Major Bioactive Compounds from Java Plum Seeds: An Investigation of Its Extraction Procedures and Clinical Effects
Abstract
:1. Introduction
2. Major Bioactive Constituents
3. Clinical Effects Imparted
3.1. Phenolic Compounds
3.2. Terpenes and Terpenoids
3.3. Alkaloids
4. Major Extraction Procedures
5. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gajera, H.P.; Gevariya, S.N.; Patel, S.V.; Golakiya, B.A. Nutritional profile and molecular fingerprints of indigenous black jamun (Syzygium cumini L.) landraces. J. Food Sci. Technol. 2018, 55, 730–739. [Google Scholar] [CrossRef] [PubMed]
- Do Nascimento-Silva, N.R.R.; Bastos, R.P.; da Silva, F.A. Jambolan (Syzygium cumini (L.) Skeels)): A review on its nutrients, bioactive compounds and health benefits. J. Food Compos. Anal. 2022, 109, 104491. [Google Scholar] [CrossRef]
- Qamar, M.; Akhtar, S.; Ismail, T.; Wahid, M.; Abbas, M.W.; Mubarak, M.S.; Yuan, Y.; Barnard, R.T.; Ziora, Z.M.; Esatbeyoglu, T. Phytochemical profile, biological properties, and food applications of the medicinal plant Syzygium cumini. Foods 2022, 11, 378. [Google Scholar] [CrossRef]
- Benherlal, P.S.; Arumughan, C. Chemical composition and in vitro antioxidant studies on Syzygium cumini fruit. J. Sci. Food Agric. 2007, 87, 2560–2569. [Google Scholar] [CrossRef]
- Chaudhary, B.; Mukhopadhyay, K. Syzygium cumini (L.) Skeels: A potential source of nutraceuticals. Int. J. Pharm. Biol. Sci. 2012, 2, 46–53. [Google Scholar]
- Sawant, L.; Singh, V.K.; Dethe, S.; Bhaskar, A.; Balachandran, J.; Mundkinajeddu, D.; Agarwal, A. Aldose reductase and protein tyrosine phosphatase 1B inhibitory active compounds from Syzygium cumini seeds. Pharm. Biol. 2015, 53, 1176–1182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roy, G.; Malla, S.; Chakravarty, S. Integrated processing of jamun (Syzygium cumini (L.) Skeels) fruit for value addition and assessment of its impact on health and nutrition. Clin. Diagn. Lab. Immunol. 2013, 21, 65–69. [Google Scholar]
- Jenke, D.R. Chromatographic Method Validation: A Review of current practices and procedures. II. Guidelines for Primary Validation Parameters. J. Liq. Chromatogr. Relat. Technol. 1996, 19, 737–757. [Google Scholar] [CrossRef]
- Chhikara, N.; Kaur, R.; Jaglan, S.; Sharma, P.; Gat, Y.; Panghal, A. Bioactive compounds and pharmacological and food applications of Syzygium cumini—A review. Food Funct. 2018, 9, 6096–6115. [Google Scholar] [CrossRef]
- Kumar, M.; Zhang, B.; Nishad, J.; Verma, A.; Sheri, V.; Dhumal, S.; Sharma, N.; Chandran, D.; Senapathy, M.; Dey, A. Jamun (Syzygium cumini (L.) Skeels) Seed: A Review on Nutritional Profile, Functional food properties, health-promoting applications, and safety aspects. Processes 2022, 10, 2169. [Google Scholar] [CrossRef]
- Gowri, S.S.; Vasantha, K. Phytochemical screening and antibacterial activity of Syzygium cumini (L.)(Myrtaceae) leaves extracts. Int. J. PharmTech Res. 2010, 2, 1569–1573. [Google Scholar]
- Ayyanar, M.; Subash-Babu, P. Syzygium cumini (L.) Skeels: A review of its phytochemical constituents and traditional uses. Asian Pac. J. Trop. Biomed. 2012, 2, 240–246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Srivastava, S.; Chandra, D. Pharmacological potentials of Syzygium cumini: A review. J. Sci. Food Agric. 2013, 93, 2084–2093. [Google Scholar] [CrossRef] [PubMed]
- Ramya, S.; Neethirajan, K.; Jayakumararaj, R. Profile of bioactive compounds in Syzygium cumini—A review. J. Pharm. Res. 2012, 5, 4548–4553. [Google Scholar]
- Saeed, A.; Kauser, S.; Iqbal, M. Nutrient, mineral, antioxidant, and anthocyanin profiles of different cultivars of Syzygium cumini (jamun) at different stages of fruit maturation. Pak. J. Bot. 2018, 50, 1791–1804. [Google Scholar]
- Longvah, T.; Ananthan, R.; Bhaskarachary, K.; Venkaiah, K. Indian Food Composition Tables; National Institute of Nutrition (Indian Council of Medical Research): Hyderabad, Telangana, India, 2017. [Google Scholar]
- Baliga, M.S.; Bhat, H.P.; Baliga, B.R.V.; Wilson, R.; Palatty, P.L. Phytochemistry, traditional uses and pharmacology of Eugenia jambolana Lam. (black plum): A review. Food Res. Int. 2011, 44, 1776–1789. [Google Scholar] [CrossRef]
- Raza, A.; Ali, M.U.; Nisar, T.; Qasrani, S.A.; Hussain, R.; Sharif, M.N. Proximate Composition of Jamun (Syzygium cumini) Fruit and Seed. Am.-Eurasian J. Agric. Environ. Sci. 2015, 15, 1221–1223. [Google Scholar]
- Sharma, R.; Oberoi, K.; Sharma, K.; Nagraik, R.; Kumar, D.; Sharma, A.; Sharma, S. Bioactive compounds and ethnomedicinal uses of Syzygium cumini (L.) Skeels—A comprehensive review. Ann. Univ. Dunarea Jos Galati. Fascicle VI Food Technol. 2020, 44, 230–254. [Google Scholar] [CrossRef]
- Santos, C.A.; Almeida, F.A.; Quecan, B.X.; Pereira, P.A.; Gandra, K.; Cunha, L.R.; Pinto, U.M. Bioactive properties of Syzygium cumini (L.) skeels pulp and seed phenolic extracts. Front. Microbiol. 2020, 11, 990. [Google Scholar] [CrossRef]
- Kumar, A.; Padmanabhan, N.; Krishnan, M. Extraction of Fatty Acids from Syzygium cumini Seeds with Different Solvents. Asian J. Chem. 2007, 19, 2779–2782. [Google Scholar]
- Hameed, F.; Gupta, N.; Rahman, R.; Anjum, N.; Nayik, G.A. Jamun. In Antioxidants in Fruits: Properties and Health Benefits; Ahmad, N.G., Amir, G., Eds.; Springer: Singapore, 2020; pp. 615–637. [Google Scholar]
