sativa L.) Shoots Responsive to Cadmium Stress. Sci. Rep. 2019, 9, 10177. [Google Scholar] [CrossRef] [Green Version]
- Rai, A.; Tripathi, P.; Dwivedi, S.; Dubey, S.; Shri, M.; Kumar, S.; Tripathi, P.K.; Dave, R.; Kumar, A.; Singh, R.; et al. Arsenic Tolerances in Rice (Oryza sativa) Have a Predominant Role in Transcriptional Regulation of a Set of Genes Including Sulphur Assimilation Pathway and Antioxidant System. Chemosphere 2011, 82, 986–995. [Google Scholar] [CrossRef]
- Zhu, H.; Ai, H.; Cao, L.; Sui, R.; Ye, H.; Du, D.; Sun, J.; Yao, J.; Chen, K.; Chen, L. Transcriptome Analysis Providing Novel Insights for Cd-Resistant Tall Fescue Responses to Cd Stress. Ecotoxicol. Environ. Saf. 2018, 160, 349–356. [Google Scholar] [CrossRef]
- Zhao, L.; Zhu, Y.H.; Wang, M.; Ma, L.G.; Han, Y.G.; Zhang, M.J.; Li, X.C.; Feng, W.S.; Zheng, X.K. Comparative Transcriptome Analysis of the Hyperaccumulator Plant Phytolacca americana in Response to Cadmium Stress. 3 Biotech 2021, 11, 327. [Google Scholar] [CrossRef]
- Chu, D.H.; Melanie, B.; Le, T.D. Functional Characterisation of a Soybean Galactinol Synthase Gene under Various Stress Conditions. Vietnam. J. Sci. Technol. Eng. 2018, 60, 33–36. [Google Scholar] [CrossRef]
- Tao, Q.; Jupa, R.; Liu, Y.; Luo, J.; Li, J.; Kováč, J.; Li, B.; Li, Q.; Wu, K.; Liang, Y.; et al. Abscisic Acid-mediated Modifications of Radial Apoplastic Transport Pathway Play a Key Role in Cadmium Uptake in Hyperaccumulator Sedum alfredii. Plant Cell Environ. 2019, 42, 1425–1440. [Google Scholar] [CrossRef]
- Kapoor, D.; Singh, S.; Ramamurthy, P.C.; Jan, S.; Bhardwaj, S.; Gill, S.S.; Prasad, R.; Singh, J. Molecular Consequences of Cadmium Toxicity and Its Regulatory Networks in Plants. Plant Gene 2021, 28, 100342. [Google Scholar] [CrossRef]
- Mondal, S.; Pramanik, K.; Ghosh, S.K.; Pal, P.; Ghosh, P.K.; Ghosh, A.; Maiti, T.K. Molecular Insight into Arsenic Uptake, Transport, Phytotoxicity, and Defense Responses in Plants: A Critical Review. Planta 2022, 255, 87. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, A.; Roychoudhury, A. Abscisic-Acid-Dependent Basic Leucine Zipper (BZIP) Transcription Factors in Plant Abiotic Stress. Protoplasma 2017, 254, 3–16. [Google Scholar] [CrossRef]
- Feng, K.; Hou, X.L.; Xing, G.M.; Liu, J.X.; Duan, A.Q.; Xu, Z.S.; Li, M.Y.; Zhuang, J.; Xiong, A.S. Advances in AP2/ERF Super-Family Transcription Factors in Plant. Crit. Rev. Biotechnol. 2020, 40, 750–776. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Han, X.; Lu, Z.; Qiu, W.; Yu, M.; Li, H.; He, Z.; Zhuo, R. MAPK Cascades and Transcriptional Factors: Regulation of Heavy Metal Tolerance in Plants. Int. J. Mol. Sci. 2022, 23, 4463. [Google Scholar] [CrossRef]
- Ma, R.; Liu, B.; Geng, X.; Ding, X.; Yan, N.; Sun, X.; Wang, W.; Sun, X.; Zheng, C. Biological Function and Stress Response Mechanism of MYB Transcription Factor Family Genes. J. Plant Growth Regul. 2023, 42, 83–95. [Google Scholar] [CrossRef]
