Photosynthetic Physiological Basis of No Tillage with Wheat Straw Returning to Improve Maize Yield with Plastic Film Mulching in Arid Irrigated Areas
Abstract
:1. Introduction
2. Results
2.1. Dynamics of Photosynthetic Source for Maize with Plastic Film Mulching under Various Wheat Straw-Returning Approaches
2.1.1. Leaf Area Index
2.1.2. Leaf Area Duration
2.2. Photosynthetic Physiological Characteristics of Various Wheat Straw-Returning Approaches to Green Leaves in Maize with Plastic Film Mulching
2.2.1. Chlorophyll Relative Content
2.2.2. Net Photosynthetic Rate
2.2.3. Transpiration Rate
2.2.4. Leaf Water Use Efficiency
2.3. Grain Yield of Maize Affected by Various Wheat Straw-Returning Approaches
2.4. Relationship among Grain Yield and Photosynthetic Physiological Parameters and Yield Components of Maize
2.4.1. Correlation Analysis
2.4.2. Incidence Matrix Analysis
3. Materials and Methods
3.1. Study Area
3.2. Experimental Design
3.3. Experimental Data Collection
3.3.1. Leaf Area Index and Leaf Area Duration
3.3.2. Chlorophyll Relative Content
3.3.3. Photosynthetic Indices
3.3.4. Grain Yield and Its Components
3.4. Statistical Analysis
4. Discussion
4.1. Effects of Straw Returning on Photosynthetic Sources of Plastic Film-Mulched Maize
4.2. Effects of Straw Returning on Physiological Characteristics of Plastic Film-Mulched Maize
4.3. Grain Yield of Plastic Film-Mulched Maize with Was Affected by Straw Returning
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- D’Odorico, P.; Chiarelli, D.D.; Rosa, L.; Bini, A.; Rulli, M.C. The global value of water in agriculture. Proc. Natl. Acad. Sci. USA 2020, 117, 21985–21993. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.C.; Wu, M.Y.; Guo, X.P.; Zheng, Y.L.; Gong, Y.; Wu, N.; Wang, W.G. Assessing water scarcity in agricultural production system based on the generalized water resources and water footprint framework. Sci. Total Environ. 2017, 609, 587–597. [Google Scholar] [CrossRef]
- Reynolds, J.F.; Smith, D.M.; Lambin, E.F.; Turner, B.L.; Mortimore, M.; Batterbury, S.P.; Downing, T.E.; Dowlatabadi, H.; Fernández, R.J.; Herrick, J.E.; et al. Global Desertification: Building a Science for Dryland Development. Science 2007, 316, 847–851. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schimel, D.S. Drylands in the Earth System. Science 2010, 327, 418–419. [Google Scholar] [CrossRef] [PubMed]
- Shareef, M.; Gui, D.W.; Zeng, F.J.; Waqas, M.; Zhang, B.; Iqbal, H. Water productivity, growth, and physiological assessment of deficit irrigated cotton on hyperarid desert-oases in northwest China. Agric. Water Manag. 2018, 206, 1–10. [Google Scholar] [CrossRef]
- Wang, L.; Chen, R.S.; Han, C.T.; Wang, X.Q.; Liu, G.H.; Song, Y.X.; Yang, Y.; Liu, J.F.; Liu, Z.W.; Liu, X.J.; et al. Change characteristics of precipitation and temperature in the Qilian Mountains and Hexi Oasis, Northwestern China. Environ. Earth Sci. 2019, 78, 284. [Google Scholar] [CrossRef]
- Nobel, P.S. Photochemistry of photosynthesis. Physicochem. Environ. Plant Physiol. 2009, 54, 228–275. [Google Scholar] [CrossRef]