- Daulatabad, C.M.J.D.; Mirajkar, A.M.; Hosamani, K.M.; Mulla, G.M.M. Epoxy and cyclopropenoid fatty acids in Syzygium cuminii seed oil. J. Sci. Food Agric. 1988, 43, 91–94. [Google Scholar] [CrossRef]
- Balyan, U.; Sarkar, B. Aqueous extraction kinetics of phenolic compounds from jamun (Syzygium cumini L.) seeds. Int. J. Food Prop. 2017, 20, 372–389. [Google Scholar] [CrossRef] [Green Version]
- Ali, S.M.; Masud, T.; Abbasi, K.S.; Ali, A.; Hussain, A. Some compositional and biochemical attributes of jaman fruit (Syzygium cumini L.) from Potowar region of Pakistan. Res. Pharm. 2013, 3, 1–9. [Google Scholar]
- Arun, R.; Prakash, M.V.; Abraham, S.K.; Premkumar, K. Role of Syzygium cumini seed extract in the chemoprevention of in vivo genomic damage and oxidative stress. J. Ethnopharmacol. 2011, 134, 329–333. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, A.A.; Ali, S.I.; El-Baz, F.K. Antioxidant and antibacterial activities of crude extracts and essential oils of Syzygium cumini leaves. PLoS ONE 2013, 8, e60269. [Google Scholar] [CrossRef] [Green Version]
- Bajpai, M.; Pande, A.; Tewari, S.; Prakash, D. Phenolic contents and antioxidant activity of some food and medicinal plants. Int. J. Food Sci. Nutr. 2005, 56, 287–291. [Google Scholar] [CrossRef]
- Aqil, F.; Gupta, A.; Munagala, R.; Jeyabalan, J.; Kausar, H.; Sharma, R.J.; Singh, I.P.; Gupta, R.C. Antioxidant and antiproliferative activities of anthocyanin/ellagitannin-enriched extracts from Syzygium cumini L. (Jamun, the Indian Blackberry). Nutr. Cancer 2012, 64, 428–438. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shrikanta, A.; Kumar, A.; Govindaswamy, V. Resveratrol content and antioxidant properties of underutilized fruits. J. Food Sci. Technol. 2015, 52, 383–390. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, S.; Jahan, I.A.; Hossain, M.H.; Ahmed, K.S.; Rahman, M.; Zzaman, W.; Hoque, M.M. Bioactive compounds, antioxidant properties and phenolic profile of pulp and seed of Syzygium cumini. J. Food Meas. Charact. 2021, 15, 1991–1999. [Google Scholar] [CrossRef]
- Chagas, V.T.; França, L.M.; Malik, S.; Paes, A.M.d.A. Syzygium cumini (L.) skeels: A prominent source of bioactive molecules against cardiometabolic diseases. Front. Pharmacol. 2015, 6, 259. [Google Scholar] [CrossRef] [Green Version]
- Singh, B.; Singh, J.P.; Kaur, A.; Singh, N. Insights into the phenolic compounds present in jambolan (Syzygium cumini) along with their health-promoting effects. Int. J. Food Sci. Technol. 2018, 53, 2431–2447. [Google Scholar] [CrossRef]
- Tak, Y.; Kaur, M.; Jain, M.C.; Samota, M.K.; Meena, N.K.; Kaur, G.; Kumar, R.; Sharma, D.; Lorenzo, J.M.; Amarowicz, R. Jamun seed: A review on bioactive constituents, nutritional value and health benefits. Pol. J. Food Nutr. Sci. 2022, 72, 211–228. [Google Scholar] [CrossRef]
- Raza, A.; Butt, M.S.; Suleria, H.A.R. Jamun (Syzygium cumini) seed and fruit extract attenuate hyperglycemia in diabetic rats. Asian Pac. J. Trop. Biomed. 2017, 7, 750–754. [Google Scholar] [CrossRef]
- Nahid, S.; Mazumder, K.; Rahman, Z.; Islam, S.; Rashid, M.H.; Kerr, P.G. Cardio-and hepato-protective potential of methanolic extract of Syzygium cumini (L.) Skeels seeds: A diabetic rat model study. Asian Pac. J. Trop. Biomed. 2017, 7, 126–133. [Google Scholar] [CrossRef]
- Sharma, S.; Pathak, S.; Gupta, G.; Sharma, S.K.; Singh, L.; Sharma, R.K.; Mishra, A.; Dua, K. Pharmacological evaluation of aqueous extract of Syzigium cumini for its antihyperglycemic and antidyslipidemic properties in diabetic rats fed a high cholesterol diet—Role of PPARγ and PPARα. Biomed. Pharmacother. 2017, 89, 447–453. [Google Scholar] [CrossRef] [PubMed]
- Sharafeldin, K.; Rizvi, M.R. Effect of traditional plant medicines (Cinnamomum zeylanicum and Syzygium cumini) on oxidative stress and insulin resistance in streptozotocin-induced diabetic rats. J. Basic Appl. Zool. 2015, 72, 126–134. [Google Scholar] [CrossRef] [Green Version]
- Alikatte, K.L.; Akondi, B.R.; Yerragunta, V.G.; Veerareddy, P.R.; Palle, S. Antiamnesic activity of Syzygium cumini against scopolamine induced spatial memory impairments in rats. Brain Dev. 2012, 34, 844–851. [Google Scholar] [CrossRef]
- Vincente, A.R.; Manganaris, G.A.; Ortiz, C.M.; Sozzi, G.O.; Crisosto, C.H. Nutritional quality of fruits and vegetables. In Postharvest Handling; Elsevier: Amsterdam, The Netherlands, 2014; pp. 69–122. [Google Scholar]
- Robbins, R.J. Phenolic acids in foods: An overview of analytical methodology. J. Agric. Food Chem. 2003, 51, 2866–2887. [Google Scholar] [CrossRef]
- Saibabu, V.; Fatima, Z.; Khan, L.A.; Hameed, S. Therapeutic potential of dietary phenolic acids. Adv. Pharmacol. Sci. 2015, 2015, 823539. [Google Scholar] [CrossRef] [Green Version]
- Chandrasekara, A. Phenolic acids. In Encyclopedia of Food Chemistry; Melton, L., Shahidi, F., Varelis, P., Eds.; Academic Press: Oxford, UK, 2019; pp. 535–545. [Google Scholar]
- Mashkor, I. Phenolic content and antioxidant activity of fenugreek seeds extract. Int. J. Pharmacogn. Phytochem. Res. 2014, 6, 841–844. [Google Scholar]
