The Insecticidal Activity of Azadirachta indica Leaf Extract: Optimization of the Microencapsulation Process by Complex Coacervation
Abstract
:1. Introduction
2. Results
2.1. Experimental Design and Mortality of T. molitor
2.2. Individual Factor Contribution
2.3. Optimization of the Encapsulation Process and Validation
2.4. Morphology Analysis of Spray-Dried Microcapsules
3. Discussion
3.1. Neem Microcapsule Effect on the Insect Mortality
3.2. The Effect of the Factors on the Microencapsulation Process
3.3. Morphology of Microcapsules
4. Materials and Methods
4.1. Plant Material and Insect Culture
4.2. Extraction Process
4.3. WPI-Pectin Microcapsules Formation
4.4. Taguchi Methodology
4.5. Insect Mortality Assay
4.6. Morphological Characterization of the Microcapsules
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mattos, B.D.; Rojas, O.J.; Magalhães, W.L.E. Biogenic Silica Nanoparticles Loaded with Neem Bark Extract as Green, Slow-Release Biocide. J. Clean. Prod. 2017, 142, 4206–4213. [Google Scholar] [CrossRef]
- Hernandez-Tenorio, F.; Miranda, A.M.; Rodríguez, C.A.; Giraldo-Estrada, C.; Sáez, A.A. Potential Strategies in the Biopesticide Formulations: A Bibliometric Analysis. Agronomy 2022, 12, 2665. [Google Scholar] [CrossRef]
- Nguyen, M.-H.; Vu, N.-B.-D.; Nguyen, T.-H.-N.; Tran, T.-N.-M.; Le, H.-S.; Tran, T.-T.; Le, X.-C.; Le, V.-T.; Nguyen, N.-T.-T.; Trinh, N.-A. Effective Biocontrol of Nematodes Using Lipid Nanoemulsions Co-Encapsulating Chili Oil, Cinnamon Oil and Neem Oil. Int. J. Pest Manag. 2020, 1–10. [Google Scholar] [CrossRef]
- Smith, H.H.; Idris, O.A.; Maboeta, M.S. Global Trends of Green Pesticide Research from 1994 to 2019: A Bibliometric Analysis. J. Toxicol. 2021, 2021, 6637516. [Google Scholar] [CrossRef] [PubMed]
- Benelli, G.; Canale, A.; Toniolo, C.; Higuchi, A.; Murugan, K.; Pavela, R.; Nicoletti, M. Neem (Azadirachta indica): Towards the Ideal Insecticide? Nat. Prod. Res. 2017, 31, 369–386. [Google Scholar] [CrossRef]
- Khan, M.R.; Mohiddin, F.A.; Ejaz, M.N.; Khan, M. Management of Root-Knot Disease in Eggplant through the Application of Biocontrol Fungi and Dry Neem Leaves. Turkish J. Biol. 2012, 36, 161–169. [Google Scholar] [CrossRef]
- Poornima, S.; Rakesh, P. Biological Control of Root-Knot Nematode; Meloidogyne Incognita in the Medicinal Plant; Withania Somnifera and the Effect of Biocontrol Agents on Plant Growth. Afr. J. Agric. Res. 2009, 4, 564–567. [Google Scholar]
- Kraiss, H.; Cullen, E.M. Insect Growth Regulator Effects of Azadirachtin and Neem Oil on Survivorship, Development and Fecundity of Aphis Glycines (Homoptera: Aphididae) and Its Predator, Harmonia Axyridis (Coleoptera: Coccinellidae). Pest Manag. Sci. Former. Pestic. Sci. 2008, 64, 660–668. [Google Scholar] [CrossRef]
- Zanuncio, J.C.; Mourão, S.A.; Martínez, L.C.; Wilcken, C.F.; Ramalho, F.S.; Plata-Rueda, A.; Soares, M.A.; Serrão, J.E. Toxic Effects of the Neem Oil (Azadirachta indica) Formulation on the Stink Bug Predator, Podisus Nigrispinus (Heteroptera: Pentatomidae). Sci. Rep. 2016, 6, 30261. [Google Scholar] [CrossRef]
- Roychoudhury, R. Neem Products. In Ecofriendly Pest Management for Food Security; Elsevier: Amsterdam, The Netherlands, 2016; pp. 545–562. [Google Scholar]
