Hydroponic and Aquaponic Floating Raft Systems Elicit Differential Growth and Quality Responses to Consecutive Cuts of Basil Crop
Abstract
:1. Introduction
2. Results
2.1. Plant Growth
2.2. Gas Exchanges and Chl a Fluorescence Emission
2.3. Mineral Content
2.4. Leaf Photosynthetic Pigments
2.5. Cluster Heatmap Analysis
3. Discussion
4. Materials and Methods
4.1. Experimental Site
4.2. Plant Material and Experimental Conditions
4.3. Aquaponic and Hydroponic Nutrient Solution Management
4.4. Plant Yield and Growth Measurements
4.5. Specific Leaf Traits
4.6. Gas Exchanges and Chl a Fluorescence Emission
4.7. Leaf Chlorophyll and Carotenoids Content and SPAD Index Determination
4.8. Leaf and Stems Mineral Content Analysis
4.9. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Scagel, C.F.; Lee, J.; Mitchell, J.N. Salinity from NaCl Changes the Nutrient and Polyphenolic Composition of Basil Leaves. Ind. Crops Prod. 2019, 127, 119–128. [Google Scholar] [CrossRef]
- Ćavar Zeljković, S.; Komzáková, K.; Šišková, J.; Karalija, E.; Smékalová, K.; Tarkowski, P. Phytochemical Variability of Selected Basil Genotypes. Ind. Crops Prod. 2020, 157, 112910. [Google Scholar] [CrossRef]
- Ciriello, M.; Formisano, L.; El-Nakhel, C.; Kyriacou, M.C.; Soteriou, G.A.; Pizzolongo, F.; Romano, R.; De Pascale, S.; Rouphael, Y. Genotype and Successive Harvests Interaction Affects Phenolic Acids and Aroma Profile of Genovese Basil for Pesto Sauce Production. Foods 2021, 10, 278. [Google Scholar] [CrossRef]
- Delgado, A.; Gonçalves, S.; Romano, A. Mediterranean Diet: The Role of Phenolic Compounds from Aromatic Plant Foods. Foods 2023, 12, 840. [Google Scholar] [CrossRef]
- Corrado, G.; Chiaiese, P.; Lucini, L.; Miras-Moreno, B.; Colla, G.; Rouphael, Y. Successive Harvests Affect Yield, Quality and Metabolic Profile of Sweet Basil (Ocimum basilicum L.). Agronomy 2020, 10, 830. [Google Scholar] [CrossRef]
- Formisano, L.; Ciriello, M.; El-Nakhel, C.; Kyriacou, M.C.; Rouphael, Y. Successive Harvests Modulate the Productive and Physiological Behavior of Three Genovese Pesto Basil Cultivars. Agronomy 2021, 11, 560. [Google Scholar] [CrossRef]
- Hosseini, H.; Mozafari, V.; Roosta, H.R.; Shirani, H.; van de Vlasakker, P.C.H.; Farhangi, M. Nutrient Use in Vertical Farming: Optimal Electrical Conductivity of Nutrient Solution for Growth of Lettuce and Basil in Hydroponic Cultivation. Horticulturae 2021, 7, 283. [Google Scholar] [CrossRef]
- Walters, K.J.; Currey, C.J. Effects of Nutrient Solution Concentration and Daily Light Integral on Growth and Nutrient Concentration of Several Basil Species in Hydroponic Production. HortScience 2018, 53, 1319–1325. [Google Scholar] [CrossRef]
- Nicoletto, C.; Santagata, S.; Bona, S.; Sambo, P. Influence of Cut Number on Qualitative Traits in Different Cultivars of Sweet Basil. Ind. Crops Prod. 2013, 44, 465–472. [Google Scholar] [CrossRef]
- Ciriello, M.; Cirillo, V.; Formisano, L.; El-Nakhel, C.; Pannico, A.; De Pascale, S.; Rouphael, Y. Productive, Morpho-Physiological, and Postharvest Performance of Six Basil Types Grown in a Floating Raft System: A Comparative Study. Plants 2023, 12, 486. [Google Scholar] [CrossRef] [PubMed]
- Farm to Fork Strategy. 2020, p. 23. Available online: https://food.ec.europa.eu/system/files/2020-05/f2f_action-plan_2020_strategy-info_en.pdf (accessed on 10 December 2022).