- Su, T.; Fu, L.; Kuang, L.; Chen, D.; Zhang, G.; Shen, Q.; Wu, D. Transcriptome-Wide M6A Methylation Profile Reveals Regulatory Networks in Roots of Barley under Cadmium Stress. J. Hazard. Mater. 2022, 423, 127140. [Google Scholar] [CrossRef]
- Mirza, Z.; Haque, M.M.; Gupta, M. WRKY Transcription Factors: A Promising Way to Deal with Arsenic Stress in Rice. Mol. Biol. Rep. 2022, 49, 10895–10904. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.M.; Tang, Q.; Zhang, X.Q.; Zhang, D.C. Effect of High Concentrations of Cd Stress on the Physiological Characteristics, Absorbtion and Accumulation in Tea Plant. J. Tea Sci. 2012, 32, 107–114. [Google Scholar] [CrossRef]
- Pourramezani, F.; Akrami Mohajeri, F.; Salmani, M.H.; Dehghani Tafti, A.; Khalili Sadrabad, E. Evaluation of Heavy Metal Concentration in Imported Black Tea in Iran and Consumer Risk Assessments. Food Sci. Nutr. 2019, 7, 4021–4026. [Google Scholar] [CrossRef] [Green Version]
- Seenivasan, S.; Anderson, T.A.; Muraleedharan, N. Heavy Metal Content in Tea Soils and Their Distribution in Different Parts of Tea Plants, Camellia sinensis (L). O. Kuntze. Environ. Monit. Assess. 2016, 188, 428. [Google Scholar] [CrossRef] [PubMed]
- Rashid, M.H.; Fardous, Z.; Chowdhury, M.A.Z.; Alam, M.K.; Bari, M.L.; Moniruzzaman, M.; Gan, S.H. Determination of Heavy Metals in the Soils of Tea Plantations and in Fresh and Processed Tea Leaves: An Evaluation of Six Digestion Methods. Chem. Central J. 2016, 10, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, C.; He, Q.; Wang, M.; Gao, X.; Chen, J.; Shen, C. Exogenous Indole Acetic Acid Alleviates Cd Toxicity in Tea (Camellia sinensis). Ecotoxicol. Environ. Saf. 2020, 190, 110090. [Google Scholar] [CrossRef] [PubMed]
- Kintlová, M.; Blavet, N.; Cegan, R.; Hobza, R. Transcriptome of Barley under Three Different Heavy Metal Stress Reaction. Genom. Data 2017, 13, 15–17. [Google Scholar] [CrossRef]
- Zhang, X.N.; Piao, C.L.; Dong, Y.K.; Cui, M.L. Transcriptome analysis of response to heavy metal Cd stress in soybean root. Ying Yong Sheng Tai Xue Bao J. Appl. Ecol. 2017, 28, 1633–1641. [Google Scholar] [CrossRef]
- Fu, S.F.; Chen, P.Y.; Nguyen, Q.T.T.; Huang, L.Y.; Zeng, G.R.; Huang, T.L.; Lin, C.Y.; Huang, H.J. Transcriptome Profiling of Genes and Pathways Associated with Arsenic Toxicity and Tolerance in Arabidopsis. BMC Plant Biol. 2014, 14, 94. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Zhang, X.; Wu, W.; Chen, Z.; Gu, H.; Qu, L.-J. Overexpression of the Wounding-Responsive Gene AtMYB15 Activates the Shikimate Pathway in Arabidopsis. J. Integr. Plant Biol. 2006, 48, 1084–1095. [Google Scholar] [CrossRef]
- Gonzalez, A.; Mendenhall, J.; Huo, Y.; Lloyd, A. TTG1 Complex MYBs, MYB5 and TT2, Control Outer Seed Coat Differentiation. Dev. Biol. 2009, 325, 412–421. [Google Scholar] [CrossRef] [Green Version]