- Liu, F.; Ma, H.; Wang, G.; Liu, W.; Seeram, N.P.; Mu, Y.; Xu, Y.; Huang, X.; Li, L. Phenolics from Eugenia jambolana seeds with advanced glycation endproduct formation and alpha-glucosidase inhibitory activities. Food Funct. 2018, 9, 4246–4254. [Google Scholar] [CrossRef] [PubMed]
- Eldin Elhawary, S.S.; Elmotayam, A.k.E.; Alsayed, D.k.; Zahran, E.M.; Fouad, M.A.; Sleem, A.A.; Elimam, H.; Rashed, M.H.; Hayallah, A.M.; Mohammed, A.F. Cytotoxic and anti-diabetic potential, metabolic profiling and in silico studies of Syzygium cumini (L.) Skeels belonging to family Myrtaceae. Nat. Prod. Res. 2022, 36, 1026–1030. [Google Scholar] [CrossRef] [PubMed]
- Gajera, H.; Gevariya, S.N.; Hirpara, D.G.; Patel, S.; Golakiya, B. Antidiabetic and antioxidant functionality associated with phenolic constituents from fruit parts of indigenous black jamun (Syzygium cumini L.) landraces. J. Food Sci. Technol. 2017, 54, 3180–3191. [Google Scholar] [CrossRef]
- Margaret, E.; Shailaja, A.; Rao, V.V. Evaluation of antioxidant activity in different parts of Syzygium cumini (Linn.). Int. J. Curr. Microbiol. Appl. Sci. 2015, 4, 372–379. [Google Scholar]
- Aqil, F.; Munagala, R.; Jeyabalan, J.; Joshi, T.; Gupta, R.C.; Singh, I.P. Chapter 10—The Indian blackberry (Jamun), antioxidant capacity, and cancer protection. In Cancer; Preedy, V., Ed.; Academic Press: Cambridge, MA, USA, 2014; pp. 101–113. [Google Scholar]
- Karamać, M. In-vitro study on the efficacy of tannin fractions of edible nuts as antioxidants. Eur. J. Lipid Sci. Technol. 2009, 111, 1063–1071. [Google Scholar] [CrossRef]
- Puljula, E.; Walton, G.; Woodward, M.J.; Karonen, M. Antimicrobial activities of ellagitannins against Clostridiales perfringens, Escherichia coli, Lactobacillus plantarum and Staphylococcus aureus. Molecules 2020, 25, 3714. [Google Scholar] [CrossRef] [PubMed]
- Yadav, N.; Pal, A.; Sihag, S.; Nagesh, C. Antioxidant activity profiling of acetonic extract of jamun (Syzygium cumini L.) seeds in different models. Open Food Sci. J. 2020, 12, 3–8. [Google Scholar] [CrossRef]
- Syama, H.; Arya, A.; Dhanya, R.; Nisha, P.; Sundaresan, A.; Jacob, E.; Jayamurthy, P. Quantification of phenolics in Syzygium cumini seed and their modulatory role on tertiary butyl-hydrogen peroxide-induced oxidative stress in H9c2 cell lines and key enzymes in cardioprotection. J. Food Sci. Technol. 2017, 54, 2115–2125. [Google Scholar] [CrossRef]
- Abdalla, F.; Bellé, L.; Bitencourt, P.; de Bona, K.; Zanette, R.; Boligon, A.; Athayde, M.; Pigatto, A.; Moretto, M. Protective effects of Syzygium cumini seed extract against methylmercury-induced sistemic toxicity in neonatal rats. Biometals 2011, 24, 349–356. [Google Scholar] [CrossRef]
- Aqil, F.; Jeyabalan, J.; Munagala, R.; Singh, I.P.; Gupta, R.C. Prevention of hormonal breast cancer by dietary jamun. Mol. Nutr. Food Res. 2016, 60, 1470–1481. [Google Scholar] [CrossRef] [Green Version]
- Chua, L.K.; Lim, C.L.; Ling, A.P.K.; Chye, S.M.; Koh, R.Y. Anticancer potential of Syzygium species: A review. Plant Foods Hum. Nutr. 2019, 74, 18–27. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.S.; Qais, F.A.; Ahmad, I. Indian berries and their active compounds: Therapeutic potential in cancer prevention. In New Look to Phytomedicine; Elsevier: Amsterdam, The Netherlands, 2019; pp. 179–201. [Google Scholar]
- Grover, J.; Yadav, S.; Vats, V. Medicinal plants of India with anti-diabetic potential. J. Ethnopharmacol. 2002, 81, 81–100. [Google Scholar] [CrossRef] [PubMed]
- Baliga, M.S.; Fernandes, S.; Thilakchand, K.R.; D’souza, P.; Rao, S. Scientific validation of the antidiabetic effects of Syzygium jambolanum DC (black plum), a traditional medicinal plant of India. J. Altern. Complement. Med. 2013, 19, 191–197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sidana, S.; Singh, V.; Meena, B.; Beniwal, S.; Singh, K.; Kumar, D.; Singla, R. Effect of Syzygium cumini (jamun) seed powder on glycemic control: A double-blind randomized controlled trial. J. Med. Soc. 2017, 31, 185. [Google Scholar] [CrossRef]
- Kochhar, A.; Nagi, M. Effect of supplementation of traditional medicinal plants on blood glucose in non–insulin-dependent diabetics: A pilot study. J. Med. Food 2005, 8, 545–549. [Google Scholar] [CrossRef] [PubMed]
- Yadav, M.; Lavania, A.; Tomar, R.; Prasad, G.; Jain, S.; Yadav, H. Complementary and comparative study on hypoglycemic and antihyperglycemic activity of various extracts of Eugenia jambolana seed, Momordica charantia fruits, Gymnema sylvestre, and Trigonella foenum graecum seeds in rats. Appl. Biochem. Biotechnol. 2010, 160, 2388–2400. [Google Scholar] [CrossRef]
- Prince, P.S.M.; Kamalakkannan, N.; Menon, V.P. Antidiabetic and antihyperlipidaemic effect of alcoholic Syzigium cumini seeds in alloxan induced diabetic albino rats. J. Ethnopharmacol. 2004, 91, 209–213. [Google Scholar] [CrossRef]
- Singh, N.; Gupta, M. Effects of ethanolic extract of Syzygium cumini (Linn) seed powder on pancreatic islets of alloxan diabetic rats. Indian J. Exp. Biol. 2007, 45, 861–867. [Google Scholar]
- Mahindrakar, K.V.; Rathod, V.K. Antidiabetic potential evaluation of aqueous extract of waste Syzygium cumini seed kernel’s by in vitro α-amylase and α-glucosidase inhibition. Prep. Biochem. Biotechnol. 2021, 51, 589–598. [Google Scholar] [CrossRef]
