Festuca pratensis-like Subgenome Reassembly from a “Chromosomal Cocktail” in the Intergeneric Festulolium (Poaceae) Hybrid: A Rare Chromoanagenesis Event in Grasses
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Phosphoglucoisomerase-2 Isozyme Assessment
2.3. Chromosome Preparation
2.4. Fluorescent Probes
2.5. In Situ Hybridization
3. Results
3.1. Somatic Tiller Chimerism in F2 3-18 Allohexaploid and Re-Establishment of Diploid Clonal Plants
3.2. GISH/FISH of Diploid Clonal Plants
3.3. GISH/FISH of F2 3-18 Super-Recombinant Donor
4. Discussion
Supplementary Materials
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Whitney, K.D.; Ahern, J.R.; Campbell, L.G.; Albert, L.P.; King, M.S. Patterns of hybridization in plants. Perspect. Plant Ecol. Evol. Syst. 2010, 12, 175–182. [Google Scholar] [CrossRef]
- Barker, M.S.; Arrigo, N.; Baniaga, A.E.; Li, Z.; Levin, D.A. On the relative abundance of autopolyploids and allopolyploids. New Phytol. 2016, 210, 391–398. [Google Scholar] [CrossRef] [PubMed]
- Soltis, D.E.; Visger, C.J.; Marchant, D.B.; Soltis, P.S. Polyploidy: Pitfalls and paths to a paradigm. Am. J. Bot. 2016, 103, 1146–1166. [Google Scholar] [CrossRef] [Green Version]
- Renny-Byfield, S.; Wendel, J.F. Doubling down on genomes: Polyploidy and crop plants. Am. J. Bot. 2014, 101, 1711–1725. [Google Scholar] [CrossRef] [Green Version]
- Salse, J. Ancestors of modern plant crops. Curr. Opin. Plant Biol. 2016, 30, 134–142. [Google Scholar] [CrossRef]
- Schiessl, S.-V.; Katche, E.; Ihien, E.; Chawla, H.S.; Mason, A.S. The role of genomic structural variation in the genetic improvement of polyploid crops. Crop J. 2018, 7, 127–140. [Google Scholar] [CrossRef]
- Liu, B.; Wendel, J.F. Non-mendelian phenomena in allopolyploid genome evolution. Curr. Genom. 2002, 3, 489–505. [Google Scholar] [CrossRef] [Green Version]
- Leitch, I.J.; Bennett, M.D. Genome downsizing in polyploid plants. Biol. J. Linn. Soc. 2004, 82, 651–663. [Google Scholar] [CrossRef] [Green Version]
- Jones, N.; Pašakinskienė, I. Genome conflict in Gramineae. New Phytol. 2005, 165, 391–410. [Google Scholar] [CrossRef] [PubMed]
- Escudero, M.; Martín-Bravo, S.; Mayrose, I.; Fernández-Mazuecos, M.; Fiz-Palacios, O.; Hipp, A.L.; Pimentel, M.; Jiménez-Mejías, P.; Valcárcel, V.; Vargas, P.; et al. Karyotypic changes through dysploidy persist longer over evolutionary time than polyploid changes. PLoS ONE 2014, 9, e85266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Edger, P.P.; Smith, R.; McKain, M.R.; Cooley, A.M.; Vallejo-Marin, M.; Yuan, Y.; Bewick, A.J.; Ji, L.; Platts, A.E.; Bowman, M.J.; et al. Subgenome dominance in an interspecific hybrid, synthetic allopolyploid, and a 140-year-old naturally established neo-allopolyploid monkeyflower. Plant Cell 2017, 29, 2150–2167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kalinka, A.; Achrem, M. Reorganization of wheat and rye genomes in octoploid triticale (× Triticosecale). Planta 2018, 247, 807–829. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Glombik, M.; Copetti, D.; Bartos, J.; Stoces, S.; Zwierzykowski, Z.; Ruttink, T.; Wendel, J.F.; Duchoslav, M.; Dolezel, J.; Studer, B.; et al. Reciprocal allopolyploid grasses (Festuca × Lolium) display stable patterns of genome dominance. Plant J. 2021, 107, 1166–1182. [Google Scholar] [CrossRef]