- Baker, L.A.; Habershon, S. Photosynthesis, pigment–protein complexes and electronic energy transport: Simple models for complicated processes. Sci. Prog. 2017, 100, 313–330. [Google Scholar] [CrossRef] [PubMed]
- Rathod, G.R.; Pandey, R.; Chinnusamy, V.; Paul, V.; Jainm, N.; Singh, M.P. Deeper root system architecture confers better stability to photosynthesis and yield compared to shallow system under terminal drought stress in wheat (Triticum aestivum L.). Plant Physiol. Rep. 2022, 27, 250–259. [Google Scholar] [CrossRef]
- Fernandez-Marin, B.; Gulias, J.; Figueroa, C.M.; Iniguez, C.; Clemente-Moreno, M.J.; Nunes-Nesi, A.; Fernie, A.R.; Cavieres, L.A.; Bravo, L.A.; García-Plazaola, J.I.; et al. How do vascular plants perform photosynthesis in extreme environments? An integrative ecophysiological and biochemical story. Plant J. 2020, 101, 979–1000. [Google Scholar] [CrossRef] [Green Version]
- Hassan, I.A. Effects of water stress and high temperature on gas exchange and chlorophyll fluorescence in Triticum aestivum L. Photosynthetica 2006, 44, 312–315. [Google Scholar] [CrossRef]
- Genty, B.; Briantais, J.M.; Baker, N.R. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. BBA-Gen. Subj. 1989, 990, 87–92. [Google Scholar] [CrossRef]
- Bidinger, F.; Musgrave, R.B.; Fischer, R.A. Contribution of stored pre-anthesis assimilate to grain yield in wheat and barley. Nature 1977, 270, 431–433. [Google Scholar] [CrossRef] [Green Version]
- Silva-Pérez, V.; Faveri, J.D.; Molero, G.; Deery, D.M.; Furbank, R.T. Genetic variation for photosynthetic capacity and efficiency in spring wheat. J. Exp. Bot. 2019, 71, 2299–2311. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Yin, W.; Fan, H.; Fan, Z.L.; Hu, F.L.; Yu, A.Z.; Zhao, C.; Chai, Q.; Aziiba, E.A.; Zhang, X.J. Photosynthetic physiological characteristics of water and nitrogen coupling for enhanced high-density tolerance and increased yield of maize in arid irrigation regions. Front. Plant Sci. 2021, 12, 726568. [Google Scholar] [CrossRef]
- Jia, Q.; Zhang, H.; Wang, J.; Xiao, X.; Hou, F. Planting practices and mulching materials improve maize net ecosystem C budget, global warming potential and production in semi-arid regions. Soil Till. Res. 2020, 207, 104850. [Google Scholar] [CrossRef]
- Hu, F.L.; Gan, Y.T.; Cui, H.Y.; Zhao, C.; Feng, F.X.; Yin, W.; Chai, Q. Intercropping maize and wheat with conservation agriculture principles improves water harvesting and reduces carbon emissions in dry areas. Eur. J. Agron. 2016, 74, 9–17. [Google Scholar] [CrossRef]
- Wang, J.; Ghimire, R.; Fu, X.; Sainju, U.M.; Liu, W. Straw mulching increases precipitation storage rather than water use efficiency and dryland winter wheat yield. Agric. Water Manag. 2018, 206, 95–101. [Google Scholar] [CrossRef]
- Chen, S.Y.; Zhang, X.Y.; Pei, D.; Sun, H.Y.; Chen, S.L. Effects of straw mulching on soil temperature, evaporation and yield of winter wheat: Field experiments on the North China Plain. Ann. Appl. Biol. 2007, 150, 261–268. [Google Scholar] [CrossRef]