- United Nations. Transforming Our World: The 2030 Agenda for Sustainable Development; Department of Economic and Social Affairs, United Nations (UN DESA): New York, NY, USA, 2015; pp. 12–14. Available online: https://sustainabledevelopment.un.org/post2015/transformingourworld (accessed on 10 December 2022).
- Vittuari, M.; Bazzocchi, G.; Blasioli, S.; Cirone, F.; Maggio, A.; Orsini, F.; Penca, J.; Petruzzelli, M.; Specht, K.; Amghar, S.; et al. Envisioning the Future of European Food Systems: Approaches and Research Priorities After COVID-19. Front. Sustain. Food Syst. 2021, 5, 642787. [Google Scholar] [CrossRef]
- Armanda, D.T.; Guinée, J.B.; Tukker, A. The Second Green Revolution: Innovative Urban Agriculture’s Contribution to Food Security and Sustainability—A Review. Glob. Food Sec. 2019, 22, 13–24. [Google Scholar] [CrossRef]
- Kulak, M.; Graves, A.; Chatterton, J. Reducing Greenhouse Gas Emissions with Urban Agriculture: A Life Cycle Assessment Perspective. Landsc. Urban Plan. 2013, 111, 68–78. [Google Scholar] [CrossRef]
- Brinkley, C. Evaluating the Benefits of Peri-Urban Agriculture. J. Plan Lit. 2012, 27, 259–269. [Google Scholar] [CrossRef] [Green Version]
- Orsini, F.; Kahane, R.; Nono-Womdim, R.; Gianquinto, G. Urban Agriculture in the Developing World: A Review. Agron. Sustain. Dev. 2013, 33, 695–720. [Google Scholar] [CrossRef] [Green Version]
- Buscaroli, E.; Braschi, I.; Cirillo, C.; Fargue-Lelièvre, A.; Modarelli, G.C.; Pennisi, G.; Righini, I.; Specht, K.; Orsini, F. Reviewing Chemical and Biological Risks in Urban Agriculture: A Comprehensive Framework for a Food Safety Assessment of City Region Food Systems. Food Control 2021, 126, 108085. [Google Scholar] [CrossRef]
- Specht, K.; Siebert, R.; Hartmann, I.; Freisinger, U.B.; Sawicka, M.; Werner, A.; Thomaier, S.; Henckel, D.; Walk, H.; Dierich, A. Urban Agriculture of the Future: An Overview of Sustainability Aspects of Food Production in and on Buildings. Agric. Hum. Values 2014, 31, 33–51. [Google Scholar] [CrossRef]
- Rufí-Salís, M.; Petit-Boix, A.; Villalba, G.; Ercilla-Montserrat, M.; Sanjuan-Delmás, D.; Parada, F.; Arcas, V.; Muñoz-Liesa, J.; Gabarrell, X. Identifying Eco-Efficient Year-Round Crop Combinations for Rooftop Greenhouse Agriculture. Int. J. Life Cycle Assess. 2020, 25, 564–576. [Google Scholar] [CrossRef]
- Orsini, F.; Gasperi, D.; Marchetti, L.; Piovene, C.; Draghetti, S.; Ramazzotti, S.; Bazzocchi, G.; Gianquinto, G. Exploring the Production Capacity of Rooftop Gardens (RTGs) in Urban Agriculture: The Potential Impact on Food and Nutrition Security, Biodiversity and Other Ecosystem Services in the City of Bologna. Food Secur. 2014, 6, 781–792. [Google Scholar] [CrossRef]