- Bird, K.A.; Van Buren, R.; Puzey, J.R.; Edger, P.P. The causes and consequences of subgenome dominance in hybrids and recent polyploids. New Phytol. 2018, 220, 87–93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alger, E.I.; Edger, P.P. One subgenome to rule them all: Underlying mechanisms of subgenome dominance. Curr. Opin. Plant Biol. 2020, 54, 108–113. [Google Scholar] [CrossRef] [PubMed]
- Murat, F.; Xu, J.H.; Tannier, E.; Abrouk, M.; Guilhot, N.; Pont, C.; Messing, J.; Salse, J. Ancestral grass karyotype reconstruction unravels new mechanisms of genome shuffling as a source of plant evolution. Genome Res. 2010, 20, 1545–1557. [Google Scholar] [CrossRef] [Green Version]
- Majka, J.; Zwierzykowski, Z.; Majka, M.; Kosmala, A. Karyotype reshufflings of Festuca pratensis × Lolium perenne hybrids. Protoplasma 2018, 255, 451–458. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Lin, F.; Zhou, Y.; Wang, J.; Sun, S.; Wang, B.; Zhang, Z.; Li, G.; Lin, X.; Wang, X.; et al. Genomic mosaicism due to homoeologous exchange generates extensive phenotypic diversity in nascent allopolyploids. Natl. Sci. Rev. 2021, 8, nwaa277. [Google Scholar] [CrossRef]
- Bashir, T.; Mishra, R.C.; Hasan, M.M.; Mohanta, T.K.; Bae, H. Effect of hybridization on somatic mutations and genomic rearrangements in plants. Int. J. Mol. Sci. 2018, 19, 3758. [Google Scholar] [CrossRef] [Green Version]
- Schoen, D.J.; Schultz, S.T. Somatic mutation and evolution in plants. Annu. Rev. Ecol. Evol. Syst. 2019, 50, 49–73. [Google Scholar] [CrossRef]
- Piperidis, G.; Piperidis, N.; D’Hont, A. Molecular cytogenetic investigation of chromosome composition and transmission in sugarcane. Mol. Genet. Genom. 2010, 284, 65–73. [Google Scholar] [CrossRef] [PubMed]
- Winterfeld, G.; Becher, H.; Voshell, S.; Hilu, K.; Röser, M. Karyotype evolution in Phalaris (Poaceae): The role of reductional dysploidy, polyploidy and chromosome alteration in a wide-spread and diverse genus. PLoS ONE 2018, 13, e0192869. [Google Scholar]
- Malik, C.P.; Thomas, P.T. Karyotypic studies in some Lolium and Festuca species. Caryologia 1966, 19, 167–196. [Google Scholar] [CrossRef] [Green Version]
- Catalan, P.; Torrecilla, P.; Rodriguez, J.A.L.; Olmstead, R.G. Phylogeny of the festucoid grasses of subtribe Loliinae and allies (Poeae, Pooideae) inferred from ITS and trnL-F sequences. Mol. Phylogenet. Evol. 2004, 31, 517–541. [Google Scholar] [CrossRef]
- Kopecký, D.; Loureiro, J.; Zwierzykowski, Z.; Ghesquiere, M.; Dolezel, J. Genome constitution and evolution in Lolium × Festuca hybrid cultivars (Festulolium). Theor. Appl. Genet. 2006, 113, 731–742. [Google Scholar] [CrossRef]
- Zwierzykowski, Z.; Kosmala, A.; Zwierzykowska, E.; Jones, N.; Joks, W.; Bocianowski, J. Genome balance in six successive generations of the allotetraploid Festuca pratensis × Lolium perenne. Theor. Appl. Genet. 2006, 113, 539–547. [Google Scholar] [CrossRef]
- Lideikytė, L.; Pašakinskienė, I. Genomic composition of amphiploid × Festulolium braunii cultivars ‘Punia’ and ‘Rakopan’. Zemdirbyste-Agriculture 2007, 94, 189–196. [Google Scholar]
- Humphreys, M.W.; Zwierzykowski, Z. Festulolium, a century of research and breeding and its increased relevance in meeting the requirements for multifunctional grassland agriculture. Biol. Plant. 2020, 64, 578–590. [Google Scholar] [CrossRef]