- Das, S.; Sarma, G. Study of the hepatoprotective activity of the ethanolic extract of the pulp of Eugenia jambolana (jamun) in albino rats. J. Clin. Diagn. Res. 2009, 3, 1466–1474. [Google Scholar]
- Veigas, J.M.; Shrivasthava, R.; Neelwarne, B. Efficient amelioration of carbon tetrachloride induced toxicity in isolated rat hepatocytes by Syzygium cumini Skeels extract. Toxicol. Vitr. 2008, 22, 1440–1446. [Google Scholar] [CrossRef] [PubMed]
- Moresco, R.N.; Sperotto, R.L.; Bernardi, A.S.; Cardoso, R.F.; Gomes, P. Effect of the aqueous extract of Syzygium cumini on carbon tetrachloride-induced hepatotoxicity in rats. Phytother. Res. 2007, 21, 793–795. [Google Scholar] [CrossRef] [PubMed]
- Evans, W. Trease and Evans Pharmacognosy, 15th ed.; Sanders Co., Ltd.: Singapore, 2002. [Google Scholar]
- Hernández-Rodríguez, P.; Baquero, L.P.; Larrota, H.R. Chapter 14—Flavonoids: Potential therapeutic agents by their antioxidant capacity. In Bioactive Compounds; Campos, M.R.S., Ed.; Woodhead Publishing: Sawston, UK, 2019; pp. 265–288. [Google Scholar]
- Jadeja, R.N.; Thouaojam, M.C.; Sankhari, J.M.; Jain, M.; Devkar, R.V.; Ramachandran, A. Standardized flavonoid-rich Eugenia jambolana seed extract retards in vitro and in vivo LDL oxidation and expression of VCAM-1 and P-selectin in atherogenic rats. Cardiovasc. Toxicol. 2012, 12, 73–82. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Yuan, T.; Liu, W.; Ma, H.; Seeram, N.P.; Li, Y.; Xu, L.; Mu, Y.; Huang, X.; Li, L. Phloroglucinol derivatives with protein tyrosine phosphatase 1B inhibitory activities from Eugenia jambolana seeds. J. Nat. Prod. 2017, 80, 544–550. [Google Scholar] [CrossRef]
- Boots, A.W.; Haenen, G.R.; Bast, A. Health effects of quercetin: From antioxidant to nutraceutical. Eur. J. Pharmacol. 2008, 585, 325–337. [Google Scholar] [CrossRef]
- Bhattacharya, K.; Chanu, N.R.; Bhattacharjee, A.; Bordoloi, R.; Sahariah, B.J.; Talukdar, A.; Kalita, R. Quercetin for the experimental treatment of COVID-19. In Handbook of Research on Knowledge and Organization Systems in Library and Information Science; IGI Global: Hershey, PA, USA, 2021; pp. 69–87. [Google Scholar]
- Training, K.S.S. Effect of Quercetin on Prophylaxis and Treatment of COVID-19; Clinical Trials: Washington, DC, USA, 2020. [Google Scholar]
- Russo, M.; Moccia, S.; Spagnuolo, C.; Tedesco, I.; Russo, G.L. Roles of flavonoids against coronavirus infection. Chem.-Biol. Interact. 2020, 328, 109211. [Google Scholar] [CrossRef]
- Babaei, F.; Mirzababaei, M.; Nassiri-Asl, M. Quercetin in food: Possible mechanisms of its effect on memory. J. Food Sci. 2018, 83, 2280–2287. [Google Scholar] [CrossRef] [Green Version]
- Wasswa, M.; Tumuhimbise, G.A.; Acham, H. Chemical characterisation of pulp, seed powder and a ready-to-drink juice produced from Syzygium cumini fruit. Mak. Univ. J. Agric. Environ. Sci. 2019, 8, 44–57. [Google Scholar]
- Khan, F.; Niaz, K.; Maqbool, F.; Ismail Hassan, F.; Abdollahi, M.; Nagulapalli Venkata, K.C.; Nabavi, S.M.; Bishayee, A. Molecular targets underlying the anticancer effects of quercetin: An update. Nutrients 2016, 8, 529. [Google Scholar] [CrossRef] [Green Version]
- Kashyap, D.; Garg, V.K.; Tuli, H.S.; Yerer, M.B.; Sak, K.; Sharma, A.K.; Kumar, M.; Aggarwal, V.; Sandhu, S.S. Fisetin and quercetin: Promising flavonoids with chemopreventive potential. Biomolecules 2019, 9, 174. [Google Scholar] [CrossRef] [Green Version]
- Yang, D.K.; Kang, H.-S. Anti-diabetic effect of cotreatment with quercetin and resveratrol in streptozotocin-induced diabetic rats. Biomol. Ther. 2018, 26, 130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kanter, M.; Altan, M.F.; Donmez, S.; Ocakci, A.; Kartal, M.E. The effects of quercetin on bone minerals, biomechanical behavior, and structure in streptozotocin-induced diabetic rats. Cell Biochem. Funct. 2007, 25, 747–752. [Google Scholar] [CrossRef]
- Chen, S.; Jiang, H.; Wu, X.; Fang, J. Therapeutic effects of quercetin on inflammation, obesity, and type 2 diabetes. Mediat. Inflamm. 2016, 2016, 9340637. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, Y.; Chen, B.; Shen, J.; Wan, L.; Zhu, Y.; Yi, T.; Xiao, Z. The beneficial effects of quercetin, curcumin, and resveratrol in obesity. Oxidative Med. Cell. Longev. 2017, 2017, 1459497. [Google Scholar] [CrossRef] [Green Version]
- Nabavi, S.F.; Russo, G.L.; Daglia, M.; Nabavi, S.M. Role of quercetin as an alternative for obesity treatment: You are what you eat! Food Chem. 2015, 179, 305–310. [Google Scholar] [CrossRef]
- Zhao, L.; Zhang, Q.; Ma, W.; Tian, F.; Shen, H.; Zhou, M. A combination of quercetin and resveratrol reduces obesity in high-fat diet-fed rats by modulation of gut microbiota. Food Funct. 2017, 8, 4644–4656. [Google Scholar] [CrossRef]
- Serban, M.C.; Sahebkar, A.; Zanchetti, A.; Mikhailidis, D.P.; Howard, G.; Antal, D.; Andrica, F.; Ahmed, A.; Aronow, W.S.; Muntner, P. Effects of quercetin on blood pressure: A systematic review and meta-analysis of randomized controlled trials. J. Am. Heart Assoc. 2016, 5, e002713. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marunaka, Y.; Marunaka, R.; Sun, H.; Yamamoto, T.; Kanamura, N.; Inui, T.; Taruno, A. Actions of quercetin, a polyphenol, on blood pressure. Molecules 2017, 22, 209. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, T.; Morishita, T. Bitterness generation, rutin hydrolysis, and development of trace rutinosidase variety in tartary buckwheat. In Molecular Breeding and Nutritional Aspects of Buckwheat; Elsevier: Amsterdam, The Netherlands, 2016; pp. 345–353. [Google Scholar]
