Indoor and Outdoor Cultures of Gracilaria chilensis: Determination of Biomass Growth and Molecular Markers for Biomass Quality Evaluation
Abstract
:1. Introduction
2. Results
2.1. Biomass and Daily Growth Rate (DGR)
2.2. Molecular Markers
3. Discussion
4. Materials and Methods
4.1. Sampling
4.2. Experimental Setup
4.3. Determination of Biomass and Daily Growth Rate (DGR)
4.4. Determination of Biomass Quality Using Molecular Markers
4.5. Data Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. The State of World Fisheries and Aquaculture 2020. In Sustainability in Action; Food & Agriculture Organization: Rome, Italy, 2020; Volume 32, pp. 21–32. [Google Scholar] [CrossRef]
- Hafting, J.T.; Craigie, J.S.; Stengel, D.B.; Loureiro, R.R.; Buschmann, A.H.; Yarish, C.; Edwards, M.D.; Critchley, A.T. Prospects and challenges for industrial production of seaweed bioactives. J. Phycol. 2015, 51, 821–837. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Qi, M.; Chen, H.; Zhou, C.; Ruan, R.; Yan, X.; Cheng, P. Macroalgae-Derived Multifunctional Bioactive Substances: The Potential Applications for Food and Pharmaceuticals. Foods 2022, 11, 3455. [Google Scholar] [CrossRef] [PubMed]
- Gerwick, W.H.; Proteau, P.J.; Nagle, D.G.; Wise, M.L.; Jiang, Z.D.; Bernart, M.W.; Hamberg, M. Biologically active oxylipins from seaweeds. Hydrobiologia 1993, 260, 653–665. [Google Scholar] [CrossRef]
- Weinberger, F.; Lion, U.; Delage, L.; Kloareg, B.; Potin, P.; Beltrán, J.; Flores, V.; Faugeron, S.; Correa, J.; Pohnert, G. Up-Regulation of Lipoxygenase, Phospholipase, and Oxylipin-Production in the Induced Chemical Defense of the Red Alga Gracilaria chilensis against Epiphytes. J. Chem. Ecol. 2011, 37, 677–686. [Google Scholar] [CrossRef] [PubMed]
- Da Costa, E.; Melo, T.; Moreira, A.S.P.; Bernardo, C.; Helguero, L.; Ferreira, I.; Cruz, M.T.; Rego, A.M.; Domingues, P.; Calado, R.; et al. Valorization of Lipids from Gracilaria sp. through Lipidomics and Decoding of Antiproliferative and Anti-Inflammatory Activity. Mar. Drugs 2017, 15, 62. [Google Scholar] [CrossRef] [Green Version]
- Honda, M.; Ishimaru, T.; Itabashi, Y.; Vyssotski, M. Glycerolipid Composition of the Red Macroalga Agarophyton chilensis and Comparison to the Closely Related Agarophyton vermiculophyllum Producing Different Types of Eicosanoids. Mar. Drugs 2019, 17, 96. [Google Scholar] [CrossRef] [Green Version]
- Tsai, C.-J.; Pan, B.S. Identification of Sulfoglycolipid Bioactivities and Characteristic Fatty Acids of Marine Macroalgae. J. Agric. Food Chem. 2012, 60, 8404–8410. [Google Scholar] [CrossRef]
- Pinto, C.; Ibáñez, M.; Loyola, G.; León, L.; Salvatore, Y.; González, C.; Barraza, V.; Castañeda, F.; Aldunate, R.; Contreras-Porcia, L.; et al. Characterization of an Agarophyton chilense Oleoresin Containing PPARγ Natural Ligands with Insulin-Sensitizing Effects in a C57Bl/6J Mouse Model of Diet-Induced Obesity and Antioxidant Activity in Caenorhabditis elegans. Nutrients 2021, 13, 1828. [Google Scholar] [CrossRef]
- Torres, P.; Santos, J.P.; Chow, F.; dos Santos, D.Y. A comprehensive review of traditional uses, bioactivity potential, and chemical diversity of the genus Gracilaria (Gracilariales, Rhodophyta). Algal Res. 2018, 37, 288–306. [Google Scholar] [CrossRef]
- SUBPESCA. Informe Sectorial Consolidado 2020–2021. Subsecretaría de Pesca y Acuicultura, Valparaíso. 2022. Available online: https://www.subpesca.cl/portal/618/w3-article-114306.html (accessed on 17 January 2023).