- Humphreys, M.W.; Thomas, H.M.; Morgan, W.G.; Meredith, M.R.; Harper., J.A.; Thomas, H.; Zwierzykowski, Z.; Ghesquiére, M. Discriminating the ancestral progenitors of hexaploid Festuca arundinacea using genomic in situ hybridization. Heredity 1994, 75, 171–174. [Google Scholar] [CrossRef] [Green Version]
- Pašakinskienė, I.; Anamthawat-Jónsson, K.; Humphreys, M.W.; Paplauskienė, V.; Jones, R.N. New molecular evidence on genome relationships and chromosome identification in Festuca and Lolium. Heredity 1998, 81, 659–665. [Google Scholar] [CrossRef]
- Humphreys, M.W. The controlled introgression of Festuca arundinacea genes into Lolium multiflorum. Euphytica 1989, 42, 105–116. [Google Scholar] [CrossRef]
- Humphreys, M.W.; Ghesquiere, M. Assessing success in gene transfer between Lolium multiflorum and Festuca arundinacea. Euphytica 1994, 77, 283–289. [Google Scholar] [CrossRef]
- Kleijer, G. Cytogenetic studies of crosses between Lolium multiflorum Lam. and Festuca arundinacea Schreb. III. The generations C1, C2 and C3. Plant Breed. 1987, 99, 144–150. [Google Scholar] [CrossRef]
- Humphreys, M.W.; Zare, A.G.; Pašakinskienė, I.; Thomas, H.; Rogers, W.J.; Collin, H.A. Interspecific genomic rearrangements in androgenic plants derived from a Lolium multiflorum × Festuca arundinacea (2n = 5x = 35) hybrid. Heredity 1998, 80, 78–82. [Google Scholar] [CrossRef]
- Akiyama, Y.; Ueyama, Y.; Hamada, S.; Kubota, A.; Kato, D.; Yamada-Akiyama, H.; Takahara, Y.; Fujimori, M. Utilization of flow cytometry for Festulolium breeding (Lolium multiflorum (2x) × Festuca arundinacea (6x)). Breed. Sci. 2016, 66, 234–243. [Google Scholar] [CrossRef] [Green Version]
- Pašakinskienė, I.; Anamthawat-Jónsson, K.; Humphreys, M.W.; Jones, R.N. Novel diploids following chromosome elimination and somatic recombination in Lolium multiflorum × Festuca arundinacea hybrids. Heredity 1997, 78, 464–469. [Google Scholar] [CrossRef]
- Holland, A.J.; Cleveland, D.W. Chromoanagenesis and cancer: Mechanisms and consequences of localized, complex chromosomal rearrangements. Nat. Med. 2012, 18, 1630–1638. [Google Scholar] [CrossRef] [Green Version]
- Pellestor, F.; Gatinois, V. Chromoanagenesis: A piece of the macroevolution scenario. Mol. Cytogenet. 2020, 13, 3. [Google Scholar] [CrossRef] [PubMed]
- Pellestor, F.; Gaillard, J.B.; Schneider, A.; Puechberty, J.; Gatinois, V. Chromoanagenesis, the mechanisms of a genomic chaos. Semin. Cell Dev. Biol. 2022, 123, 90–99. [Google Scholar] [CrossRef]
- Carbonell-Bejerano, P.; Royo, C.; Torres-Pérez, R.; Grimplet, J.; Fernandez, L.; Franco-Zorrilla Lijavetzky, D.; Baroja, E.; Martínez, J.; García-Escudero, E.; Ibáñez, J.; et al. Catastrophic unbalanced genome rearrangements cause somatic loss of berry color in grapevine. Plant Physiol. 2017, 175, 786–801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, W.; Comai, L.; Henry, I.M. Chromoanagenesis from radiation-induced genome damage in Populus. PLoS Genet. 2021, 17, e1009735. [Google Scholar] [CrossRef] [PubMed]
- Humphreys, M.W.; Thomas, H.M.; Harper, J.; Morgan, G.; James, A.; Ghamari-Zare, A.; Thomas, H. Dissecting drought-and cold-tolerance traits in the Lolium-Festuca complex by introgression mapping. New Phytol. 1997, 137, 55–60. [Google Scholar] [CrossRef]
- Canter, P.H.; Pašakinskienė, I.; Jones, R.N.; Humphreys, M.W. Chromosome substitutions and recombination in the amphiploid Lolium perenne × Festuca pratensis cv. Prior (2n = 4x = 28). Theor. Appl. Genet. 1999, 98, 809–814. [Google Scholar] [CrossRef]