- Khan, M.S.; Abul Qais, F.; Ahmad, I.; Hussain, A.; Alajmi, M.F. Genotoxicity inhibition by Syzygium cumini (L.) seed fraction and rutin: Understanding the underlying mechanism of DNA protection. Toxicol. Res. 2018, 7, 156–171. [Google Scholar] [CrossRef] [Green Version]
- Jagetia, G.C. Phytochemical Composition and pleotropic pharmacological properties of jamun, Syzygium cumini skeels. J. Explor. Res. Pharmacol. 2017, 2, 54–66. [Google Scholar] [CrossRef] [Green Version]
- Karthic, K.; Kirthiram, K.S.; Sadasivam, S.; Thayumanavan, B. Identification of alpha amylase inhibitors from Syzygium cumini Linn seeds. Indian J. Exp. Biol. 2008, 46, 677–680. [Google Scholar] [PubMed]
- Prabakaran, K.; Shanmugavel, G. Antidiabetic activity and phytochemical constituents of Syzygium cumini Seeds in Puducherry Region, South India. Int. J. Pharmacogn. Phytochem. Res. 2017, 9, 985–989. [Google Scholar] [CrossRef]
- Frutos, M.J.; Rincón-Frutos, L.; Valero-Cases, E. Rutin. In Nonvitamin and Nonmineral Nutritional Supplements; Elsevier: Amsterdam, The Netherlands, 2019; pp. 111–117. [Google Scholar]
- Sieniawska, E.; Baj, T. Chapter 10—Tannins. In Pharmacognosy; Badal, S., Delgoda, R., Eds.; Academic Press: Boston, MA, USA, 2017; pp. 199–232. [Google Scholar]
- Zhang, L.L.; Lin, Y.M. Antioxidant tannins from Syzygium cumini fruit. Afr. J. Biotechnol. 2009, 8, 2301–2309. [Google Scholar]
- De Carvalho Tavares, I.M.; Lago-Vanzela, E.S.; Rebello, L.P.G.; Ramos, A.M.; Gomez-Alonso, S.; Garcia-Romero, E.; Da-Silva, R.; Hermosin-Gutierrez, I. Comprehensive study of the phenolic composition of the edible parts of jambolan fruit (Syzygium cumini (L.) Skeels). Food Res. Int. 2016, 82, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Bhatia, I.; Bajaj, K. Tannins in black-plum (Syzygium cumini L.) seeds. Biochem. J. 1972, 128, 56. [Google Scholar] [CrossRef] [Green Version]
- Kamal, A. Phytochemical screening of Syzygium cumini seeds. Indian J. Plant Sci. 2014, 3, 1–4. [Google Scholar]
- Ramirez, R.O.; Roa, C.C., Jr. The gastroprotective effect of tannins extracted from duhat (Syzygium cumini Skeels) bark on HCl/ethanol induced gastric mucosal injury in Sprague-Dawley rats. Clin. Hemorheol. Microcirc. 2003, 29, 253–261. [Google Scholar]
- Sharma, M.; Li, L.; Celver, J.; Killian, C.; Kovoor, A.; Seeram, N.P. Effects of fruit ellagitannin extracts, ellagic acid, and their colonic metabolite, urolithin A, on Wnt signaling. J. Agric. Food Chem. 2010, 58, 3965–3969. [Google Scholar] [CrossRef] [Green Version]
- Sridhar, S.; Sheetal, U.; Pai, M.; Shastri, M. Preclinical evaluation of the antidiabetic effect of Eugenia jambolana seed powder in streptozotocin-diabetic rats. Braz. J. Med. Biol. Res. 2005, 38, 463–468. [Google Scholar] [CrossRef] [Green Version]
- Omar, R.; Li, L.; Yuan, T.; Seeram, N.P. α-Glucosidase inhibitory hydrolyzable tannins from Eugenia jambolana seeds. J. Nat. Prod. 2012, 75, 1505–1509. [Google Scholar] [CrossRef]
- Jäger, W.; Höferl, M. Metabolism of terpenoids in animal models and humans. In Handbook of Essential Oils; CRC Press: Boca Raton, FL, USA, 2020; pp. 275–301. [Google Scholar]
- Siani, A.C.; Souza, M.C.; Henriques, M.G.; Ramos, M.F. Anti-inflammatory activity of essential oils from Syzygium cumini and Psidium guajava. Pharm. Biol. 2013, 51, 881–887. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Lu, X.; Zhu, R.; Zhang, K.; Li, S.; Chen, Z.; Li, L. Betulinic acid induces apoptosis in differentiated PC12 cells via ROS-mediated mitochondrial pathway. Neurochem. Res. 2017, 42, 1130–1140. [Google Scholar] [CrossRef] [PubMed]
- Sah, A.K.; Verma, V.K. Syzygium cumini: An overview. J. Chem. Pharm. Res. 2011, 3, 108–113. [Google Scholar]
- Ríos, J.L.; Máñez, S. New pharmacological opportunities for betulinic acid. Planta Med. 2018, 84, 8–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alakurtti, S.; Mäkelä, T.; Koskimies, S.; Yli-Kauhaluoma, J. Pharmacological properties of the ubiquitous natural product betulin. Eur. J. Pharm. Sci. 2006, 29, 1–13. [Google Scholar] [CrossRef]
- Huang, Q.X.; Chen, H.F.; Luo, X.R.; Zhang, Y.X.; Yao, X.; Zheng, X. Structure and Anti-HIV Activity of Betulinic Acid Analogues. Curr. Med. Sci. 2018, 38, 387–397. [Google Scholar] [CrossRef] [PubMed]
- Mu, Q.; Wang, H.; Tong, L.; Fang, Q.; Xiang, M.; Han, L.; Jin, L.; Yang, J.; Qian, Z.; Ning, G. Betulinic acid improves nonalcoholic fatty liver disease through YY1/FAS signaling pathway. FASEB J. 2020, 34, 13033–13048. [Google Scholar] [CrossRef]
- Eiznhamer, D.A.; Xu, Z.-Q. Betulinic acid: A promising anticancer candidate. IDrugs Investig. Drugs J. 2004, 7, 359–373. [Google Scholar]
- Lee, D.; Lee, S.R.; Kang, K.S.; Ko, Y.; Pang, C.; Yamabe, N.; Kim, K.H. Betulinic acid suppresses ovarian cancer cell proliferation through induction of apoptosis. Biomolecules 2019, 9, 257. [Google Scholar] [CrossRef] [Green Version]
