Globisporangium and Pythium Species Associated with Yield Decline of Pyrethrum (Tanacetum cinerariifolium) in Australia
Abstract
:1. Introduction
2. Results
2.1. Pythium-like Species Identified from Pyrethrum Fields
2.2. Phylogenetic Analysis
2.2.1. ITS Trees
2.2.2. Two-Loci Trees
2.3. Taxonomy
2.4. Pathogenicity Test
2.4.1. In Vitro Pre-Germination Bioassays
2.4.2. Glasshouse Post-Germination Bioassays
3. Discussion
4. Materials and Methods
4.1. Sample Collection, Isolation and Preliminary Identification
4.2. Morphological Characterization of New Species
4.3. Molecular Identification and Phylogenetics
4.4. Pathogenicity Test
4.4.1. In Vitro Pre-Germination Bioassays
4.4.2. Glasshouse Post-Germination Bioassays
- Experiment 1
- Experiment 2
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bhuiyan, M.A.H.B.; Vaghefi, N.; Taylor, P.W.J. Ray blight of pyrethrum in Australia: A review of the current status and future opportunities. Plant Pathol. 2019, 68, 620–627. [Google Scholar] [CrossRef]
- MacDonald, L. Pyrethrum flowers—Production in Australia. In Pyrethrum Flowers: Chemistry, Toxicology and Uses; Casida, J., Quistad, G.B., Eds.; Oxford University Press: New York, NY, USA, 1995. [Google Scholar]
- Hay, F.S.; Gent, D.H.; Pilkington, S.J.; Pearce, T.L.; Scott, J.B.; Pethybridge, S.J. Changes in distribution and frequency of fungi associated with a foliar disease complex of pyrethrum in Australia. Plant Dis. 2015, 99, 1227–1235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moslemi, A.; Ades, P.K.; Groom, T.; Nicolas, M.E.; Taylor, P.W.J. Fusarium oxysporum and Fusarium avenaceum associated with yield-decline of pyrethrum in Australia. Eur. J. Plant Pathol. 2017, 149, 43–56. [Google Scholar] [CrossRef]
- Pethybridge, S.J.; Hay, F.S.; Esker, P.D.; Gent, D.H.; Wilson, C.R.; Groom, T.; Nutter, F.W., Jr. Diseases of pyrethrum in Tasmania: Challenges and prospects for management. Plant Dis. 2008, 92, 1260–1272. [Google Scholar] [CrossRef] [Green Version]
- Moslemi, A.; Ades, P.K.; Groom, T.; Crous, P.W.; Nicolas, M.E.; Taylor, P.W.J. Paraphoma crown rot of pyrethrum (Tanacetum cinerariifolium). Plant Dis. 2016, 100, 2363–2369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhuiyan, M.A.H.B.; Groom, T.; Nicolas, M.E.; Taylor, P.W.J. Disease cycle of Stagonosporopsis tanaceti in pyrethrum plants. Australas. Plant Pathol. 2017, 46, 83–90. [Google Scholar] [CrossRef]
- Le, D.P.; Smith, M.K.; Aitken, E.A. An assessment of Pythium spp. associated with soft rot disease of ginger (Zingiber officinale) in Queensland, Australia. Australas. Plant Pathol. 2016, 45, 377–387. [Google Scholar] [CrossRef]
- Petkowski, J.; de Boer, R.; Norng, S.; Thomson, F.; Minchinton, E. Pythium species associated with root rot complex in winter-grown parsnip and parsley crops in south eastern Australia. Australas. Plant Pathol. 2013, 42, 403–411. [Google Scholar] [CrossRef]
- Callaghan, S.E.; Burgess, L.W.; Ades, P.; Tesoriero, L.A.; Taylor, P.W.J. Diversity and pathogenicity of Pythium species associated with reduced yields of processing tomatoes (Solanum lycopersicum) in Victoria, Australia. Plant Dis. 2022, 106, 1645–1652. [Google Scholar] [CrossRef]
- Tsukiboshi, T.; Chikuo, Y.; Ito, Y.; Matsushita, Y.; Kageyama, K. Root and stem rot of chrysanthemum caused by five Pythium species in Japan. J. Gen. Plant Pathol. 2007, 73, 293–296. [Google Scholar] [CrossRef]
- Lookabaugh, E.C.; Ivors, K.L.; Shew, B.B. Mefenoxam sensitivity, aggressiveness, and identification of Pythium species causing root rot on floriculture crops in North Carolina. Plant Dis. 2015, 99, 1550–1558. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pringsheim, N. Beiträge zur morphology and systematik der algen. 2. Die Saprolegníeen [Contributions to the morphology and systematics of algae]. Jahrb. Wiss. Bot. 1858, 1, 284–306. [Google Scholar]