- Kumar, R.; Kranthi, S.; Nagrare, V.S.; Monga, D.; Kranthi, K.R.; Rao, N.; Singh, A. Insecticidal Activity of Botanical Oils and Other Neem-Based Derivatives against Whitefly, Bemisia Tabaci (Gennadius) (Homoptera: Aleyrodidae) on Cotton. Int. J. Trop. Insect Sci. 2019, 39, 203–210. [Google Scholar] [CrossRef]
- Li, L.; Song, X.; Yin, Z.; Jia, R.; Zou, Y. Insecticidal Activities and Mechanism of Extracts from Neem Leaves against Oxya chinensis. Arq. Bras. Med. Veterinária e Zootec. 2019, 71, 1–10. [Google Scholar] [CrossRef]
- Kovaříková, K.; Pavela, R. United Forces of Botanical Oils: Efficacy of Neem and Karanja Oil against Colorado Potato Beetle under Laboratory Conditions. Plants 2019, 8, 608. [Google Scholar] [CrossRef] [Green Version]
- Mendonça, F.M.R.; Polloni, A.E.; Junges, A.; da Silva, R.S.; Rubira, A.F.; Borges, G.R.; Dariva, C.; Franceschi, E. Encapsulation of Neem (Azadirachta indica) Seed Oil in Poly(3-Hydroxybutyrate-Co-3-Hydroxyvalerate) by SFEE Technique. J. Supercrit. Fluids 2019, 152, 104556. [Google Scholar] [CrossRef]
- Shah, F.M.; Razaq, M.; Ali, A.; Han, P.; Chen, J. Comparative Role of Neem Seed Extract, Moringa Leaf Extract and Imidacloprid in the Management of Wheat Aphids in Relation to Yield Losses in Pakistan. PLoS ONE 2017, 12, e0184639. [Google Scholar] [CrossRef] [Green Version]
- El Asbahani, A.; Miladi, K.; Badri, W.; Sala, M.; Addi, E.H.A.; Casabianca, H.; El Mousadik, A.; Hartmann, D.; Jilale, A.; Renaud, F.N.R.; et al. Essential Oils: From Extraction to Encapsulation. Int. J. Pharm. 2015, 483, 220–243. [Google Scholar] [CrossRef] [PubMed]
- Costa, E.N.; Forim, M.R.; Costa, E.S.; Nogueira, L.; de Moraes, R.F.O.; Boiça Júnior, A.L. Lignin-Based Compounds for the Microencapsulation of Neem Extract for the Control of Diabrotica Speciosa (Coleoptera: Chrysomelidae) Larvae on Maize Roots. Phytoparasitica 2021, 49, 959–970. [Google Scholar] [CrossRef]
- Bezerra, D.G.; de Andrade, I.R.; Santos, H.L.V.; Xavier, M.D.d.S.; Fernandes, P.Í.; Devilla, I.A.; Nascimento, T.L.; Borges, L.L.; da Conceição, E.C.; Paula, J.A.M.d. Azadirachta indica A. Juss (Meliaceae) Microencapsulated Bioinsecticide: Spray Drying Technique Optimization, Characterization, in Vitro Release, and Degradation Kinetics. Powder Technol. 2021, 382, 144–161. [Google Scholar] [CrossRef]
- Gharsallaoui, A.; Roudaut, G.; Chambin, O.; Voilley, A.; Saurel, R. Applications of Spray-Drying in Microencapsulation of Food Ingredients: An Overview. Food Res. Int. 2007, 40, 1107–1121. [Google Scholar] [CrossRef]
- Shishir, M.R.I.; Xie, L.; Sun, C.; Zheng, X.; Chen, W. Advances in Micro and Nano-Encapsulation of Bioactive Compounds Using Biopolymer and Lipid-Based Transporters. Trends Food Sci. Technol. 2018, 78, 34–60. [Google Scholar] [CrossRef]
- Devi, N.; Maji, T.K. Neem Seed Oil: Encapsulation and Controlled Release-Search for a Greener Alternative for Pest Control. In Pesticides in the Modern World–Pesticides Use and Management, 1st ed.; Stoytcheva, M., Ed.; IntechOpen: Rijeka, Croatia, 2011; pp. 192–232. [Google Scholar]
- Ghasemi, S.; Jafari, S.M.; Assadpour, E.; Khomeiri, M. Nanoencapsulation of D-Limonene within Nanocarriers Produced by Pectin-Whey Protein Complexes. Food Hydrocoll. 2018, 77, 152–162. [Google Scholar] [CrossRef]