- Książczyk, T.; Zwierzykowska, E.; Molik, K.; Taciak, M.; Krajewski, P.; Zwierzykowski, Z. Genome-dependent chromosome dynamics in three successive generations of the allotetraploid Festuca pratensis × Lolium perenne hybrid. Protoplasma 2015, 252, 985–996. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Majka, J.; Bzdęga, K.; Janiak, A.; Ćwiek-Kupczyńska, H.; Krajewski, P.; Książczyk, T.; Zwierzykowski, Z. Cytogenetic and molecular genotyping in the allotetraploid Festuca pratensis × Lolium perenne hybrids. BMC Genom. 2019, 20, 367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nieto-Feliner, G.; Casacuberta, J.; Wendel, J.F. Genomics of evolutionary novelty in hybrids and polyploids. Front. Genet. 2020, 11, 792. [Google Scholar] [CrossRef] [PubMed]
- Schubert, I.; Lysak, M.A. Interpretation of karyotype evolution should consider chromosome structural constraints. Trends Genet. 2011, 27, 207–216. [Google Scholar] [CrossRef] [PubMed]
- Danilova, T.V.; Akhunova, A.R.; Akhunov, E.D.; Friebe, B.; Gill, B.S. Major structural genomic alterations can be associated with hybrid speciation in Aegilops markgrafii (Triticeae). Plant J. 2017, 92, 317–330. [Google Scholar] [CrossRef] [Green Version]
- Kopecký, D.; Horáková, L.; Duchoslav, M.; Doležel, J. Selective elimination of parental chromatin from introgression cultivars of xFestulolium (Festuca × Lolium). Sustainability 2019, 11, 3153. [Google Scholar] [CrossRef] [Green Version]
- Sokolov, N.N.; Sidorov, B.N.; Durimanova, S.A. Genetic control of DNA replication in chromosomes of eukaryotes. Theor. Appl. Genet. 1974, 44, 232–240. [Google Scholar] [CrossRef]
- Thomas, H.M.; Harper, J.A.; Meredith, M.R.; Morgan, W.G.; Thomas, I.D.; Timms, E.; King, I.P. Comparison of ribosomal DNA sites in Lolium species by fluorescence in situ hybridization. Chromosome Res. 1996, 4, 486–490. [Google Scholar] [CrossRef] [PubMed]
- Lideikytė, L.; Pašakinskienė, I.; Lemežienė, N.; Nekrošas, S.; Kanapeckas, J. FISH assessment of ribosomal DNA sites in the chromosome sets of Lolium, Festuca and Festulolium. Zemdirbyste-Agriculture 2008, 95, 116–124. [Google Scholar]
- Thomas, H.M.; Harper, J.A.; Morgan, W.G. Gross chromosome rearrangements are occurring in an accession of the grass Lolium rigidum. Chromosome Res. 2001, 9, 585–590. [Google Scholar] [CrossRef] [PubMed]
- Raskina, O.; Barber, J.C.; Nevo, E.; Belyayev, A. Repetitive DNA and chromosomal rearrangements: Speciation-related events in plant genomes. Cytogenet. Genome Res. 2008, 120, 351–357. [Google Scholar] [CrossRef]
- Garcia, S.; Kovarik, A. Dancing together and separate again: Gymnosperms exhibit frequent changes of fundamental 5S and 35S rRNA gene (rDNA) organisation. Heredity 2013, 111, 23–33. [Google Scholar] [CrossRef] [Green Version]
- Sousa, A.; Renner, S.S. Interstitial telomere-like repeats in the monocot family Araceae. Bot. J. Linn. Soc. 2015, 177, 15–26. [Google Scholar] [CrossRef] [Green Version]
- Havlová, K.; Dvořáčková, M.; Peiro, R.; Abia, D.; Mozgová, I.; Vansáčová, L.; Gutierrez, C.; Fajkus, J. Variation of 45S rDNA intergenic spacers in Arabidopsis thaliana. Plant Mol. Biol. 2016, 92, 457–471. [Google Scholar] [CrossRef]
- Gernand, D.; Golczyk, H.; Rutten, T.; Ilnicki, T.; Houben, A.; Joachimiak, A.J. Tissue culture triggers chromosome alterations, amplification and transposition of repeat sequences in Allium fistulosum. Genome 2007, 50, 435–442. [Google Scholar] [CrossRef]
