Pharmacognostic Study, Diuretic Activity and Acute Oral Toxicity of the Leaves of Xiphidium caeruleum Aubl. Collected in Two Different Phenological Stages
Abstract
:1. Introduction
2. Results
2.1. Morphological Characteristics of X. caeruleum Leaves
2.2. Physicochemical Parameters of the Leaves and Extracts of X. caeruleum
2.3. Phytochemical Study
2.3.1. Phytochemical Screening
2.3.2. Thin Layer Chromatographic (TLC) Profile
2.3.3. Ultraviolet (UV) and Infrared (IR) Profiles
2.3.4. HPLC/DAD Profile
2.3.5. Total Phenols and Flavonoids Content
2.4. Diuretic Activity
2.5. Acute Oral Toxicity
3. Discussion
4. Materials and Methods
4.1. Solvents and Chemicals
4.2. Plant Material
4.3. Morphological Characteristics
4.4. Physicochemical Parameters of the Leaves
4.5. Preparation and Physicochemical Analysis of the Aqueous Extracts
4.6. Phytochemical Screening
4.7. Chromatographic and Spectroscopic Profiles of the Aqueous Extracts
4.8. HPLC/DAD Profile
4.9. Total Phenol and Flavonoid Content
4.10. Animals
4.11. Diuretic Activity
- Group 1: Physiological solution of sodium chloride, 0.9% (negative control)
- Group 2: Hydrochlorothiazide in CMC (10 mg/kg) (positive control)
- Group 3: Spironolactone in CMC (10 mg/kg) (positive control)
- Group 4: Furosemide in CMC (20 mg/kg) (positive control)
- Group 5: Aqueous extract of X. caeruleum (vegetative) in CMC (400 mg/kg)
- Group 6: Aqueous extract of X. caeruleum (flowering) in CMC (400 mg/kg)
4.12. Acute Oral Toxicity
4.13. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bernardini, S.; Tiezzi, A.; Masci, V.L.; Ovidi, E. Natural products for human health: An historical overview of the drug discovery approaches. Nat. Prod. Res. 2018, 32, 1926–1950. [Google Scholar] [CrossRef] [PubMed]
- Majouli, K.; Hamdi, A.; Hlila, M.B. Phytochemical analysis and biological activities of Hertia cheirifolia L. roots extracts. Asian Pac. J. Trop. Med. 2017, 10, 1134–1139. [Google Scholar] [CrossRef]
- Thomford, N.E.; Senthebane, D.A.; Rowe, A.; Munro, D.; Seele, P.; Maroyi, A.; Dzobo, K. Natural Products for Drug Discovery in the 21st Century: Innovations for Novel Drug Discovery. Int. J. Mol. Sci. 2018, 19, 1578. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rasoanaivo, P.; Wright, C.W.; Willcox, M.L.; Gilbert, B. Whole plant extracts versus single compounds for the treatment of malaria: Synergy and positive interactions. Malar. J. 2011, 10 (Suppl. S1), S4. [Google Scholar] [CrossRef] [Green Version]
- Disco, Y.; Kumar, M.; Bihari, K. Ethnomedicine for drug discovery. In Advances in Pharmaceutical Biotechnology: Recent Progress and Future Applications; Kumar, J., Shukla, A.C., Das, G., Eds.; Springer Nature Singapore Pte Ltd.: Singapore, 2020. [Google Scholar] [CrossRef]
- Felipe, A.; Pieters, L.; Delgado, R. Effectiveness of Herbal Medicine in Renal Lithiasis: A Review. Siriraj Med. J. 2020, 72, 188–194. [Google Scholar] [CrossRef]
- Pellegrini, M.O.O.; Hickman, E.J.; Gutiérrez, J.E.; Smith, R.J.; Hopper, S.D. Revisiting the taxonomy of the Neotropical Haemodoraceae (Commelinales). PhytoKeys 2020, 169, 1–59. [Google Scholar] [CrossRef]
- Vásquez, J.; Jiménez, S.L.; Gómez, I.C.; Rey, J.P.; Henao, A.M.; Marín, D.M.; Romero, J.O.; Alarcón, J.C. Snakebites and ethnobotany in the Eastern region of Antroquia, Colombia—The traditional use of plants. J. Ethnopharmacol. 2013, 146, 449–455. [Google Scholar] [CrossRef]
- Coe, F.G.; Anderson, G.J. Snakebite ethnopharmacopoeia of eastern Nicaragua. J. Ethnopharmacol. 2005, 96, 303–323. [Google Scholar] [CrossRef]