- Al-Kodmany, K. The Vertical Farm: A Review of Developments and Implications for the Vertical City. Buildings 2018, 8, 24. [Google Scholar] [CrossRef] [Green Version]
- van Delden, S.H.; SharathKumar, M.; Butturini, M.; Graamans, L.J.A.; Heuvelink, E.; Kacira, M.; Kaiser, E.; Klamer, R.S.; Klerkx, L.; Kootstra, G.; et al. Current Status and Future Challenges in Implementing and Upscaling Vertical Farming Systems. Nat. Food 2021, 2, 944–956. [Google Scholar] [CrossRef]
- d’Aquino, L.; Lanza, B.; Gambale, E.; Sighicelli, M.; Menegoni, P.; Modarelli, G.C.; Rimauro, J.; Chianese, E.; Nenna, G.; Fasolino, T.; et al. Growth and Metabolism of Basil Grown in a New-Concept Microcosm under Different Lighting Conditions. Sci. Hortic. 2022, 299, 111035. [Google Scholar] [CrossRef]
- Modarelli, G.C.; Cirillo, C.; Vanacore, L.; Langellotti, A.L.; Masi, P.; De Pascale, S.; Rouphael, Y. Recirculating Aquaponics Systems: The New Era of Food Production. Acta Hortic. 2022, 1345, 215–220. [Google Scholar] [CrossRef]
- Wu, F.; Ghamkhar, R.; Ashton, W.; Hicks, A.L. Sustainable Seafood and Vegetable Production: Aquaponics as a Potential Opportunity in Urban Areas. Integr. Environ. Assess. Manag. 2019, 15, 832–843. [Google Scholar] [CrossRef] [PubMed]
- Greenfeld, A.; Becker, N.; McIlwain, J.; Fotedar, R.; Bornman, J.F. Economically Viable Aquaponics? Identifying the Gap between Potential and Current Uncertainties. Rev. Aquac. 2019, 11, 848–862. [Google Scholar] [CrossRef]
- Rakocy, J.E. Aquaponics—Integrating Fish and Plant Culture. In Aquaculture Production Systems; Tidwell, J.H., Ed.; Wiley&Sons Ltd.: Hoboken, NJ, USA, 2012; pp. 344–386. [Google Scholar] [CrossRef]
- Schmautz, Z.; Graber, A.; Jaenicke, S.; Goesmann, A.; Junge, R.; Smits, T.H.M.M. Microbial Diversity in Different Compartments of an Aquaponics System. Arch. Microbiol. 2017, 199, 613–620. [Google Scholar] [CrossRef] [PubMed]
- Lu, Q.; Han, P.; Xiao, Y.; Liu, T.; Chen, F.; Leng, L.; Liu, H.; Zhou, W. The Novel Approach of Using Microbial System for Sustainable Development of Aquaponics. J. Clean. Prod. 2019, 217, 573–575. [Google Scholar] [CrossRef]
- Petrea, Ș.-M.; Bandi, A.-C.; Cristea, D.; Neculiță, M. Cost-Benefit Analysis into Integrated Aquaponics Systems. Custos e Agronegocio 2019, 15, 239–269. [Google Scholar]
- Yep, B.; Zheng, Y. Aquaponic Trends and Challenges—A Review. J. Clean. Prod. 2019, 228, 1586–1599. [Google Scholar] [CrossRef]