- Guo, Y.; Zhu, H.; Weng, M.; Wang, C.; Sun, L. Chemopreventive effect of Betulinic acid via mTOR-Caspases/Bcl2/Bax apoptotic signaling in pancreatic cancer. BMC Complement. Med. Ther. 2020, 20, 1–11. [Google Scholar] [CrossRef]
- Rajkumar, G.; Jayasinghe, M.R.; Vinotha, S. Comparative analytical study of phytochemicals in selected antidiabetic medicinal plant seeds in Sri Lanka. Pharm. Sci. Res. 2021, 8, 145–155. [Google Scholar]
- Manohar, M. Ayurveda for All; V&S Publishers: Delhi, India, 2012. [Google Scholar]
- Pandhi, S.; Poonia, A. Phytochemical screening of Jamun seeds using different extraction methods. Pharma Innov. 2019, 8, 226–231. [Google Scholar]
- Hasanuzzaman, M.; Islam, W.; Islam, M. Phytochemical screening of Syzygium cumini (L.) extracts in different solvents. J. Bio-Sci. 2016, 24, 11–18. [Google Scholar] [CrossRef]
- Nobori, T.; Miura, K.; Wu, D.J.; Lois, A.; Takabayashi, K.; Carson, D.A. Deletions of the cyclin-dependent kinase-4 inhibitor gene in multiple human cancers. Nature 1994, 368, 753–756. [Google Scholar] [CrossRef]
- Yarnell, E.; Abascal, K.; Rountree, R. Clinical Botanical Medicine; Mary Ann Liebert, Inc.: Larchmont, NY, USA, 2009. [Google Scholar]
- Chaudhuri, A.N.; Pal, S.; Gomes, A.; Bhattacharya, S. Anti-inflammatory and related actions of Syzygium cuminii seed extract. Phytother. Res. 1990, 4, 5–10. [Google Scholar] [CrossRef]
- Prince, P.S.M.; Menon, V.P. Effect of Syzigium cumini in plasma antioxidants on alloxan-induced diabetes in rats. J. Clin. Biochem. Nutr. 1998, 25, 81–86. [Google Scholar] [CrossRef]
- Srivastava, Y.; Bhatt, H.; Gupta, O.; Gupta, P. Hypoglycemia induced by Syzygium cumini Linn. seeds in diabetes mellitus. Asian Med. J. 1983, 26, 489–492. [Google Scholar]
- Ratsimamanga, A.; Loiseau, A.; Ratsimamanga-Urverg, S.; Bibal-Prot, P. Action of a hypoglycemic agent found in the young bark of Eugenia jambolania (Myrtacea) on induced hyperglycemia of the rabbit and continuation of its purification. Comptes Rendus Hebd. Seances L’academie Sci. 1973, 277, 2219–2222. [Google Scholar]
- Kapoor, L. CRC Handbook of Ayurvedic Plants; CRC Press: Boca Raton, FL, USA, 1990; p. 183. [Google Scholar]
- Morton, J.F. Fruits of Warm Climates; Echo Point Books & Media: Brattleboro, VT, USA, 1987. [Google Scholar]
- Arya, S.; Pegu, K.; Sadawarte, P. Bioactive compounds and health benefits of jamun (Syzygium cumini). In Bioactive Molecules in Food. Reference Series in Phytochemistry; Springer Publications: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Mathur, A. A comparative physicochemical analysis of crude and refined jamun (Syzygium cumini) seed oil. Iconic Res. Eng. J. 2017, 1, 1–5. [Google Scholar]
- Hewavitharana, G.G.; Perera, D.N.; Navaratne, S.B.; Wickramasinghe, I. Extraction methods of fat from food samples and preparation of fatty acid methyl esters for gas chromatography: A review. Arab. J. Chem. 2020, 13, 6865–6875. [Google Scholar] [CrossRef]
- Folch, J.; Lees, M.; Sloane Stanley, G.H. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [CrossRef]
- Raza, A.; Saif-ul-Malook; Shahzad, N.; Qasrani, S.A.; Sharif, M.N.; Akram, M.N.; Ali, M.U. Extraction of Bioactive Components from the Fruit and Seed of Jamun (Syzygium cumini) Through Conventional Solvent Extraction Method. Am.-Eurasian J. Agric. Environ. Sci. 2015, 15, 991–996. [Google Scholar]
- Mathur, A. Extraction and characterization of Syzygium cumini (Jamun) seed oil. Int. J. Adv. Res. Eng. Sci. Technol. 2015, 2, 2394–2444. [Google Scholar]
- Abdul Jaleel, A.H.; Mahdi, J.F.; Farooqui, M. Gas chromatography-mass spectroscopic analysis of black plum seed (Syzygium cumini) extract in hexane. Asian J. Pharm. Clin. Res. 2019, 12, 219–222. [Google Scholar] [CrossRef]
- Balyan, U.; Sarkar, B. Ultrafiltration of Syzygium cumini (L.) seeds extract: Analysis of flux decline and extract stability. Asia-Pac. J. Chem. Eng. 2018, 13, e2166. [Google Scholar] [CrossRef]
- Al-Dhabi, N.A.; Ponmurugan, K. Microwave assisted extraction and characterization of polysaccharide from waste jamun fruit seeds. Int. J. Biol. Macromol. 2020, 152, 1157–1163. [Google Scholar] [CrossRef]
- Do Carmo Brito, B.N.; da Silva Pena, R.; Santos Lopes, A.; Campos Chisté, R. Anthocyanins of Jambolao (Syzygium cumini): Extraction and pH-Dependent Color Changes. J. Food Sci. 2017, 82, 2286–2290. [Google Scholar] [CrossRef] [PubMed]
Sample Characteristics | Collected From | Main Bioactive Constituent | Reference |
---|---|---|---|
Dry Jamun seed powder | Maharashtra, India | Phenolic compounds (mg/g DE) Tannic acid: 188.5 ± 5.6 Gallic acid: 90.8 ± 2.7 Ellagic acid: 36.0 ± 1.1 Caffeic acid: 26.07 ± 0.8 Catechin: 9.05 ± 0.27 Quercetin: 1.54 ± 0.04 Epicatechin: 0.42 ± 0.01 p-coumaric acid: 0.26 ± 0.03 TPC (mg GAE/g DE): 415 ± 10 TFC (mg/g DE): 44.1 ± 1.4 | [24] |
Jambolana fruits, in the mature stage | Viçosa, Minas Gerais, Brazil | TPC (mg GAE/g): 22.59 ± 0.79 | [20] |
Jamun seed extracts | National Institute of Pharmaceutical Education and Research’s gardens, S.A.S. Nagar, India | TPC (g/GAE): 0.07–0.12. Total anthocyanins (g): not detected Soluble sugar (g): 0.001. Free ellagic acid (mg): 36.34–44.25. | [29] |