- Sarkar, S.; Paramanick, M.; Goswami, S.B. Soil temperature, water use and yield of yellow sarson (Brassica napus L. var. glauca) in relation to tillage intensity and mulch management under rainfed lowland ecosystem in eastern India. Soil Till. Res. 2007, 93, 94–101. [Google Scholar] [CrossRef]
- Li, R.; Chai, S.X.; Chai, Y.W.; Li, Y.W.; Chang, L.; Cheng, H.B. Straw strip mulching A sustainable technology for saving water and improving efficiency in dryland winter wheat production. J. Int. Agric. 2022, 21, 3556–3568. [Google Scholar] [CrossRef]
- López, F.J.; Pastrana, P.; Casquero, P.A. Soil physical properties and crop response in direct seeding of spring barley as affected by wheat straw level. J. Soil Water Conserv. 2018, 74, 51–58. [Google Scholar] [CrossRef]
- Yan, F.J.; Sun, Y.J.; Xu, H.; Yin, Y.Z.; Wang, H.Y.; Wang, C.Y.; Guo, C.C.; Yang, Z.Y.; Sun, Y.Y.; Ma, J. Effects of wheat straw mulch application and nitrogen management on rice root growth, dry matter accumulation and rice quality in soils of different fertility. Paddy Water Environ. 2018, 16, 507–518. [Google Scholar] [CrossRef]
- Khan, M.N.; Lan, Z.; Sial, T.A.; Zhao, Y.; Haseeb, A.; Zhang, J.G.; Zhang, A.F.; Hill, R.L. Straw and biochar effects on soil properties and tomato seedling growth under different moisture levels. Arch. Agron. Soil Sci. 2019, 65, 1704–1719. [Google Scholar] [CrossRef]
- Meyer, M.; Diehl, D.; Schaumann, G.E.; Muñoz, K. Multiannual soil mulching in agriculture: Analysis of biogeochemical soil processes under plastic and straw mulches in a 3-year field study in strawberry cultivation. J. Soil. Sediments 2021, 21, 3733–3752. [Google Scholar] [CrossRef]
- Chai, Q.; Gan, Y.T.; Turner, N.C.; Zhang, R.Z.; Yang, C.; Niu, Y.N.; Siddique, K.H.M. Water-saving innovations in Chinese agriculture. Adv. Agron. 2014, 126, 149–201. [Google Scholar] [CrossRef]
- Yin, W.; Yu, A.Z.; Guo, Y.; Wang, Y.F.; Zhao, C.; Chai, Q. Straw retention and plastic mulching enhance water use via synergistic regulation of water competition and compensation in wheat-maize intercropping systems. Field Crops Res. 2018, 229, 78–94. [Google Scholar] [CrossRef]
- Yin, W.; Feng, F.X.; Zhao, C.; Yu, A.Z.; Hu, F.L.; Chai, Q.; Gan, Y.T.; Guo, Y. Integrated double mulching practices optimizes soil temperature and improves soil water utilization in arid environments. Int. J. Biometeorol. 2016, 60, 1423–1437. [Google Scholar] [CrossRef]
- Bu, L.D.; Zhu, L.; Liu, J.L.; Luo, S.S.; Chen, X.P.; Li, S.Q. Source–sink capacity responsible for higher maize yield with removal of plastic film. Agron. J. 2013, 105, 591–598. [Google Scholar] [CrossRef]
- Roderick, M.L.; Berry, S.L.; Noble, A. On the relationship between the composition, morphology and function of leaves. Funct. Ecol. 1999, 13, 696–710. [Google Scholar] [CrossRef]
- Ramakrishna, A.; Tam, H.M.; Wani, S.P.; Long, T.D. Effect of mulch on soil temperature, moisture, weed infestation and yield of groundnut in northern Vietnam. Field Crops Res. 2006, 95, 115–125. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.X.; Feng, S.Y.; Hou, X.Y.; Kang, S.Z.; Han, J.J. Potato growth with and without plastic mulch in two typical regions of Northern China. Field Crops Res. 2009, 110, 123–129. [Google Scholar] [CrossRef]