- Locklear, T.D.; Mahady, G.B.; Michel, J.; De Gezelle, J.; Calderón, J.I.; McLeroy, J.A.; McLeroy, J.A.; Doyle, B.J.; de Blanco, E.J.C.; Martinez, K.N.; et al. Maternal health in Central America: The role of medicinal plants in the pregnancy-related health and well-being of indigenous women in Central America. In Maternal Death and Pregnancy-Related Morbidity among Indigenous Women of Mexico and Central America; Schwartz, D., Ed.; Global Maternal and Child Health; Springer: Cham, Switezrland, 2018. [Google Scholar] [CrossRef]
- Srithi, K.; Trisonthi, C.; Wangpakattanawong, P.; Balslev, H. Medicinal plants used in Hmong women’s healthcare in northern Thailand. J. Ethnopharmacol. 2012, 139, 119–135. [Google Scholar] [CrossRef]
- Riverón, G.F.V.; Hernández, M.Y.; García, G.A.; Escalona, D.R.Y. La colección de plantas medicinales del Jardín Botánico de Holguín, Cuba: Su importancia social y científica. Rev. Jard. Bot. Nac. 2015, 36, 219–222. [Google Scholar]
- Heredia, Y.; García, J.; López, T.; Chil, I.; Arias, D.; Escalona, J.C.; González-Fernández, R.; Costa-Acosta, J.; Suarez-Cruz, D.; Sánchez-Torres, M.; et al. An ethnobotanical survey of medicinal plants used by inhabitants of Holguín. Eastern Region, Cuba. Bol. Latinoam. Caribe Plantas Med. Arom. 2018, 17, 160–196. [Google Scholar]
- MINSAP. Anuario Estadístico de Salud 2020; Dirección de Registros Médicos y Estadísticas de Salud: Habana, Cuba, 2021; ISSN 1561-4433. Available online: http://www.who.int/classification/icd/icd10upsdates/en/ (accessed on 1 January 2023).
- Huda, E.A.; Debnath, J. Evaluation of diuretic activity of aqueous extract of leaves of Centella asiatica. World J Pharm. Res. 2017, 6, 494–500. [Google Scholar]
- Norman, E.O.; Lever, J.; Brkljača, R.; Urban, S. Distribution, biosynthesis, and biological activity of phenylphenalenone-type compounds derived from the family of plants, Haemodoraceae. Nat. Prod. Rep. 2019, 36, 753–768. [Google Scholar] [CrossRef] [PubMed]
- Optiz, S.; Hölscher, D.; Oldham, N.J.; Bartram, S.; Schneider, B. Phenylphenalenone-Related Compounds: Chemotaxonomic Markers of Haemodoraceae from Xiphidium caeruleum. J. Nat. Prod. 2002, 65, 1122–1130. [Google Scholar] [CrossRef]
- Fang, J.; Hölscher, D.; Schneider, B. Co-occurrence of phenylphenalenones and flavonoids in Xiphidium caeruleum Aubl. flowers. Phytochemistry 2012, 82, 143–148. [Google Scholar] [CrossRef]
- Chen, Y.; Paetz, C.; Menezes, R.C.; Schneider, B. Phenylbenzoisoquinolindione alkaloids accumulate in stamens of Xiphidium caeruleum Aubl. flowers. Phytochemistry 2016, 128, 95–100. [Google Scholar] [CrossRef]
- Optiz, S.; Schneider, B. Organ-specific analysis of phenylphenalenone-related compounds in Xiphidium caeruleum. Phytochemistry 2002, 61, 819–825. [Google Scholar] [CrossRef]
- Chen, Y.; Paetz, C.; Schneider, B. Organ-specific distribution and non-enzymatic conversions indicate a metabolic network of phenylphenalenones in Xiphidium caeruleum. Phytochemistry 2019, 159, 30–38. [Google Scholar] [CrossRef]
- Chen, Y.; Paetz, C.; Menezes, R.C.; Schneider, B. Cultured roots of Xiphidium caeruleum: Phenylphenalenones and their biosynthetic and extractant-dependent conversion. Phytochemistry 2017, 133, 15–25. [Google Scholar] [CrossRef]
- WMO. Guidelines for Plant Phenological Observations. Available online: https://library.wmo.int/doc_num.php?explnum_id=9414 (accessed on 30 June 2022).