- Van der Plaats-Niterink, A. Monograph of the genus Pythium. In Studies in Mycology; Centraalbureau voor Schimmelcultures Baarn: Utrecht, The Netherlands, 1981; Volume 21, pp. 1–242. [Google Scholar]
- Lévesque, C.A.; De Cock, A.W.A.M. Molecular phylogeny and taxonomy of the genus Pythium. Mycol. Res. 2004, 108, 1363–1383. [Google Scholar] [CrossRef] [Green Version]
- Schroeder, K.L.; Martin, F.N.; De Cock, A.W.A.M.; Lévesque, C.A.; Spies, C.F.J.; Okubara, P.A.; Paulitz, T.C. Molecular detection and quantification of Pythium species: Evolving taxonomy, new tools, and challenges. Plant Dis. 2013, 97, 4–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robideau, G.P.; De Cock, A.W.A.M.; Coffey, M.D.; Voglmayr, H.; Brouwer, H.; Bala, K.; Chitty, D.W.; Désaulniers, N.; Eggertson, Q.A.; Gachon, C.M. DNA barcoding of oomycetes with cytochrome c oxidase subunit I and internal transcribed spacer. Mol. Ecol. Resour. 2011, 11, 1002–1011. [Google Scholar] [CrossRef]
- Villa, N.O.; Kageyama, K.; Asano, T.; Suga, H. Phylogenetic relationships of Pythium and Phytophthora species based on ITS rDNA, cytochrome oxidase II and β-tubulin gene sequences. Mycologia 2006, 98, 410–422. [Google Scholar] [CrossRef]
- Bala, K.; Robideau, G.P.; Lévesque, C.A.; De Cock, A.W.A.M.; Lodhi, A.; Shahzad, S.; Ghaffar, A.; Coffey, M. Phytopythium Abad, de Cock, Bala, Robideau, Lodhi & Lévesque, gen. nov. and Phytopythium sindhum Lodhi, Shahzad & Levesque, sp. nov. Persoonia 2010, 24, 136–137. [Google Scholar]
- De Cock, A.W.A.M.; Lodhi, A.M.; Rintoul, T.L.; Bala, K.; Robideau, G.P.; Abad, Z.G.; Coffey, M.D.; Shahzad, S.; Lévesque, C.A. Phytopythium: Molecular phylogeny and systematics. Persoonia 2015, 34, 25–39. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, H.D.T.; Dodge, A.; Dadej, K.; Rintoul, T.L.; Ponomareva, E.; Martin, F.N.; De Cock, A.W.A.M.; Lévesque, C.A.; Redhead, S.A.; Spies, C.F.J. Whole genome sequencing and phylogenomic analysis show support for the splitting of genus Pythium. Mycologia 2022, 114, 501–515. [Google Scholar] [CrossRef]
- Jeffers, S.; Martin, S. Comparison of two media selective for Phytophthora and Pythium species. Plant Dis. 1986, 70, 1038–1043. [Google Scholar] [CrossRef]
- Baggio, J.S.; Marin, M.V.; Peres, N.A. Phytophthora crown rot of Florida strawberry: Inoculum sources and thermotherapy of transplants for disease management. Plant Dis. 2021, 105, 3496–3502. [Google Scholar] [CrossRef] [PubMed]
- Burgess, L.W.; Phan, H.T.; Knight, T.E.; Tesoriero, L. Diagnostic Manual for Plant Diseases in Vietnam; Australian Centre for International Agricultural Research: Canberra, Australia, 2008. [Google Scholar]
- Sarker, S.R. Toward Understanding why Phytophthora Species Can be so Hard to Isolate. Ph.D. Thesis, Murdoch University, Murdoch, Australia, 2021. [Google Scholar]
- Leonian, L.H. Stem and fruit blight of peppers caused by Phytophthora capsici sp. nov. Phytopathology 1922, 12, 401–408. [Google Scholar]
- Uzuhashi, S.; Kakishima, M.; Tojo, M. Phylogeny of the genus Pythium and description of new genera. Mycoscience 2010, 51, 337–365. [Google Scholar] [CrossRef]
- Agresti, A.; Tarantola, C. Simple ways to interpret effects in modeling ordinal categorical data. Stat. Neerl. 2018, 72, 210–223. [Google Scholar] [CrossRef]
- Nzungize, J.; Gepts, P.; Buruchara, R.; Buah, S.; Ragama, P.; Busogoro, J.P.; Baudoin, J.P. Pathogenic and molecular characterization of Pythium species inducing root rot symptoms of common bean in Rwanda. Afr. J. Microbiol. Res. 2011, 5, 1169–1181. [Google Scholar] [CrossRef] [Green Version]
- Wei, L.; Xue, A.G.; Cober, E.R.; Babcock, C.; Zhang, J.; Zhang, S.; Li, W.; Wu, J.; Liu, L. Pathogenicity of Pythium species causing seed rot and damping-off in soybean under controlled conditions. Phytoprotection 2011, 91, 3–10. [Google Scholar] [CrossRef] [Green Version]