- Kovarik, A.; Pires, J.C.; Leitch, A.R.; Lim, K.Y.; Sherwood, A.M.; Matyasek, R.; Rocca, J.; Soltis, D.E.; Soltis, P.S. Rapid concerted evolution of nuclear ribosomal DNA in two Tragopogon allopolyploids of recent and recurrent origin. Genetics 2005, 169, 931–944. [Google Scholar] [CrossRef] [Green Version]
- Waminal, N.E.; Pellerin, R.J.; Kang, S.-H.; Kim, H.H. Chromosomal mapping of tandem repeats revealed massive chromosomal rearrangements and insights into Senna tora dysploidy. Front. Plant. Sci. 2021, 12, 629898. [Google Scholar] [CrossRef]
- Long, Q.; Rabanal, F.A.; Meng, D.; Huber, C.D.; Farlow, A.; Platzer, A.; Zhang, Q.; Vilhjálmsson, B.J.; Korte, A.; Nizhynska, V.; et al. Massive genomic variation and strong selection in Arabidopsis thaliana lines from Sweden. Nat. Genet. 2013, 45, 884–890. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Forment, J.V.; Kaidi, A.; Jackson, S.P. Chromothripsis and cancer: Causes and consequences of chromosome shattering. Nat. Rev. Cancer 2012, 12, 663–670. [Google Scholar] [CrossRef] [PubMed]
- Shen, M.M. Chromoplexy: A new category of complex rearrangements in the cancer genome. Cancer Cell 2013, 23, 567–569. [Google Scholar] [CrossRef] [Green Version]
- Koo, D.-H.; Molin, W.T.; Saski, C.A.; Jiang, J.; Putta, K.; Jugulam, M.; Friebe, B.; Gill, B.S. Extrachromosomal circular DNA-based amplification and transmission of herbicide resistance in crop weed Amaranthus palmeri. Proc. Natl. Acad. Sci. USA 2018, 115, 3332–3337. [Google Scholar] [CrossRef] [Green Version]
- Majka, J.; Glombik, M.; Doležalová, A.; Kneřová, J.; Ferreira, M.T.M.; Zwierzykowski, Z.; Duchoslav, M.; Studer, B.; Doležel, J.; Bartoš, J.; et al. Both male and female meiosis contribute to non-Mendelian inheritance of parental chromosomes in interspecific plant hybrids (Lolium × Festuca). New Phytol. 2023; Online ahead of print. [Google Scholar] [CrossRef]
- McClintock, B. The significance of responses of the genome to challenge. Science 1984, 22, 792–801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mandáková, T.; Pouch, M.; Brock, J.R.; Al-Shehbaz, I.A.; Lysak, M.A. Origin and evolution of diploid and allopolyploid Camelina genomes were accompanied by chromosome shattering. Plant Cell 2019, 31, 2596–2612. [Google Scholar]
Clonal Diploid Plant | Parental Genome/Subgenome Proportion According to GISH * | 45S rDNA Cluster Site Number | Presence of PGI-2 Allele a++ from Fg Subgenome ** | ||
---|---|---|---|---|---|
Major Chromosomal Component | Lm Insertions | Fg Insertions | |||
N1 | Fp | ++ | − | 2 | Yes |
N2 | Fp | + | − | 2 | Yes |
N3 | Fp | + | +? | 2 | Yes |
N4 | Fp | ++ | +? | 2 | Yes |
N5 | Fp | + | − | 2 | No |
Parental Chromosomes and a Category of Recombinant Chromosome Variant | Metaphase Spread | |
---|---|---|
A1 | A2 | |
Lm chromosomes and chromosomal parts | 20 | 24 |
Ratio of broken/total Lm | 1/20 | 8/24 |
Lm + Fp tip | 1 | 2 |
⅔Lm + ⅓Fp | 2 | 2 |
⅔Lm + ⅓Fg | 1 | 2 |
Fg chromosomes | 10 | 10 |
Fg +Fp tip | 2 | 2 |
⅔Fg + ⅓Fp | 1 | 1 |
½Fg + ¼Lm + ¼Fp | 2 | 2 |
Fp chromosomes | 2 | 2 |
¾Fp + 2 Lm inserts + ¼Fg | 1 | 1 |
½Fp + ¼Lm+ ¼Fg | 1 | 1 |
Parental Species Genome or Subgenome * | Chromosomes Having Full or Partial Species Components | Recombinant Chromosomes ** | |
---|---|---|---|
No. | % | ||
L. multiflorum | 119 | 35 | 29,4 |
F. glaucescens | 68 | 28 | 41,2 |