- Jonsson, M.; Jestoi, M.; Nathanail, A.V.; Kokkonen, U.; Anttila, M.; Koivisto, P.; Karhunen, P.; Peltonen, K. Application of OECD Guideline 423 in assessing the acute oral toxicity of moniliformin. Food Chem. Toxicol. 2013, 53, 27–32. [Google Scholar] [CrossRef]
- Ernst, E. The efficacy of herbal medicine—An overview. Fundam. Clin. Pharmacol. 2005, 19, 405–409. [Google Scholar] [CrossRef] [PubMed]
- Muyumba, N.O.; Mutombo, S.C.; Sheridan, H.; Nachtergaelc, A.; Duez, P. Quality control of herbal drugs and preparations: The methods of analysis, their relevance and applications. Talanta 2021, 4, 100070. [Google Scholar] [CrossRef]
- Balekundri, A.; Mannur, V. Quality control of the traditional herbs and herbal products: A review. Fut. J. Pharm. Sci. 2020, 6, 67–75. [Google Scholar] [CrossRef]
- Roig, J.T. Diccionario Botánico de Nombres Vulgares Cubanos, 4th ed.; Científico-Técnica: La Habana, Cuba, 2014; ISBN 978-9590507120. [Google Scholar]
- Chanda, S. Importance of pharmacognostic study of medicinal plants: An overview. J. Pharmacogn. Phytochem. 2014, 2, 69–73. [Google Scholar]
- Opitz, S.; Schnitzler, P.; Hause, B.; Schneider, B. Histochemical analysis of phenylphenalenone-related compounds in Xiphidium caeruleum (Haemodoraceae). Planta 2003, 216, 881–889. [Google Scholar] [CrossRef]
- Aftab, K. Natural products pharmacology. Acad. J. Med. Plants 2018, 6, 402–403. [Google Scholar] [CrossRef]
- Escalona, L.J.; Tase, A.; Estrada, A.; Almaguer, M.L. Uso tradicional de plantas medicinales por el adulto mayor en la comunidad serrana de Corralillo Arriba. Guisa, Granma. Rev. Cubana Plant Med. 2015, 20, 429–439. [Google Scholar]
- Flyman, M.V.; Afolayan, A.J. Effect of plant maturity on the mineral content of the leaves of Momordica balsamina L. and Vigna unguiculata subsp. Sesquipedalis (L.). Verdc. J. Food Qual. 2008, 31, 661–671. [Google Scholar] [CrossRef]
- Comission, C.P. Pharmacopoeia of the People’s Republic of China; Chinese Medical Science and Technology Press: Beijing, China, 2015; Volume I. [Google Scholar]
- Woisky, R.; Salatino, A. Analysis of propolis: Some parameters and procedures for chemical quality control. J. Apic. Res. 1988, 37, 99–105. [Google Scholar] [CrossRef]
- Nomura, N.; Shoda, W.; Uchida, S. Clinical importance of potassium intake and molecular mechanism of potassium regulation. Clin. Exp. Nephrol. 2019, 23, 1175–1180. [Google Scholar] [CrossRef] [Green Version]
- Ellison, D.H. Clinical Pharmacology in Diuretic Use. CJASN 2019, 14, 1248–1257. [Google Scholar] [CrossRef] [Green Version]
- Yakubu, M.T.; Oyagoke, A.M.; Quadri, L.A.; Agboola, A.O.; Oloyede, H.O.B. Diuretic activity of ethanol extract of Mirabilis jalapa (Linn.) leaf in normal male Wistar rats. J. Med. Plants Econ. Dev. 2019, 3, 64–70. [Google Scholar] [CrossRef] [Green Version]