- Pham, L.B.; Wang, B.; Zisu, B.; Truong, T.; Adhikari, B. Microencapsulation of Flaxseed Oil Using Polyphenol-Adducted Flaxseed Protein Isolate-Flaxseed Gum Complex Coacervates. Food Hydrocoll. 2020, 107, 105944. [Google Scholar] [CrossRef]
- Assadpour, E.; Maghsoudlou, Y.; Jafari, S.M.; Ghorbani, M.; Aalami, M. Evaluation of Folic Acid Nano-Encapsulation by Double Emulsions. Food Bioprocess Technol. 2016, 9, 2024–2032. [Google Scholar] [CrossRef]
- Muhoza, B.; Xia, S.; Wang, X.; Zhang, X.; Li, Y.; Zhang, S. Microencapsulation of Essential Oils by Complex Coacervation Method: Preparation, Thermal Stability, Release Properties and Applications. Crit. Rev. Food Sci. Nutr. 2022, 62, 1363–1382. [Google Scholar] [CrossRef]
- Ávila-Hernández, J.G.; Aguilar-Zárate, P.; Carrillo-Inungaray, M.L.; Michel, M.R.; Wong-Paz, J.E.; Muñiz-Márquez, D.B.; Rojas-Molina, R.; Ascacio-Valdés, J.A.; Martínez-Ávila, G.C.G. The Secondary Metabolites from Beauveria Bassiana PQ2 Inhibit the Growth and Spore Germination of Gibberella Moniliformis LIA. Brazilian J. Microbiol. 2022, 53, 143–152. [Google Scholar] [CrossRef]
- Vázquez-Sánchez, A.Y.; Aguilar-Zárate, P.; Muñiz-Márquez, D.B.; Wong-Paz, J.E.; Rojas, R.; Ascacio-Valdés, J.A.; Martínez-Ávila, G.C.G. Effect of Ultrasound Treatment on the Extraction of Antioxidants from Ardisia Compressa Kunth Fruits and Identification of Phytochemicals by HPLC-ESI-MS. Heliyon 2019, 5, e03058. [Google Scholar] [CrossRef] [Green Version]
- Aguilar-Zarate, P.; Cruz-Hernandez, M.A.; Montañez, J.C.; Belmares-Cerda, R.E.; Aguilar, C.N. Enhancement of Tannase Production by Lactobacillus Plantarum CIR1: Validation in Gas-Lift Bioreactor. Bioprocess Biosyst. Eng. 2014, 37, 2305–2316. [Google Scholar] [CrossRef]
- Gutiérrez-Sánchez, M.D.C.; Aguilar-Zárate, P.; Michel-Michel, M.R.; Ascacio-Valdés, J.A.; Reyes-Munguía, A. The Ultrasound-Assisted Extraction of Polyphenols from Mexican Firecracker (Hamelia Patens Jacq.): Evaluation of Bioactivities and Identification of Phytochemicals by HPLC-ESI-MS. Molecules 2022, 27, 8845. [Google Scholar] [CrossRef]
- Islas, J.F.; Acosta, E.; G-Buentello, Z.; Delgado-Gallegos, J.L.; Moreno-Treviño, M.G.; Escalante, B.; Moreno-Cuevas, J.E. An Overview of Neem (Azadirachta indica) and Its Potential Impact on Health. J. Funct. Foods 2020, 74, 104171. [Google Scholar] [CrossRef]
- Hernandez-Trejo, A.; Estrada-Drouaillet, B.; López-Santillán, J.A.; Rios-Velasco, C.; Varela-Fuentes, S.E.; Rodríguez-Herrera, R.; Osorio-Hernández, E. In Vitro Evaluation of Native Entomopathogenic Fungi and Neem (Azadiractha Indica) Extracts on Spodoptera Frugiperda. Phyton (B. Aires) 2019, 88, 47. [Google Scholar]
- Fernandes, S.R.; Barreiros, L.; Oliveira, R.F.; Cruz, A.; Prudêncio, C.; Oliveira, A.I.; Pinho, C.; Santos, N.; Morgado, J. Chemistry, Bioactivities, Extraction and Analysis of Azadirachtin: State-of-the-Art. Fitoterapia 2019, 134, 141–150. [Google Scholar] [CrossRef]
- Hernandez-Trejo, A.; Rodríguez-Herrera, R.; Sáenz-Galindo, A.; López-Badillo, C.M.; Flores-Gallegos, A.C.; Ascacio-Valdez, J.A.; Estrada-Drouaillet, B.; Osorio-Hernández, E. Insecticidal Capacity of Polyphenolic Seed Compounds from Neem (Azadirachta indica) on Spodoptera Frugiperda (JE Smith) Larvae. J. Environ. Sci. Health Part B 2021, 56, 1023–1030. [Google Scholar] [CrossRef]