- Cheng, M.C.; Liao, P.M.; Kuo, W.W.; Lin, T.P. The Arabidopsis ETHYLENE RESPONSE FACTOR1 Regulates Abiotic Stress-Responsive Gene Expression by Binding to Different Cis-Acting Elements in Response to Different Stress Signals. Plant Physiol. 2013, 162, 1566–1582. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Jun, J.H.; Dixon, R.A. MYB5 and MYB14 Play Pivotal Roles in Seed Coat Polymer Biosynthesis in Medicago truncatula. Plant Physiol. 2014, 165, 1424–1439. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, D.; Ren, A.; Tang, X.; Qi, G.; Xu, Z.; Chai, G.; Hu, R.; Zhou, G.; Kong, Y. MYB52 Negatively Regulates Pectin Demethylesterification in Seed Coat Mucilage. Plant Physiol. 2018, 176, 2737–2749. [Google Scholar] [CrossRef] [Green Version]
- Gavassi, M.A.; Silva, G.S.; da Silva, C.d.M.S.; Thompson, A.J.; Macleod, K.; Oliveira, P.M.R.; Cavalheiro, M.F.; Domingues, D.S.; Habermann, G. NCED Expression Is Related to Increased ABA Biosynthesis and Stomatal Closure under Aluminum Stress. Environ. Exp. Bot. 2021, 185, 104404. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, Z.; Song, J.; Yue, S.; Yang, H. Cd2+ Uptake Inhibited by MhNCED3 from Malus hupehensis Alleviates Cd-Induced Cell Death. Environ. Exp. Bot. 2019, 166, 103802. [Google Scholar] [CrossRef]
- Song, C.; Chung, W.S.; Lim, C.O. Overexpression of Heat Shock Factor Gene HsfA3 Increases Galactinol Levels and Oxidative Stress Tolerance in Arabidopsis. Mol. Cells 2016, 39, 477–483. [Google Scholar] [CrossRef]
- Ranjan, A.; Gautam, S.; Michael, R.; Shukla, T.; Trivedi, P.K. Arsenic-Induced Galactinol Synthase1 Gene, AtGolS1, Provides Arsenic Stress Tolerance in Arabidopsis thaliana. Environ. Exp. Bot. 2023, 207, 105217. [Google Scholar] [CrossRef]
- khan, I.u.; Rono, J.K.; Zhang, B.Q.; Liu, X.S.; Wang, M.Q.; Wang, L.L.; Wu, X.C.; Chen, X.; Cao, H.W.; Yang, Z.M. Identification of Novel Rice (Oryza sativa) HPP and HIPP Genes Tolerant to Heavy Metal Toxicity. Ecotoxicol. Environ. Saf. 2019, 175, 8–18. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, E.J.; Cheng, M.C.; Lin, T.P. Functional Characterization of an Abiotic Stress-Inducible Transcription Factor AtERF53 in Arabidopsis thaliana. Plant Mol. Biol. 2013, 82, 223–237. [Google Scholar] [CrossRef]
- Fang, X.; Ma, J.; Guo, F.; Qi, D.; Zhao, M.; Zhang, C.; Wang, L.; Song, B.; Liu, S.; He, S.; et al. The AP2/ERF GmERF113 Positively Regulates the Drought Response by Activating GmPR10-1 in Soybean. Int. J. Mol. Sci. 2022, 23, 8159. [Google Scholar] [CrossRef]
- Wu, Z.J.; Tian, C.; Jiang, Q.; Li, X.H.; Zhuang, J. Selection of Suitable Reference Genes for QRT-PCR Normalization during Leaf Development and Hormonal Stimuli in Tea Plant (Camellia sinensis). Sci. Rep. 2016, 6, 19748. [Google Scholar] [CrossRef] [Green Version]
- Langfelder, P.; Horvath, S. WGCNA: An R Package for Weighted Correlation Network Analysis. BMC Bioinform. 2008, 9, 559. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction Networks. Genome Res. 2003, 13, 2498–2504. [Google Scholar] [CrossRef] [PubMed]
Sample | Raw_Reads | Clean_Reads | Total_Map | Unique_Map | Clean_Bases | Expressed Gene | Standard Deviation | Q20 | Q30 | GC |