- Guillemin, M.-L.; Faugeron, S.; Destombe, C.; Viard, F.; Correa, J.A.; Valero, M. Genetic variation in wild and cultivated population the haploid–diploid red alga Gracilaria chilensis: How farming practices favour asexual reproduction and heterozygosity. Evolution 2008, 62, 1500–1519. [Google Scholar] [CrossRef]
- Friedlander, M.; Levy, I. Cultivation of Gracilaria chilensis in outdoor tanks and ponds. J. Appl. Phycol. 1995, 7, 315–324. [Google Scholar] [CrossRef]
- Rivas, J.; Núñez, A.; Erazo, F.; Castañeda, F.; Araya, M.; Meynard, A.; Contreras-Porcia, L. Indoor culture scaling of Gracilaria chilensis (Florideophyceae, Rhodophyta): The effects of nutrients by means of different culture media. Rev. De Biol. Mar. Y Oceanogr. 2022, 56, 186–199. [Google Scholar] [CrossRef]
- Rivas, J.; Piña, F.; Araya, M.; Latorre-Padilla, N.; Pinilla-Rojas, B.; Caroca, S.; Bronfman, F.C.; Contreras-Porcia, L. Heavy Metal Depuration Steps for Gracilaria chilensis in Outdoor Culture Systems. Molecules 2022, 27, 6832. [Google Scholar] [CrossRef]
- Galanakis, C.M. Chapter One–Cultivation techniques. In Microalgae: Cultivation, Recovery of Compounds and Applications; Rios, L., Filipini, G., Tasic, M., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 3–22. [Google Scholar] [CrossRef]
- Grobbelaar, J.U. Inorganic Algal Nutrition. In Handbook of Microalgal Culture: Applied Phycology and Biotechnology; Richmond, A., Hu, Q., Eds.; John Wiley & Sons, Ltd.: Oxford, UK, 2013; pp. 123–133. ISBN 978-1-118-56716-6. [Google Scholar] [CrossRef]
- Titlyanov, E.; Titlyanova, T.; Kadel, P.; Lüning, K. New methods of obtaining plantlets and tetraspores from fragments and cell aggregates of meristematic and submeristematic tissue of the red alga Palmaria palmata. J. Exp. Mar. Biol. Ecol. 2006, 339, 55–64. [Google Scholar] [CrossRef]
- Ma, J.; Xu, T.; Bao, M.; Zhou, H.; Zhang, T.; Li, Z.; Gao, G.; Li, X.; Xu, J. Response of the red algae Pyropia yezoensis grown at different light intensities to CO2-induced seawater acidification at different life cycle stages. Algal Res. 2020, 49, 101950. [Google Scholar] [CrossRef]
- Águila, G. Efecto de Variables Ambientales en el Crecimiento de Microtalos de Gracilaria chilensis Bird, McLachlan & Oliveira (Rhodophyta. Gigartinales). Thesis de Pregrado en Ingeniería en Acuicultura. Bachelor’ Thesis, Universidad Austral de Chile, Valdivia, Chile, 2015. [Google Scholar]
- Baker, C.J.; Orlandi, E.W. Active Oxygen in Plant Pathogenesis. Annu. Rev. Phytopathol. 1995, 33, 299–321. [Google Scholar] [CrossRef]
- Bischof, K.; Rautenberger, R. Seaweed Responses to Environmental Stress: Reactive Oxygen and Antioxidative Strategies. In Seaweed Biology; Springer: Berlin/Heidelberg, Germany, 2012; pp. 109–132. [Google Scholar] [CrossRef]
- Contreras, L.; Moenne, A.; Correa, J.A. Antioxidant responses in Scytosiphon lomentaria (phaeophyceae) inhabiting copper-enriched coastal environments1. J. Phycol. 2005, 41, 1184–1195. [Google Scholar] [CrossRef]
- Contreras-Porcia, L.; Meynard, A.; Piña, F.; Kumar, M.; Lovazzano, C.; Núñez, A.; Flores-Molina, M.R. Desiccation Stress Tolerance in Porphyra and Pyropia Species: A Latitudinal Analysis along the Chilean Coast. Plants 2022, 12, 12. [Google Scholar] [CrossRef]