- Ciriello, M.; Formisano, L.; El-Nakhel, C.; Corrado, G.; Pannico, A.; De Pascale, S.; Rouphael, Y. Morpho-Physiological Responses and Secondary Metabolites Modulation by Preharvest Factors of Three Hydroponically Grown Genovese Basil Cultivars. Front. Plant Sci. 2021, 12, 671026. [Google Scholar] [CrossRef]
- Ferrarezi, R.S.; Bailey, D.S. Basil Performance Evaluation in Aquaponics. Horttechnology 2019, 29, 85–93. [Google Scholar] [CrossRef] [Green Version]
- Khalil, S. Growth Performance, Nutrients and Microbial Dynamic in Aquaponics Systems as Affected by Water Temperature. Eur. J. Hortic. Sci. 2018, 83, 388–394. [Google Scholar] [CrossRef]
- Saha, S.; Monroe, A.; Day, M.R. Growth, Yield, Plant Quality and Nutrition of Basil (Ocimum Basilicum L.) under Soilless Agricultural Systems. Ann. Agric. Sci. 2016, 61, 181–186. [Google Scholar] [CrossRef]
- Žnidarčič, D.; Ban, D.; Šircelj, H. Carotenoid and Chlorophyll Composition of Commonly Consumed Leafy Vegetables in Mediterranean Countries. Food Chem. 2011, 129, 1164–1168. [Google Scholar] [CrossRef] [PubMed]
- Peterman, E.J.; Dukker, F.M.; van Grondelle, R.; van Amerongen, H. Chlorophyll a and Carotenoid Triplet States in Light-Harvesting Complex II of Higher Plants. Biophys. J. 1995, 69, 2670–2678. [Google Scholar] [CrossRef] [Green Version]
- Modarelli, G.C.; Paradiso, R.; Arena, C.; De Pascale, S.; Van Labeke, M.C. High Light Intensity from Blue-Red LEDs Enhance Photosynthetic Performance, Plant Growth, and Optical Properties of Red Lettuce in Controlled Environment. Horticulturae 2022, 8, 114. [Google Scholar] [CrossRef]
- Pennisi, G.; Pistillo, A.; Orsini, F.; Cellini, A.; Spinelli, F.; Nicola, S.; Fernandez, J.A.; Crepaldi, A.; Gianquinto, G.; Marcelis, L.F.M. Optimal Light Intensity for Sustainable Water and Energy Use in Indoor Cultivation of Lettuce and Basil under Red and Blue LEDs. Sci. Hortic. 2020, 272, 109508. [Google Scholar] [CrossRef]
- Sambo, P.; Nicoletto, C.; Giro, A.; Pii, Y.; Valentinuzzi, F.; Mimmo, T.; Lugli, P.; Orzes, G.; Mazzetto, F.; Astolfi, S.; et al. Hydroponic Solutions for Soilless Production Systems: Issues and Opportunities in a Smart Agriculture Perspective. Front. Plant Sci. 2019, 10, 923. [Google Scholar] [CrossRef]
- Han, Y.; White, P.J.; Cheng, L. Mechanisms for Improving Phosphorus Utilization Efficiency in Plants. Ann. Bot. 2022, 129, 247–258. [Google Scholar] [CrossRef]
- Anjana; Umar, S.; Iqbal, M. Nitrate Accumulation in Plants, Factors Affecting the Process, and Human Health Implications. A Review. Agron. Sustain. Dev. 2007, 27, 45–57. [Google Scholar] [CrossRef]
- Colla, G.; Kim, H.-J.; Kyriacou, M.C.; Rouphael, Y. Nitrate in Fruits and Vegetables. Sci. Hortic. 2018, 237, 221–238. [Google Scholar] [CrossRef]