---|---|---|---|---|---|---|---|---|---|---|
CK1_1 | 44544050 | 43441036 | 36196019 (83.32%) | 30927246 (71.19%) | 6.52G | 39153 | 295.250181 | 96.67 | 91.27 | 44.83 |
CK1_2 | 39422132 | 38291090 | 30179804 (78.82%) | 25585746 (66.82%) | 5.74G | 38538 | 288.251178 | 96.66 | 91.24 | 45.24 |
CK1_3 | 44068264 | 43036462 | 34864588 (81.01%) | 29517045 (68.59%) | 6.46G | 39869 | 295.151316 | 96.61 | 91.15 | 44.65 |
Cd1_1 | 47235258 | 46591286 | 37858289 (81.26%) | 32536700 (69.83%) | 6.99G | 36481 | 320.939766 | 96.45 | 90.72 | 44.36 |
Cd1_2 | 41803762 | 40917046 | 33155043 (81.03%) | 28292613 (69.15%) | 6.14G | 39746 | 298.284826 | 96.63 | 91.1 | 44.37 |
Cd1_3 | 46491206 | 45474714 | 37656708 (82.81%) | 32106147 (70.6%) | 6.82G | 39366 | 292.976277 | 96.59 | 91.06 | 44.15 |
Cd2_1 | 45061350 | 44196684 | 37037737 (83.8%) | 31537391 (71.36%) | 6.63G | 39580 | 293.200841 | 96.71 | 91.3 | 44.18 |
Cd2_2 | 39387626 | 38261120 | 30973412 (80.95%) | 26334446 (68.83%) | 5.74G | 39212 | 290.471519 | 96.68 | 91.25 | 44.51 |
Cd2_3 | 44885852 | 43920534 | 35142943 (80.01%) | 29969916 (68.24%) | 6.59G | 38744 | 308.138371 | 96.41 | 90.72 | 44.98 |
As1_1 | 42884692 | 42243424 | 33337391 (78.92%) | 28307563 (67.01%) | 6.34G | 37658 | 294.061573 | 96.8 | 91.41 | 45.16 |
As1_2 | 42461254 | 41791448 | 35005786 (83.76%) | 29926631 (71.61%) | 6.27G | 35675 | 297.560596 | 96.45 | 90.75 | 44.8 |
As1_3 | 46710062 | 45841500 | 37211971 (81.18%) | 31459590 (68.63%) | 6.88G | 37408 | 292.188884 | 96.67 | 91.13 | 44.82 |
As2_1 | 41501826 | 40452076 | 30506971 (75.42%) | 25955508 (64.16%) | 6.07G | 39304 | 293.338423 | 96.72 | 91.34 | 45.27 |
As2_2 | 42535242 | 41538986 | 34033550 (81.93%) | 28852578 (69.46%) | 6.23G | 38725 | 292.120116 | 96.62 | 91.14 | 44.63 |
As2_3 | 40103436 | 38715324 | 31870755 (82.32%) | 27049031 (69.87%) | 5.81G | 59129 | 296.849423 | 96.77 | 91.45 | 45.17 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, S.; Peng, X.; Wang, X.; Zhuang, W. Transcriptome Analysis Reveals Differentially Expressed Genes Involved in Cadmium and Arsenic Accumulation in Tea Plant (Camellia sinensis). Plants 2023, 12, 1182. https://doi.org/10.3390/plants12051182
Liu S, Peng X, Wang X, Zhuang W. Transcriptome Analysis Reveals Differentially Expressed Genes Involved in Cadmium and Arsenic Accumulation in Tea Plant (Camellia sinensis). Plants. 2023; 12(5):1182. https://doi.org/10.3390/plants12051182
Chicago/Turabian StyleLiu, Shiqi, Xuqian Peng, Xiaojing Wang, and Weibing Zhuang. 2023. "Transcriptome Analysis Reveals Differentially Expressed Genes Involved in Cadmium and Arsenic Accumulation in Tea Plant (Camellia sinensis)" Plants 12, no. 5: 1182. https://doi.org/10.3390/plants12051182
APA StyleLiu, S., Peng, X., Wang, X., & Zhuang, W. (2023). Transcriptome Analysis Reveals Differentially Expressed Genes Involved in Cadmium and Arsenic Accumulation in Tea Plant (Camellia sinensis). Plants, 12(5), 1182. https://doi.org/10.3390/plants12051182