- Von Stosch, H. Wirkung von Jod und Arsenit auf Meeresalgen in Kultur. Proc. Int. Seaweed Symp. 1964, 4, 142–150. [Google Scholar]
- Abreu, M.H.; Pereira, R.; Buschmann, A.; Sousa-Pinto, I.; Yarish, C. Nitrogen uptake responses of Gracilaria vermiculophylla (Ohmi) Papenfuss under combined and single addition of nitrate and ammonium. J. Exp. Mar. Biol. Ecol. 2011, 407, 190–199. [Google Scholar] [CrossRef]
- Roleda, M.Y.; Hurd, C.L. Seaweed nutrient physiology: Application of concepts to aquaculture and bioremediation. Phycologia 2019, 58, 552–562. [Google Scholar] [CrossRef] [Green Version]
- Larned, S.T. Nitrogen- versus phosphorus-limited growth and sources of nutrients for coral reef macroalgae. Mar. Biol. 1998, 132, 409–421. [Google Scholar] [CrossRef]
- Yamamoto, M.; Kato, T.; Kanayama, S.; Nakase, K.; Tsutsumi, N. Effectiveness of Iron Fertilization for Seaweed Bed Restoration in Coastal Areas. J. Water Environ. Technol. 2017, 15, 186–197. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, Y.; Kuma, K.; Kudo, I.; Matsunaga, K. Iron requirement of the brown macroalgae Laminaria japonica, Undaria pinnatifida (Phaeophyta) and the crustose coralline alga Lithophyllum yessoense (Rhodophyta), and their competition in the northern Japan Sea. Phycologia 1995, 34, 201–205. [Google Scholar] [CrossRef]
- Chaoyuan, W.; Li, R.; Lin, G.; Wen, Z.; Dong, L.; Zhang, J.; Huang, X.; Wei, S.; Lan, G. Some aspects of the growth of Gracilaria tenuistipitata in pond culture. In Fourteenth International Seaweed Symposium; Developments in Hydrobiology; Chapman, A.R.O., Brown, M.T., Lahaye, M., Eds.; Springer: Dordrecht, The Netherlands, 1993; p. 85. [Google Scholar] [CrossRef]
- Yang, Y.; Chai, Z.; Wang, Q.; Chen, W.; He, Z.; Jiang, S. Cultivation of seaweed Gracilaria in chinese coastal waters and its contribution to environmental improvements. Algal Res. 2015, 9, 236–244. [Google Scholar] [CrossRef]
- Lapointe, B.E. Strategies for pulsed nutrient supply to Gracilaria cultures in the Florida Keys: Interactions between concentration and frequency of nutrient pulses. J. Exp. Mar. Biol. Ecol. 1985, 93, 211–222. [Google Scholar] [CrossRef]
- Ryther, J.; Corwin, N.; DeBusk, T.; Williams, L. Nitrogen uptake and storage by the red alga Gracilaria tikvahiae (McLachlan, 1979). Aquaculture 1981, 26, 107–115. [Google Scholar] [CrossRef]
- Probyn, T.; Chapman, A. Summer growth of Chordaria flagelliformis (O.F. Muell.) C. Ag.: Physiological strategies in a nutrient stressed environment. J. Exp. Mar. Biol. Ecol. 1983, 73, 243–271. [Google Scholar] [CrossRef]
- Fujita, R.M. The role of nitrogen status in regulating transient ammonium uptake and nitrogen storage by macroalgae. J. Exp. Mar. Biol. Ecol. 1985, 92, 283–301. [Google Scholar] [CrossRef]
- Rustérucci, C.; Montillet, J.-L.; Agnel, J.-P.; Battesti, C.; Alonso, B.; Knoll, A.; Bessoule, J.-J.; Etienne, P.; Suty, L.; Blein, J.-P.; et al. Involvement of Lipoxygenase-dependent Production of Fatty Acid Hydroperoxides in the Development of the Hypersensitive Cell Death induced by Cryptogein on Tobacco Leaves. J. Biol. Chem. 1999, 274, 36446–36455. [Google Scholar] [CrossRef] [Green Version]
- Flores-Molina, M.R.; Thomas, D.; Lovazzano, C.; Núñez, A.; Zapata, J.; Kumar, M.; Correa, J.A.; Contreras-Porcia, L. Desiccation stress in intertidal seaweeds: Effects on morphology, antioxidant responses and photosynthetic performance. Aquat. Bot. 2014, 113, 90–99. [Google Scholar] [CrossRef]