- Nayak, B.S.; Ellaiah, P.; Chandra, D.S.; Prasad, M.B.; Khadanga, M.; Nayak, S. Diuretic activity of flavonoid compound isolated from Gmelina arborea fruits extract. Euro J. Pharm. Med. Res. 2017, 4, 616–622. [Google Scholar]
- Gasparotto, A.; Prando, T.B.; Leme, T.S.; Gasparotto, F.M.; Lourenço, E.L.; Rattmann, Y.D.; Da Silva-Santos, J.E.; Kassuya, C.A.; Marques, M.C. Mechanisms underlying the diuretic effects of Tropaeolum majus L. extracts and its main component isoquer-citrin. J. Ethnopharmacol. 2012, 141, 501–509. [Google Scholar] [CrossRef] [PubMed]
- Bahuguna, Y.; Mohan, R. Diuretic Activity of Grains of Eleusine coracana Linn. J. Pharm. Res. 2009, 2, 775–776. [Google Scholar]
- Schlickmann, F.; Boeing, T.; Mariano, L.N.B.; da Silva, R.C.M.V.A.F.; da Silva, L.M.; de Andrade, S.F.; de Souza, P.; Cechinel-Filho, V. Gallic acid, a phenolic compound isolated from Mi-mosa bimucronata (DC.) Kuntze leaves, induces diuresis and saluresis in rats. Arch. Pharmacol. 2018, 391, 649–655. [Google Scholar] [CrossRef] [PubMed]
- Worasuttayangkurn, L.; Nakareangrit, W.; Kwangjai, J.; Sritangos, P.; Pholphana, N.; Watcharasit, P.; Rangkadilok, N.; Thiantanawat, A.; Satayavivad, J. Acute oral toxicity evaluation of Andrographis paniculata-standardized first true leaf ethanolic extract. Toxicol. Rep. 2019, 6, 426–430. [Google Scholar] [CrossRef]
- Cremona, T.L.; Edwards, J.M. Xiphidone, the major phenaleonone pigment of Xiphidium caeruleum. LLOYDIA 1974, 37, 112–113. [Google Scholar]
- Gattuso, M.A.; Gattuso, S.J. Manual de Procedimientos Para el Análisis de Drogas en Polvo; Universidad Nacional de Rosario Urquiza: Rosario, Argentina, 1999; ISBN 9506731993. [Google Scholar]
- Iqbal, E.; Salim, K.A.; Lim, L.B.L. Phytochemical screening, total phenolics and antioxidants activities of bark and leaf extracts of Goniothalamus velutinus (Airy Shaw) from Brunei Darusaalam. J. King Saud Univ. Sci. 2015, 27, 224–232. [Google Scholar] [CrossRef] [Green Version]
- Hsu, B.Y.; Lin, S.W.; Stephen, B.; Chen, B.H. Simultaneous determination of phenolic acids and flavonoids in Chenopodium formosanum Koidz. (djulis) by HPLC-DAD-ESI–MS/MS. J. Pharm. Biomed. Anal. 2017, 132, 109–116. [Google Scholar] [CrossRef]
- Lipschitz, W.L.; Haddian, Z.; Kerpscar, A. Bioassay of diuretics. J. Pharm. Exp. Ther. 1943, 79, 110. [Google Scholar]
- Mansour, A.H.M.; Fadel, Y.S.A.; Mazahar, F.; Vidya, P. Phytochemical screening and antiamebic studies of Tamarindus indica of leaves extract. Asian J. Pharm. Clin. Res. 2019, 12, 507–5012. [Google Scholar] [CrossRef]
Parameter | VE (%) 1 | FE (%) 1 |
---|---|---|
Total ashes * | 13.12/0.04 | 14.25/0.39 |
Water-soluble ashes * | 8.26/0.04 | 10.85/0.51 |
Acid-insoluble ashes (in HCl) * | 9.50/0.11 | 11.60/0.32 |
Moisture content | 11.00/1.41 | 10.50/0.70 |
Water-soluble constituents | 19.46/0.17 | 19.77/0.53 |