- Corrado, G.; Lucini, L.; Miras-moreno, B.; Chiaiese, P. Metabolic Insights into the Anion-Anion Antagonism in Sweet Basil: Effects of Different Nitrate/Chloride Ratios in the Nutrient Solution. Int. J. Mol. Sci. 2020, 21, 2482. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- EFSA Panel on Contaminants in the Food Chain (CONTAM). Statement on Possible Public Health Risks for Infants and Young Children from the Presence of Nitrates in Leafy Vegetables. EFSA J. 2010, 8, 1935. [Google Scholar] [CrossRef]
- Maxwell, K.; Johnson, G.N. Chlorophyll Fluorescence—A Practical Guide. J. Exp. Bot. 2000, 51, 659–668. [Google Scholar] [CrossRef]
- Germano, R.P.; Melito, S.; Cacini, S.; Carmassi, G.; Leoni, F.; Maggini, R.; Montesano, F.F.; Pardossi, A.; Massa, D. Sweet Basil Can Be Grown Hydroponically at Low Phosphorus and High Sodium Chloride Concentration: Effect on Plant and Nutrient Solution Management. Sci. Hortic. 2022, 304, 111324. [Google Scholar] [CrossRef]
- Singh, S.K.; Reddy, V.R. Response of Carbon Assimilation and Chlorophyll Fluorescence to Soybean Leaf Phosphorus across CO2: Alternative Electron Sink, Nutrient Efficiency and Critical Concentration. J. Photochem. Photobiol. B 2015, 151, 276–284. [Google Scholar] [CrossRef] [PubMed]
- Genty, B.; Briantais, J.-M.; Baker, N.R. The Relationship between the Quantum Yield of Photosynthetic Electron Transport and Quenching of Chlorophyll Fluorescence. Biochim. Biophys. Acta Gen. Subj. 1989, 990, 87–92. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K.; Burkart, S. Photosynthesis and High Light Stress. Wild 1999, 25, 3–16. [Google Scholar]
- Pannico, A.; El-Nakhel, C.; Kyriacou, M.C.; Giordano, M.; Stazi, S.R.; De Pascale, S.; Rouphael, Y. Combating Micronutrient Deficiency and Enhancing Food Functional Quality Through Selenium Fortification of Select Lettuce Genotypes Grown in a Closed Soilless System. Front. Plant Sci. 2019, 10, 1495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Treatments | Leaf Number | Total FW | Total Leaf Area | Total DW | Total DM | SLA | |
---|---|---|---|---|---|---|---|
System (S) | Cut (C) | (n plant−1) | (g FW plant−1) | (cm² plant−1) | (g DW plant−1) | (%) | (cm² g) |
H | I | 36.12 ± 2.89 | 38.05 ± 1.67 | 2795.9 ± 133.19 a | 1.16 ± 0.07 c | 2.98 ± 0.06 c | 411.3 ± 1.18 a |
II | 46.67 ± 3.49 | 38.75 ± 2.83 | 1206.26 ± 147.76 c | 3.26 ± 0.27 b | 7.91 ± 0.13 b | 315.7 ± 12.4 b | |
Mean | 41.39 | 38.4 | 2001.08 | 2.21 | 5.44 | 363.5 | |
AQ | I | 33.33 ± 0.71 | 32.36 ± 1.23 | 1476 ± 134.07 c | 1.18 ± 0.03 c | 3.64 ± 0.04 c | 280.4 ± 0.007 c |