- Guo, Y.; Chai, Q.; Yin, W.; Feng, F.X.; Zhao, C.; Yu, A.Z. Effect of wheat straw return to soil with zero-tillage on maize yield in irrigated oases. Chin. J. Eco-Agric. 2017, 25, 69–77. [Google Scholar] [CrossRef]
- Yin, W.; Chen, G.P.; Chai, Q.; Zhao, C.; Feng, F.X.; Yu, A.Z.; Hu, F.L.; Guo, Y. Responses of soil water and temperature to previous wheat straw treatments in plastic film mulching maize field at hexi corridor. Sci. Agric. Sin. 2016, 49, 2898–2908. [Google Scholar] [CrossRef]
- Rajcan, I.; Tollenaar, M. Source: Sink ratio and leaf senescence in maize: II. Nitrogen metabolism during grain filling. Field Crops Res. 1999, 60, 255–265. [Google Scholar] [CrossRef]
- Yin, W.; Chai, Q.; Guo, Y.; Fan, Z.L.; Hu, F.L.; Fan, H.; Zhao, C.; Yu, A.Z.; Coulter, J.A. Straw and plastic management regulate air-soil temperature amplitude and wetting-drying alternation in soil to promote intercrop productivity in arid regions. Field Crops Res. 2020, 249, 107758. [Google Scholar] [CrossRef]
- Yin, W.; Yu, A.Z.; Guo, Y.; Fan, H.; Hu, F.L.; Fan, Z.L.; Zhao, C.; Chai, Q.; Coulter, J.A. Growth trajectories of wheat–maize intercropping with straw and plastic management in arid conditions. Agron. J. 2020, 112, 2777–2790. [Google Scholar] [CrossRef]
- Grum, B.; Assefa, D.; Hessel, R.; Woldearegay, K.; Ritsema, C.J.; Aregawi, B.; Geissen, V. Improving on-site water availability by combining in-situ water harvesting techniques in semi-arid Northern Ethiopia. Agric. Water Manag. 2017, 193, 153–162. [Google Scholar] [CrossRef]
- Dong, Z.; Zhang, X.; Li, J.; Zhang, C.; Wei, T.; Yang, Z.; Cai, T.; Zhang, P.; Ding, R.X.; Jia, Z.K. Photosynthetic characteristics and grain yield of winter wheat (Triticum aestivum L.) in response to fertilizer, precipitation, and soil water storage before sowing under the ridge and furrow system: A path analysis. Agric. Forest Meteorol. 2019, 272–273, 12–19. [Google Scholar] [CrossRef]
- Zhang, H.H.; Sharifi, M.R.; Nobel, P.S. Photosynthetic characteristics of sun versus shade plants of encelia farinosa as affected by photosynthetic photon flux density, intercellular CO2 concentration, leaf water potential, and leaf temperature. Aust. J. Plant Physiol. 1995, 22, 833–841. [Google Scholar] [CrossRef]
- Yin, W.; Fan, Z.L.; Hu, F.L.; Fan, H.; He, W.; Zhao, C.; Yu, A.Z.; Chai, Q. No-tillage with straw mulching promotes wheat production via regulating soil drying-wetting status and reducing soil-air temperature variation at arid regions. Eur. J. Agron. 2023, 145, 126778. [Google Scholar] [CrossRef]
- Yin, W.; Chen, G.P.; Feng, F.X.; Guo, Y.; Hu, F.L.; Chen, G.D.; Zhao, C.; Yu, A.Z.; Chai, Q. Straw retention combined with plastic mulching improves compensation of intercropped maize in arid environment. Field Crops Res. 2017, 204, 42–51. [Google Scholar] [CrossRef]
- Figueiredo, P.G.; Bicudo, S.J.; Chen, S.; Fernandes, A.M.; Tanamati, F.Y.; Djabou-Fondjo, A.S.M. Effects of tillage options on soil physical properties and cassava-dry-matter partitioning. Field Crops Res. 2017, 204, 191–198. [Google Scholar] [CrossRef] [Green Version]