Ethanol 30% soluble constituents | 19.25/0.61 | 18.99/1.34 |
Ethanol 50% soluble constituents | 12.89/0.24 | 12.66/0.15 |
Ethanol 80% soluble constituents | 9.93/0.37 | 10.10/0.35 |
Parameter | VE 1 | FE 1 |
---|---|---|
pH * | 5.95/0.02 | 6.20/0.01 |
Total solids (%) | 2.74/0.06 | 2.91/0.24 |
Refractive index | 1.3314/0.0003 | 1.3316/0.0001 |
Relative density (g/mL) | 1.0157/0.0005 | 1.0167/0.0005 |
Parameter | VE (%) 1 | FE (%) 1 |
---|---|---|
Content of phenols (mg/mL) * | 1.30/0.01 | 1.26/0.01 |
Content of flavonoids (mg/mL) * | 0.45/0.02 | 0.34/0.01 |
Group | Urinary Flow | C(Na+) | C(K+) | Lipschitz |
---|---|---|---|---|
(µLmin−1) | (mEq) | (mEq) | Index | |
G.1 NaCl 0.9% (v/v) control | 3.1/0.6 a | 46.0/7.3 e | 15.7/6.1 i | - |
G.2 Hydrochlorothiazide | 4.8/0.5 b | 74.6/3.1 f | 33.3/5.2 j | 1.34 |
G.3 Spironolactone | 6.0/0.6 c | 62.0/1.7 g | 20.7/5.0 k | 1.78 |
G.4 Furosemide | 7.0/0.5 d | 84.5/298 h | 55.0/5.8 l | 2.06 |
G.5 VE extract | 6.8/0.4 d | 85.7/2.5 h | 33.0/6.3 j | 1.96 |
G.6 FE extract | 5.8/0.6 c | 63.7/4.7 g | 23.4/5.2 k | 1.72 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gutiérrez Gaitén, Y.I.; Felipe González, A.; Scull Lizama, R.; Núñez Cairo, C.R.; Álvarez Hernández, G.L.; Díaz Masó, V.; Noa Rodríguez, A.C.; Herrera Isidrón, J.A.; Pieters, L.; Foubert, K.; et al. Pharmacognostic Study, Diuretic Activity and Acute Oral Toxicity of the Leaves of Xiphidium caeruleum Aubl. Collected in Two Different Phenological Stages. Plants 2023, 12, 1268. https://doi.org/10.3390/plants12061268
Gutiérrez Gaitén YI, Felipe González A, Scull Lizama R, Núñez Cairo CR, Álvarez Hernández GL, Díaz Masó V, Noa Rodríguez AC, Herrera Isidrón JA, Pieters L, Foubert K, et al. Pharmacognostic Study, Diuretic Activity and Acute Oral Toxicity of the Leaves of Xiphidium caeruleum Aubl. Collected in Two Different Phenological Stages. Plants. 2023; 12(6):1268. https://doi.org/10.3390/plants12061268
Chicago/Turabian StyleGutiérrez Gaitén, Yamilet I., Alejandro Felipe González, Ramón Scull Lizama, Carlos R. Núñez Cairo, Greisa L. Álvarez Hernández, Venancio Díaz Masó, Ana C. Noa Rodríguez, José A. Herrera Isidrón, Luc Pieters, Kenn Foubert, and et al. 2023. "Pharmacognostic Study, Diuretic Activity and Acute Oral Toxicity of the Leaves of Xiphidium caeruleum Aubl. Collected in Two Different Phenological Stages" Plants 12, no. 6: 1268. https://doi.org/10.3390/plants12061268
APA StyleGutiérrez Gaitén, Y. I., Felipe González, A., Scull Lizama, R., Núñez Cairo, C. R., Álvarez Hernández, G. L., Díaz Masó, V., Noa Rodríguez, A. C., Herrera Isidrón, J. A., Pieters, L., Foubert, K., & Herrera Isidrón, L. (2023). Pharmacognostic Study, Diuretic Activity and Acute Oral Toxicity of the Leaves of Xiphidium caeruleum Aubl. Collected in Two Different Phenological Stages. Plants, 12(6), 1268. https://doi.org/10.3390/plants12061268