II | 62.61 ± 4.17 | 44.38 ± 4.44 | 2186.86 ± 7.36 b | 5.5 ± 0.37 a | 11.22 ± 0.11 a | 320.2 ± 0.72 b | |
Mean | 47.97 | 38.37 | 1831.43 | 3.34 | 7.43 | 300.2 | |
Significance | |||||||
S | 0.723 ns | 0.995 ns | 0.195 ns | 0.023 * | 0.00 ** | 0.000 ** | |
C | 0.167 ns | 0.231 ns | 0.006 ** | 0.00 ** | 0.00 ** | 0.002 ** | |
S × C | 0.969 ns | 0.282 ns | 0.00 ** | 0.025 * | 0.00 ** | 0.00 ** |
Treatment | Pn | gs | E | Fv/Fm | ΦPSII | ETR | ΦNO | NPQ | WUEi | LUE | RWC |
---|---|---|---|---|---|---|---|---|---|---|---|
(µmol CO2 m−2 s−1) | (mol m−2 s−1) | (mol H2O m−2 s−1) | (µmol m−2 s−1) | (µmol CO2 m−2 s−1/mol H2O m−2 s−1) | (µmol CO2 m−2 s−1/µmol photons m−2 s−1) | (%) | |||||
Cultivation system (S) | |||||||||||
H | 2.97 ± 0.87 | 0.13 ± 0.01 | 3.36 ± 0.32 a | 0.71 ± 0.05 | 0.42 ± 0.03 | 32.68 ± 4.79 a | 0.21 ± 0.02 | 1.19 ± 0.13 | 20.96 ± 4.32 | 0.009 ± 0.004 a | 92.46 ± 1.55 |
AQ | 3.01 ± 0.98 | 0.12 ± 0.01 | 2.93 ± 0.35 b | 0.73 ± 0.04 | 0.43 ± 0.04 | 25.99 ± 4.95 b | 0.25 ± 0.04 | 1.36 ± 0.21 | 22.08 ± 5.23 | 0.013 ± 0.003 a | 88.77 ± 2.22 |
Cut (C) | |||||||||||
I | 4.93 ± 0.45 a | 0.15 ± 0.01 a | 3.85 ± 0.15 a | 0.82 ± 0 a | 0.51 ± 0.02 a | 39.53 ± 2.83 a | 0.2 ± 0.01 b | 1.47 ± 0.09 a | 31.80 ± 1.84 a | 0.02 ± 0.001 a | 87.75 ± 2.23 b |
II | 1.05 ± 0.06 b | 0.09 ± 0.00 b | 2.44 ± 0.14 b | 0.62 ± 0.02 b | 0.35 ± 0.01 b | 19.15 ± 1.56 b | 0.33 ± 0.02 a | 1.07 ± 0.20 b | 11.24 ± 3.78 b | 0.003 ± 0.002 b | 93.48 ± 0.66 a |
Significance | |||||||||||
(S) | 0.9403 ns | 0.423 ns | 0.029 * | 0.263 ns | 0.694 ns | 0.039 * | 0.378 ns | 0.483 ns | 0.599 ns | 0.013 * | 0.115 ns |
(C) | 0.00 ** | 0.00 ** | 0.00 ** | 0.00 ** | 0.00 ** | 0.00 ** | 0.002 ** | 0.123 ns | 0.00 ** | 0.00 ** | 0.025 * |
CS × C | 0.70 ns | 0.851 ns | 0.65 ns | 0.301 ns | 0.291 ns | 0.871 ns | 0.863 ns | 0.581 ns | 0.00 ** | 0.12 ns | 0.291 ns |
Treatment | NO3 | P | K | S | Ca | Mg | NH4 | Na | Cl | |
---|---|---|---|---|---|---|---|---|---|---|
System (S) | Cut (C) | (g kg−1 f.w.) | (g kg−1 d.w.) | (g kg−1 d.w.) | (g kg−1 d.w.) | (g kg−1 d.w.) | (g kg−1 d.w.) | (g kg−1 d.w.) | (g kg−1 d.w.) | (g kg−1 d.w.) |
H | I | 523.29 ± 229.17 c | 4.33 ± 0.42 a | 72.06 ± 3.22 ab | 0.77 ± 0.05 b | 7.64 ± 0.41 b | 2.26 ± 0.1 b | 0.39 ± 0.01 c | 0.52 ± 0.11 | 6.07 ± 1.07 |
II | 3311.48 ± 148.39 a | 3.47 ± 0.37 ab | 85.79 ± 4.7 a | 0.96 ± 0.1 b | 15.59 ± 1.27 a | 3.21 ± 0.16 b | 0.94 ± 0.02 a | 0.8 ± 0.14 | 14.36 ± 1.75 | |
Mean | 1917.38 | 3.9 | 78.92 | 0.87 | 11.62 | 2.73 | 0.66 | 0.66 | 10.21 | |
AQ | I | 1565.55 ± 156.84 b | 3.94 ± 0.22 ab | 57.57 ± 3.65 bc | 1.32 ± 0.04 a | 16.5 ± 0.71 a | 6.09 ± 0.32 a | 0.34 ± 0.01 c | 0.4 ± 0.09 | 4.2 ± 0.38 |