- Costa, E.S.; Perlatti, B.; da Silva, E.M.; Matos, A.P.; da Silva, M.F.G.F.; Fernandes, J.B.; Zuin, V.G.; da Silva, C.M.P.; Forim, M.R. Use of Lignins from Sugarcane Bagasse for Assembling Microparticles Loaded with Azadirachta indica Extracts for Use as Neem-Based Organic Insecticides. J. Braz. Chem. Soc. 2017, 28, 126–135. [Google Scholar]
- Davis, R.; John, P. Application of Taguchi-Based Design of Experiments for Industrial Chemical Processes. In Statistical Approaches with Emphasis on Design of Experiments Applied to Chemical Processes; Silva, V., Ed.; IntechOpen: Rijeka, Croatia, 2018; pp. 137–155. ISBN 978-953-51-3878-5. [Google Scholar]
- Desai, K.G.H.; Park, H.J. Recent Developments in Microencapsulation of Food Ingredients. Dry. Technol. 2005, 23, 1361–1394. [Google Scholar] [CrossRef]
- Jun-xia, X.; Hai-yan, Y.; Jian, Y. Microencapsulation of Sweet Orange Oil by Complex Coacervation with Soybean Protein Isolate/Gum Arabic. Food Chem. 2011, 125, 1267–1272. [Google Scholar] [CrossRef]
- Calderón-Oliver, M.; Pedroza-Islas, R.; Escalona-Buendía, H.B.; Pedraza-Chaverri, J.; Ponce-Alquicira, E. Comparative Study of the Microencapsulation by Complex Coacervation of Nisin in Combination with an Avocado Antioxidant Extract. Food Hydrocoll. 2017, 62, 49–57. [Google Scholar] [CrossRef]
- Devi, N.; Maji, T.K. Study of Complex Coacervation of Gelatin A with Sodium Carboxymethyl Cellulose: Microencapsulation of Neem (Azadirachta indica A. Juss.) Seed Oil (NSO). 2011, 60, 1091–1105. [Google Scholar] [CrossRef]
- Choudhury, N.; Meghwal, M.; Das, K. Microencapsulation: An Overview on Concepts, Methods, Properties and Applications in Foods. Food Front. 2021, 2, 426–442. [Google Scholar] [CrossRef]
- Ye, A. Complexation between Milk Proteins and Polysaccharides via Electrostatic Interaction: Principles and Applications—A Review. Int. J. Food Sci. Technol. 2008, 43, 406–415. [Google Scholar] [CrossRef]
- Siow, L.-F. Effect of PH on Garlic Oil Encapsulation by Complex Coacervation. J. Food Process. Technol. 2012, 4, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Timilsena, Y.P.; Akanbi, T.O.; Khalid, N.; Adhikari, B.; Barrow, C.J. Complex Coacervation: Principles, Mechanisms and Applications in Microencapsulation. Int. J. Biol. Macromol. 2019, 121, 1276–1286. [Google Scholar] [CrossRef]
- Uslu, S.; Aydın, M. Effect of Operating Parameters on Performance and Emissions of a Diesel Engine Fueled with Ternary Blends of Palm Oil Biodiesel/Diethyl Ether/Diesel by Taguchi Method. Fuel 2020, 275, 117978. [Google Scholar] [CrossRef]
- Mustapha, A.N.; Zhang, Y.; Zhang, Z.; Ding, Y.; Yuan, Q.; Li, Y. Taguchi and ANOVA Analysis for the Optimization of the Microencapsulation of a Volatile Phase Change Material. J. Mater. Res. Technol. 2021, 11, 667–680. [Google Scholar] [CrossRef]
- Bagle, A.V.; Jadhav, R.S.; Gite, V.V.; Hundiwale, D.G.; Mahulikar, P.P. Controlled Release Study of Phenol Formaldehyde Microcapsules Containing Neem Oil as an Insecticide. Int. J. Polym. Mater. Polym. Biomater. 2013, 62, 421–425. [Google Scholar] [CrossRef]
- Sittipummongkol, K.; Chuysinuan, P.; Techasakul, S.; Pisitsak, P.; Pechyen, C. Core Shell Microcapsules of Neem Seed Oil Extract Containing Azadirachtin and Biodegradable Polymers and Their Release Characteristics. Polym. Bull. 2019, 76, 3803–3817. [Google Scholar] [CrossRef]