Jamun seed coat (fresh weight basis) a and ethanol extract of the seed coat (dry weight) b | Three locations within Thiruvananthapuram, Kerala province, south India | Total free phenol (g/kg): 8.1 ± 0.8 a and 270.0 ± 3.4 b. Flavonoids (g/kg): 0.41 ± 0.08 a and 25.30 ± 0.37 b. | [4] |
Fresh Jamun seeds, 4 different extracts (ethanol, aqueous, ethyl acetate, acetone) | Tiruchirappalli, India | TPC contents (mg GAE/g) Ethanol: 471.67 ± 29.3 Aqueous: 168.33 ± 7.64 Ethyl acetate: 375 ± 40.93 Acetone: 230 ± 25 TFC contents (mg quercetin/g) Ethanol: 114.88 ± 5.36 Aqueous: 65.31 ± 1.77 Ethyl acetate: 138.26 ± 6.58 Acetone: 103.86 ± 3.67 Antioxidant activity (IC50 values, µg/mL) Aqueous: 25.02 Ethanol: 24.53 Acetone: 24.29 Ethyl acetate: 24.42 | [26] |
Jaman fruit parts | Potowar region of Pakistan | TPC (mg GAE/g): 4812.03 ± 10.67 TFC (mg quercetin/100 g): 2380 ± 5.08 Anthocyanin (mg cyanidin 3-rutinoside equivalent/100 g): 272.26 ± 6.04 | [25] |
Jamun seed ethanol/water extract (80:20 v/v) | Central Sericulture Research and Training Institute, Central Silk Board, Mysore, India | TPC (mg GAE/g dry weight): 55.54 ± 2.06 TFC (mg CE/g dry weight): 5.09 ± 0.28 DPPH content (IC50 values) 0.40 ± 0.00 mg/mL TAC: 3.33 ± 0.10 mM GAE g−1 of extract | [30] |
Jamun seed extracts | Different natural habitats, India | Phenolic substances (µg/g plant material, dry weight) Gallic acid: 646 Quercetin: 98 Kaempferol: 59 Ellagic acid: 38 Caffeic acid, ferulic acid, and rutin: not shown AOA: 85.49 ± 0.8% TPC: 108.79 ± 1.0 mg/g | [28] |
Ripe/matured Jamun fruit | Obtained in Manikganj district, Bangladesh | Tannins, total (mg TAE/g dry extract): 617.85 ± 5.32 Phenolic compounds (100 mg/g dry extract) Gallic acid: 70.59 ± 0.77 Catechin hydrate: 28.11 ± 0.13 Vanillic acid: 17.01 ± 0.10 Cafeic acid: 16.27 ± 0.08 Syringic acid: 5.39 ± 0.05 Epicatechin: 48.32 ± 0.54 Vanillin: 8.85 ± 0.07 Trans-ferulic acid: 1.07 ± 0.02 | [31] |
Biological Properties | Animal Model | Experimental Design | References |
---|---|---|---|
Antidiabetic effect: low blood glucose concentrations were observed in both treated groups after 60 days. Better results were observed in the seed-treated rats. The diet affected insulin levels momentously. | Sprague–Dawley rats. | Normal: 60 days; 3 groups (n = 5): (1) control; (2) 3% of lyophilized seed powder; (3) 3% of lyophilized pulp powder. Hyperglycemic: 60 days; 3 groups (n = 5): (1) control + 40% sucrose; (2) 3% of lyophilized seed powder + 40% sucrose; (3) 3% of lyophilized pulp powder + 40% sucrose. | [35] |
Antidiabetic effect: glucose levels were reduced significantly and serum insulin levels also improved. Hypolipidemic effect: a reduction in total cholesterol, LDL-c, and serum triglyceride, and increased serum HDL-c were observed. Hepatoprotective activity: the extract treatment did not show any statistically significant reduction in serum creatinine and serum urea. However, the protein concentration increased significantly, even more than that of the rats treated with the gliclazide, and a reduction in the ALT, AST, ALP, and bilirubin levels was observed. A liver section revealed normal hepatic tissue. | Wistar albino rats of either sex (230–250 g), 8–10 weeks of age with diabetes (Alloxan: 150 mg/kg). | 14 days; 5 groups (n = 6): (1) control—only vehicle; (2) diabetic control—only vehicle; (3) diabetic + methanolic extract of S. cumini seeds (100 mg/kg, p.o.); (4) diabetic + methanolic extract of S. cumini seeds (200 mg/kg, p.o.); (5) diabetic + gliclazide (25 mg/kg, p.o.). | [36] |
Antidiabetic effect: there was a significant reduction in serum glucose, insulin, and HOMA-IR. The supplementation had a protective effect on β-cells of diabetic rats, evidenced by an increased architecture of nuclei and mitochondria. The effect was dose dependent. Hypolipidemic effect: the levels of total cholesterol, triglyceride, and LDL-c were reduced significantly, and an increased level of HDL-c was observed. Effect on antioxidant activity: the levels of superoxide dismutase, catalase, and glutathione peroxidase increased. The contents of thiobarbituric acid reactive substances and TNF-α decreased. | Male Wistar albino rats (150–200 g) 12–14 weeks old (STZ: 40 mg/kg) | 21 days; 5 groups (n = 10): (1) control—saline (5.0 mL/kg, p.o.); (2) positive control—diabetic rats + saline; (3) diabetic + S. cumini (100 mg/kg; 200 mg/kg; 400 mg/kg); (4) diabetic + Aegle marmelos (500 mg/kg) + S. cumini (200 mg/kg); (5) diabetic + Metformin (100 mg/kg). | [37] |
Antidiabetic effect: there was a significant decrease in blood glucose and HbA1c levels, and an increase in serum insulin levels and hemoglobin, toward normal levels. Hypolipidemic effect: the blood levels of total cholesterol, triglyceride, and LDL-c were reduced considerably, and an increase in the levels of HDL-c was observed. Effect on antioxidant activity: the levels of superoxide dismutase, catalase, glutathione peroxide, reduced glutathione, and thiobarbituric acid reactive substances were reversed significantly to near normal Hepatoprotective activity: the serum glutamic oxaloacetic transaminase and serum glutamic pyruvic transaminase significantly decreased. | Male Wister albino rats (150–200 g), 2–3 months of age | 4 weeks; 4 groups (n = 6): (1) control—citrate buffer (0.1, pH 4.5; i.p); (2) positive control—STZ-induced diabetic rats. (3) STZ-induced diabetic rats + 200 mg S. cumini/kg b.w. orally, once weekly. (4) STZ-induced diabetic rats + 200 mg C. zeylanicum/kg b.w. orally, once weekly. | [38] |