F. pratensis | 46 | 36 | 78,3 |
Reference Source | Festulolium Hybrids | Description |
---|---|---|
Pašakinskienė et al., 1997 [36] | L. multiflorum × F. arundinacea (2n = 8x = 56) F1 plants | An unusual case of instant rediploidization of the F. pratensis subgenome was discovered; six “novel diploids” were found out of 167 in the F1C0 octoploid plant group. |
Canter et al., 1999 [43] | L. perenne × F. pratensis var. Prior (2n = 4x = 28) plants in F8 generation | Recombination events per recombined chromosome were significantly higher for F. pratensis than for L. perenne-like chromosomes. |
Zwierzykowsky et al., 2006 [26] | F. pratensis × L. perenne (2n = 4x = 28) plants in six successive generations F1–F6 | The number of recombinant chromosomes and recombination break points were higher for F. pratensis than for L. perenne-like chromosomes. |
Książczyk et al., 2015 [44] | F. pratensis × L. perenne plants (2n = 4x = 28) in F2–F4 generations | F. pratensis-like chromosomes are less structurally stable than L. perenne; F. pratensis-like chromosomes were more affected by rDNA loci changes. |
Majka et al., 2018 [17] | F. pratensis × L. perenne plants (2n = 4x = 28) in F1–F9 generations | An unusual variant of the rDNA cluster site in a pair of F. pratensis chromosomes was detected, with two loci found on one chromosome and one on another. |
Majka et al., 2019 [45] | F. pratensis × L. perenne plants (2n = 4x = 28) in F2–F3 generations | Cytogenetic and molecular genotyping (ISSR) revealed higher levels of recombination in chromosomes derived from F. pratensis than from L. perenne; structural changes were more frequent in F. pratensis-like chromosomes bearing 45S rDNA loci than in non-bearing ones. |
Liv Østrem (personal communication), 2002 | L. perenne × (L. perenne × Festulolium [var. Prior]) (2n = 4x = 28) backcross plants | A complete diploid F. pratensis genome (2n = 2x = 14) surprisingly re-emerged in the cross. |
This study | A unique L. multiflorum × F. arundinacea (2n = 6x = 42) “super-recombinant” donor plant showing distinct clonal tiller variability found among 682 plants in F2 | Reassembly of the F. pratensis subgenome was discovered from a “chromosomal cocktail” represented in a hexaploid donor plant; five “novel diploids” were found out of 27 clonal descendants. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pašakinskienė, I. Festuca pratensis-like Subgenome Reassembly from a “Chromosomal Cocktail” in the Intergeneric Festulolium (Poaceae) Hybrid: A Rare Chromoanagenesis Event in Grasses. Plants 2023, 12, 984. https://doi.org/10.3390/plants12050984
Pašakinskienė I. Festuca pratensis-like Subgenome Reassembly from a “Chromosomal Cocktail” in the Intergeneric Festulolium (Poaceae) Hybrid: A Rare Chromoanagenesis Event in Grasses. Plants. 2023; 12(5):984. https://doi.org/10.3390/plants12050984
Chicago/Turabian StylePašakinskienė, Izolda. 2023. "Festuca pratensis-like Subgenome Reassembly from a “Chromosomal Cocktail” in the Intergeneric Festulolium (Poaceae) Hybrid: A Rare Chromoanagenesis Event in Grasses" Plants 12, no. 5: 984. https://doi.org/10.3390/plants12050984
APA StylePašakinskienė, I. (2023). Festuca pratensis-like Subgenome Reassembly from a “Chromosomal Cocktail” in the Intergeneric Festulolium (Poaceae) Hybrid: A Rare Chromoanagenesis Event in Grasses. Plants, 12(5), 984. https://doi.org/10.3390/plants12050984