Year | Treatment † | Grain Yield (t ha−1) | Yield Component | ||
---|---|---|---|---|---|
Ear Number Per Area (Ear m–2) | Grain Number Per Ear (Grain Ear−1) | 100-Grain Weight (g) | |||
2010 | NTSM | 13.47 a ‡ | 8.50 a | 544.8 a | 34.93 a |
NTSS | 13.05 ab | 7.93 b | 534.5 a | 34.35 a | |
CTS | 12.76 b | 7.42 c | 469.2 b | 33.09 ab | |
CT | 11.46 c | 7.03 d | 332.8 c | 31.86 b | |
2012 | NTSM | 13.25 a | 8.73 a | 553.0 a | 35.84 a |
NTSS | 13.05 a | 8.04 ab | 542.4 a | 35.35 a | |
CTS | 12.16 b | 7.71 b | 480.7 b | 34.13 ab | |
CT | 11.65 c | 7.39 b | 329.6 c | 32.96 b |
Degree of Association | Photosynthetic Source | Photosynthetic Physiological Parameters | Yield Components | ||||||
---|---|---|---|---|---|---|---|---|---|
LAI | LAD | SPAD | Pn | Tr | WUEL | EN | GNE | HGW | |
Grain yield | 0.8640 | 0.8884 | 0.7953 | 0.8193 | 0.7607 | 0.7591 | 0.8192 | 0.5471 | 0.8161 |
Ranking | 2 | 1 | 6 | 3 | 7 | 8 | 4 | 9 | 5 |
Treatment Code | Previous Wheat Straw Management for the Following Maize Production | Crop Types in Different Years 2009–2010–2011–2012 |
---|---|---|
NTSM | No tillage with wheat straw mulching for the length of 25–30 cm | Spring wheat–maize–spring wheat–maize |
NTSS | No tillage with wheat straw standing for the length of 25–30 cm | |
CTS | Conventional tillage with wheat straw incorporation for the length of 25–30 cm | |
CT | Conventional tillage without wheat straw returning |
Sampling Order | The Growth Stage of Maize in Sampling | |
---|---|---|
Chinese Name | International Name | |
First | Emergence stage | VE |
Second | Fourth-leaf stage | V4 |
Third | Eighth-leaf stage | V8 |
Fourth | Fourteenth-leaf stage | V14 |
Fifth | Tasseling stage | VT |
Sixth | Blister kernel stage | R2 |
Seventh | Milking stage | R3 |
Eighteen | Doughing stage | R4 |
Ninth | Maturing stage | R6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, Y.; Fan, H.; Li, P.; Wei, J.; Qiu, H. Photosynthetic Physiological Basis of No Tillage with Wheat Straw Returning to Improve Maize Yield with Plastic Film Mulching in Arid Irrigated Areas. Plants 2023, 12, 1358. https://doi.org/10.3390/plants12061358
Guo Y, Fan H, Li P, Wei J, Qiu H. Photosynthetic Physiological Basis of No Tillage with Wheat Straw Returning to Improve Maize Yield with Plastic Film Mulching in Arid Irrigated Areas. Plants. 2023; 12(6):1358. https://doi.org/10.3390/plants12061358
Chicago/Turabian StyleGuo, Yao, Hong Fan, Pan Li, Jingui Wei, and Hailong Qiu. 2023. "Photosynthetic Physiological Basis of No Tillage with Wheat Straw Returning to Improve Maize Yield with Plastic Film Mulching in Arid Irrigated Areas" Plants 12, no. 6: 1358. https://doi.org/10.3390/plants12061358
APA StyleGuo, Y., Fan, H., Li, P., Wei, J., & Qiu, H. (2023). Photosynthetic Physiological Basis of No Tillage with Wheat Straw Returning to Improve Maize Yield with Plastic Film Mulching in Arid Irrigated Areas. Plants, 12(6), 1358. https://doi.org/10.3390/plants12061358