- Maharana, D.; Das, P.B.; Verlecar, X.N.; Pise, N.M.; Gauns, M. Oxidative stress tolerance in intertidal red seaweed Hypnea musciformis (Wulfen) in relation to environmental components. Environ. Sci. Pollut. Res. 2015, 22, 18741–18749. [Google Scholar] [CrossRef]
- Burritt, D.J.; Larkindale, J.; Hurd, C.L. Antioxidant metabolism in the intertidal red seaweed Stictosiphonia arbuscula following desiccation. Planta 2002, 215, 829–838. [Google Scholar] [CrossRef]
- Contreras, L.; Mella, D.; Moenne, A.; Correa, J.A. Differential responses to copper-induced oxidative stress in the marine macroalgae Lessonia nigrescens and Scytosiphon lomentaria (Phaeophyceae). Aquat. Toxicol. 2009, 94, 94–102. [Google Scholar] [CrossRef]
- Blée, E. Impact of phyto-oxylipins in plant defense. Trends Plant Sci. 2002, 7, 315–322. [Google Scholar] [CrossRef]
- Sies, H. Oxidative stress: Oxidants and antioxidants. Exp. Physiol. 1997, 82, 291–295. [Google Scholar] [CrossRef]
- Francavilla, M.; Franchi, M.; Monteleone, M.; Caroppo, C. The Red Seaweed Gracilaria gracilis as a Multi Products Source. Mar. Drugs 2013, 11, 3754–3776. [Google Scholar] [CrossRef] [Green Version]
- Fierro, C.; López-Cristoffanini, C.; Meynard, A.; Lovazzano, C.; Castañeda, F.; Guajardo, E.; Contreras-Porcia, L. Expression profile of desiccation tolerance factors in intertidal seaweed species during the tidal cycle. Planta 2017, 245, 1149–1164. [Google Scholar] [CrossRef]
- Sordet, C.; Contreras-Porcia, L.; Lovazzano, C.; Goulitquer, S.; Andrade, S.; Potin, P.; Correa, J.A. Physiological plasticity of Dictyota kunthii (Phaeophyeae) to copper stress. Aquat. Toxicol. 2014, 15, 220–228. [Google Scholar] [CrossRef]
- Yong, Y.S.; Yong, W.T.L.; Anton, A. Analysis of formulae for determination of seaweed growth rate. J. Appl. Phycol. 2013, 25, 1831–1834. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caroca-Valencia, S.; Rivas, J.; Araya, M.; Núñez, A.; Piña, F.; Toro-Mellado, F.; Contreras-Porcia, L. Indoor and Outdoor Cultures of Gracilaria chilensis: Determination of Biomass Growth and Molecular Markers for Biomass Quality Evaluation. Plants 2023, 12, 1340. https://doi.org/10.3390/plants12061340
Caroca-Valencia S, Rivas J, Araya M, Núñez A, Piña F, Toro-Mellado F, Contreras-Porcia L. Indoor and Outdoor Cultures of Gracilaria chilensis: Determination of Biomass Growth and Molecular Markers for Biomass Quality Evaluation. Plants. 2023; 12(6):1340. https://doi.org/10.3390/plants12061340
Chicago/Turabian StyleCaroca-Valencia, Sofía, Jorge Rivas, Matías Araya, Alejandra Núñez, Florentina Piña, Fernanda Toro-Mellado, and Loretto Contreras-Porcia. 2023. "Indoor and Outdoor Cultures of Gracilaria chilensis: Determination of Biomass Growth and Molecular Markers for Biomass Quality Evaluation" Plants 12, no. 6: 1340. https://doi.org/10.3390/plants12061340
APA StyleCaroca-Valencia, S., Rivas, J., Araya, M., Núñez, A., Piña, F., Toro-Mellado, F., & Contreras-Porcia, L. (2023). Indoor and Outdoor Cultures of Gracilaria chilensis: Determination of Biomass Growth and Molecular Markers for Biomass Quality Evaluation. Plants, 12(6), 1340. https://doi.org/10.3390/plants12061340