Antiamnesic activity: improved cognitive deficit, decreased the time required for a successful labyrinth test, ameliorated memory impairment improves the response to oxidative stress, inhibits acetylcholinesterase activity. Thus, it is comparable to the effect of piracetam. Dose dependency: better results with higher dosage. | Male albino Wistar rats (150–200 g), 6–8 weeks of age. | 8 days; 5 groups (n = 6): (1) control—only vehicle; (2) positive control—only vehicle + scopolamine (1 mg/kg, i.p.)—induced amnesia; (3) standard drug—piracetam (200 mg/kg, i.p.) + scopolamine; (4) methanolic extract of S. cumini (200 mg/kg, p.o) + scopolamine; (5) methanolic extract of S. cumini (400 mg/kg, p.o) + scopolamine. | [39] |
Extraction Technique | Extraction Solvent | Extraction Duration or Range | Reported Optimum Extraction Conditions | Major Bioactive Compounds Obtained in Extraction | Reported Amount and Activity of Major Bioactive Compounds | Reference |
---|---|---|---|---|---|---|
Conventional solvent extraction method | Two different binary solvents methanol and ethanol with one aqueous phase | 30–60 min | Using ethanolic extract Duration: 45 min | Flavonoids (+) Anthocyanin (−) | The maximum TPC: 1863.25 ± 70.83 mg GAE/100 g. The maximum flavonoids: 953.91 mg/100 g. | [131] |
SJE | Petroleum ether | 30 min | ND | Seed oil | Oil content: 10.0% | [132] |
SJE | Hexane | ND | ND | Oleic acid n-hexadecanoic acid Cyclooctasiloxane, hexadecamethyl 1-monolinoleoylglycerol trimethylsilylether Octadecanal, 2-bromo- Cyclooctasiloxane, dodecamethyl- Cyclooctasiloxane, tetradecamethyl- Pyrazole [4,5-b] imidazole, 1-formyl-3-ethyl-6-á-d-ribofuranosyl- Stearic acid, 3-(octadecyloxy) propyl ester Benzaldehyde, 2,4,5-trimethox | Oleic acid: 30.28% n-hexadecanoic acid: 20.30% Cyclooctasiloxane, hexadecamethyl: 0.79% 1-monolinoleoylglycerol trimethylsilyl ether:1.45% Octadecanal, 2-bromo-:2.61% Cyclooctasiloxane, dodecamethyl-:0.79% Cyclooctasiloxane, tetradecamethyl-:0.69% Pyrazole [4,5-b] imidazole, 1-formyl-3-ethyl-6-á-d- ribofuranosyl-:1.63% Stearic acid, 3-(octadecyloxy) propyl ester:1.49% Benzaldehyde, 2,4,5-trimethox:39.98% | [133] |
Different extraction methods- SJE, UJE, MJE | The ethanolic extracts for SJE, UJE, MJE | SJE: 10–12 cycles UJE: 40 s at 20 KHz MJE: at 100 °C for 50 s. | Extraction yields (%) SJE 9.83 ± 0.35 UJE: 12.76 ± 1.45 MJE: 11.65 ± 1.06 | Saponins (+ for SJE) Alkaloids (+ for SJE, UJE, MJE) Phenols (+ for SJE, UJE, MJE) Tannins (+ for SJE, UJE, MJE) Flavonoids (+ for SJE, UJE, MJE) Glycosides (− for SJE, UJE, MJE) Carbohydrates (− for SJE, UJE, MJE) Phytosterols (− for SJE, UJE, MJE) Proteins (− for SJE, UJE, MJE) | TPC values (mg of GAE/100 mL) SJE:376.28 ± 6.11 84.73 ± 1.4 MJE: 399.39 ± 2.75 94.03 ± 1.6 UJE: 425.90 ± 15.2 | [117] |
Ultrafiltration (UF) | Distilled water with UF/ NF membranes | 89.4 min | UF/NF methods can be used in extraction and storage, as well. | Original seed extract: tannic acid (most abundant) UF clarified extract: gallic acid (most abundant) NF concentrated extract: gallic acid (most abundant) NF permeated extract: gallic acid (most abundant) | TPC values: Original seed extract: 1560 ± 46 mg/L UF clarified extract: 910 ± 27.3 mg/L NF concentrated extract: 1266 ± 38 mg/L NF permeated extract: 300 ± 9 mg/L Most Abundant bioactives Original seed extract: tannic acid (692 ± 28 mg/L) UF clarified extract: gallic acid (282.5 ± 8.5 mg/L) NF concentrated extract: gallic acid (286.2 ± 8.6 mg/L) NF permeated extract: gallic acid (272.16 ± 8.16 mg/L) | [134] |
MJE | ethanol | 1–5 min + 30 min centrifuge | 515.45 w of microwave power, 3.23 of pH, 3.15 min, 1:15.06 g/mL of solid-to-liquid ratio | Polysaccharide | Polysaccharide (4.71 ± 0.02%) | [135] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Das, G.; Nath, R.; Das Talukdar, A.; Ağagündüz, D.; Yilmaz, B.; Capasso, R.; Shin, H.-S.; Patra, J.K. Major Bioactive Compounds from Java Plum Seeds: An Investigation of Its Extraction Procedures and Clinical Effects. Plants 2023, 12, 1214. https://doi.org/10.3390/plants12061214
Das G, Nath R, Das Talukdar A, Ağagündüz D, Yilmaz B, Capasso R, Shin H-S, Patra JK. Major Bioactive Compounds from Java Plum Seeds: An Investigation of Its Extraction Procedures and Clinical Effects. Plants. 2023; 12(6):1214. https://doi.org/10.3390/plants12061214
Chicago/Turabian StyleDas, Gitishree, Rajat Nath, Anupam Das Talukdar, Duygu Ağagündüz, Birsen Yilmaz, Raffaele Capasso, Han-Seung Shin, and Jayanta Kumar Patra. 2023. "Major Bioactive Compounds from Java Plum Seeds: An Investigation of Its Extraction Procedures and Clinical Effects" Plants 12, no. 6: 1214. https://doi.org/10.3390/plants12061214
APA StyleDas, G., Nath, R., Das Talukdar, A., Ağagündüz, D., Yilmaz, B., Capasso, R., Shin, H. -S., & Patra, J. K. (2023). Major Bioactive Compounds from Java Plum Seeds: An Investigation of Its Extraction Procedures and Clinical Effects. Plants, 12(6), 1214. https://doi.org/10.3390/plants12061214