- Bin Park, J.; Choi, W.H.; Kim, S.H.; Jin, H.J.; Han, Y.S.; Lee, Y.S.; Kim, N.J. Developmental Characteristics of Tenebrio Molitor Larvae (Coleoptera: Tenebrionidae) in Different Instars. Int. J. Ind. Entomol. 2014, 28, 5–9. [Google Scholar]
- Loera-Corral, O.; Porcayo-Loza, J.; Montesinos-Matias, R.; Favela-Torres, E. Production of Conidia by the Fungus Metarhizium Anisopliae Using Solid-State Fermentation BT—Microbial-Based Biopesticides: Methods and Protocols; Glare, T.R., Moran-Diez, M.E., Eds.; Springer New York: New York, NY, USA, 2016; pp. 61–69. ISBN 978-1-4939-6367-6. [Google Scholar]
No. | pH | Pectin | WPI | S/N Ratio | Insect Mortality (%) |
---|---|---|---|---|---|
1 | 1 (3) | 1 (0.50) | 1 (4.00) | 10.59 | 36.67 ± 11.54 ab |
2 | 1 | 2 (0.75) | 2 (6.00) | 12.43 | 50.00 ± 20.00 a |
3 | 1 | 3 (1.00) | 3 (8.00) | 12.55 | 53.33 ± 15.17 a |
4 | 2 (6) | 2 | 1 | 3.01 | 16.67 ± 5.77 ab |
5 | 2 | 3 | 2 | 3.67 | 26.67 ± 20.82 ab |
6 | 2 | 1 | 3 | 8.87 | 36.67 ± 20.80 ab |
7 | 3 (9) | 3 | 1 | 0.00 | 0.00 ± 0.00 b |
8 | 3 | 1 | 2 | 0.00 | 0.00 ± 0.00 b |
9 | 3 | 2 | 3 | 3.01 | 16.67 ± 5.77 ab |
Control | - | - | - | - | 0.00 ± 0.00 b |
Factor | SS | dof | MS | F | p | Influence (%) |
---|---|---|---|---|---|---|
pH | 765.68 | 2 | 382.84 | 13.84 | 0.07 | 72.65 |
Pectin | 159.40 | 2 | 79.70 | 2.88 | 0.26 | 15.12 |
WPI | 73.59 | 2 | 36.79 | 1.33 | 0.43 | 6.98 |
Error | 55.32 | 2 | 27.66 | 5.25 | ||
Total | 1053.98 | 8 | 100.00 |
Factor | Level | Value | Effect Size |
---|---|---|---|
pH | 1 | 3.00 | 9.60 |
Pectin (g/100 mL) | 3 | 1.00 | 5.86 |
WPI (g/100 mL) | 2 | 6.00 | 3.86 |
Predicted S/N ratio | 21.57 | ||
Experimental S/N ratio | 18.54 | ||
Insect mortality (%) | 85.00 ± 10.49 | ||
Control | 0.00 ± 0.00 |
No. | Factor | Units | Level 1 | Level 2 | Level 3 |
---|---|---|---|---|---|
1 | pH | - | 3 | 6 | 9 |
2 | Pectin | g/100 mL | 0.50 | 0.75 | 1.00 |
3 | WPI | g/100 mL | 4.00 | 6.00 | 8.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Michel, M.R.; Aguilar-Zárate, M.; Rojas, R.; Martínez-Ávila, G.C.G.; Aguilar-Zárate, P. The Insecticidal Activity of Azadirachta indica Leaf Extract: Optimization of the Microencapsulation Process by Complex Coacervation. Plants 2023, 12, 1318. https://doi.org/10.3390/plants12061318
Michel MR, Aguilar-Zárate M, Rojas R, Martínez-Ávila GCG, Aguilar-Zárate P. The Insecticidal Activity of Azadirachta indica Leaf Extract: Optimization of the Microencapsulation Process by Complex Coacervation. Plants. 2023; 12(6):1318. https://doi.org/10.3390/plants12061318
Chicago/Turabian StyleMichel, Mariela R., Mayra Aguilar-Zárate, Romeo Rojas, Guillermo Cristian G. Martínez-Ávila, and Pedro Aguilar-Zárate. 2023. "The Insecticidal Activity of Azadirachta indica Leaf Extract: Optimization of the Microencapsulation Process by Complex Coacervation" Plants 12, no. 6: 1318. https://doi.org/10.3390/plants12061318
APA StyleMichel, M. R., Aguilar-Zárate, M., Rojas, R., Martínez-Ávila, G. C. G., & Aguilar-Zárate, P. (2023). The Insecticidal Activity of Azadirachta indica Leaf Extract: Optimization of the Microencapsulation Process by Complex Coacervation. Plants, 12(6), 1318. https://doi.org/10.3390/plants12061318