II | 3478.24 ± 321.61 a | 2.54 ± 0.29 b | 54.24 ± 1.66 c | 0.73 ± 0.05 b | 15.13 ± 0.15 a | 5.3 ± 0.22 a | 0.57 ± 0.04 b | 0.56 ± 0.08 | 9.57 ± 0.19 | |
Mean | 2521.89 | 3.24 | 55.9 | 1.02 | 15.81 | 5.69 | 0.46 | 0.48 | 6.88 | |
Significance | ||||||||||
S | 0.028 ** | 0.085 ns | 0.00 ** | 0.042 * | 0.001 *** | 0.00 ** | 0.00 ** | 0.132 ns | 0.013 ns | |
C | 0.00 ** | 0.01 ** | 0.174 ns | 0.014 * | 0.003 ** | 0.731 ns | 0.00 ** | 0.079 ns | 0.00 ** | |
C × S | 0.088 ns | 0.443 ns | 0.04 * | 0.00 ** | 0.00 ** | 0.004 ** | 0.00 ** | 0.592 ns | 0.2 ns |
Treatment | Chl a/b | Chl (a + b) | Total Carotenoids | SPAD Index | |
---|---|---|---|---|---|
System (S) | Cut (C) | (mg g FW−1) | (mg g FW−1) | ||
H | I | 1.35 ± 0.01 b | 1.76 ± 0.04 a | 0.22 ± 0.00 c | 23.13 ± 0.75 a |
II | 1.82 ± 0.04 a | 0.95 ± 0.03 c | 0.25 ± 0.01 b | 13.11 ± 0.88 c | |
Mean | 1.59 | 1.35 | 0.24 | 18.12 | |
AQ | I | 1.78 ± 0.06 a | 1.25 ± 0.05 b | 0.29 ± 0.00 a | 19.41 ± 0.94 b |
II | 1.74 ± 0.04 a | 1.12 ± 0.1 bc | 0.27 ± 0.01 ab | 15.97 ± 0.64 bc | |
Mean | 1.76 | 1.19 | 0.28 | 17.69 | |
Significance | |||||
S | 0.005 ** | 0.024 * | 0.00 ** | 0.611 ns | |
C | 0.001 *** | 0.00 ** | 0.15 | 0.00 ** | |
C × S | 0.001 *** | 0.001 *** | 0.002 ** | 0.004 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Modarelli, G.C.; Vanacore, L.; Rouphael, Y.; Langellotti, A.L.; Masi, P.; De Pascale, S.; Cirillo, C. Hydroponic and Aquaponic Floating Raft Systems Elicit Differential Growth and Quality Responses to Consecutive Cuts of Basil Crop. Plants 2023, 12, 1355. https://doi.org/10.3390/plants12061355
Modarelli GC, Vanacore L, Rouphael Y, Langellotti AL, Masi P, De Pascale S, Cirillo C. Hydroponic and Aquaponic Floating Raft Systems Elicit Differential Growth and Quality Responses to Consecutive Cuts of Basil Crop. Plants. 2023; 12(6):1355. https://doi.org/10.3390/plants12061355
Chicago/Turabian StyleModarelli, Giuseppe Carlo, Lucia Vanacore, Youssef Rouphael, Antonio Luca Langellotti, Paolo Masi, Stefania De Pascale, and Chiara Cirillo. 2023. "Hydroponic and Aquaponic Floating Raft Systems Elicit Differential Growth and Quality Responses to Consecutive Cuts of Basil Crop" Plants 12, no. 6: 1355. https://doi.org/10.3390/plants12061355
APA StyleModarelli, G. C., Vanacore, L., Rouphael, Y., Langellotti, A. L., Masi, P., De Pascale, S., & Cirillo, C. (2023). Hydroponic and Aquaponic Floating Raft Systems Elicit Differential Growth and Quality Responses to Consecutive Cuts of Basil Crop. Plants, 12(6), 1355. https://doi.org/10.3390/plants12061355