- Farr, D.F.; Rossman, A.Y. U.S. National Fungus Collections Fungus-Host Database; ARS, USDA: Beltsville, MD, USA, 2002. [Google Scholar]
- Allain-Boulé, N.; Lévesque, C.A.; Martinez, C.; Bélanger, R.R.; Tweddell, R.J. Identification of Pythium species associated with cavity-spot lesions on carrots in eastern Quebec. Can. J. Plant Pathol. 2004, 26, 365–370. [Google Scholar] [CrossRef]
- Broders, K.D.; Lipps, P.E.; Paul, P.A.; Dorrance, A.E. Characterization of Pythium spp. associated with corn and soybean seed and seedling disease in Ohio. Plant Dis. 2007, 91, 727–735. [Google Scholar] [CrossRef] [Green Version]
- Reeleder, R.; Brammall, R. Pathogenicity of Pythium species, Cylindrocarpon destructans, and Rhizoctonia solani to ginseng seedlings in Ontario. Can. J. Plant Pathol. 1994, 16, 311–316. [Google Scholar] [CrossRef]
- Shivas, R.G. Fungal and bacterial diseases of plants in Western Australia. J. R. Soc. West. Aust. 1989, 72, 1–62. [Google Scholar]
- Simmonds, J.H. Host Index of Plant Diseases in Queensland; Queensland Department of Primary Industries: Brisbane, Australia, 1966. [Google Scholar]
- Cook, P.; Dubé, A. Host-Pathogen Index of Plant Diseases in South Australia; South Australian Department of Agriculture: Adelaide, Australia, 1989. [Google Scholar]
- Akiew, E. Potato Diseases in South Australia: Studies on Leafroll, Early Blight and Bacterial Wilt. Ph.D. Thesis, The University of Adelaide, Adelaide, Australia, 1985. [Google Scholar]
- Davison, E.M.; Macnish, G.C.; Murphy, P.A.; McKay, A.G. Pythium spp. from cavity spot and other root diseases of Australian carrots. Australas. Plant Pathol. 2003, 32, 455–464. [Google Scholar] [CrossRef]
- Matthiesen, R.L.; Ahmad, A.A.; Robertson, A.E. Temperature affects aggressiveness and fungicide sensitivity of four Pythium spp. that cause soybean and corn damping off in Iowa. Plant Dis. 2016, 100, 583–591. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rojas, J.A.; Jacobs, J.L.; Napieralski, S.; Karaj, B.; Bradley, C.A.; Chase, T.; Esker, P.D.; Giesler, L.J.; Jardine, D.J.; Malvick, D.K.; et al. Oomycete species associated with soybean seedlings in North America—Part I: Identification and pathogenicity characterization. Phytopathology 2017, 107, 280–292. [Google Scholar] [CrossRef] [Green Version]
- Mitchell, D. Relationships of inoculum levels of several soilborne species of Phytophthora and Pythium to infection of several hosts. Phytopathology 1978, 68, 1754–1759. [Google Scholar] [CrossRef]
- Sauvageau, A.; Gravel, V.; Van der Heyden, H. Soilborne inoculum density and environmental parameters influence the development of Pythium stunt caused by Pythium tracheiphilum in head lettuce crops. Plant Dis. 2019, 103, 1685–1692. [Google Scholar] [CrossRef]
- You, M.P.; Sivasithamparam, K.; Riley, I.T.; Barbetti, M.J. The occurrence of root-infecting fungi and parasitic nematodes in annual Medicago spp. in Western Australian pastures. Aust. J. Agric. Res. 2000, 51, 435–444. [Google Scholar] [CrossRef]
- Bureau of Meteorology. Climate Statistics for Australian Locations. Available online: http://www.bom.gov.au/climate/averages/tables/cw_200288_All.shtml (accessed on 18 February 2022).
- Sargeant, I.; Skene, J. Some properties of the krasnozems of Southern Victoria, Australia. Soil Res. 1970, 8, 281–295. [Google Scholar] [CrossRef]
- Bridge, B.; Bell, M. Effect of cropping on the physical fertility of krasnozems. Soil Res. 1994, 32, 1253–1273. [Google Scholar] [CrossRef]
- Bell, M.J.; Harch, G.R.; Bridge, B.J. Effects of continuous cultivation on Ferrosols in subtropical southeast Queensland. I. Site characterization, crop yields and soil chemical status. Aust. J. Agric. Res. 1995, 46, 237–253. [Google Scholar] [CrossRef]
- Smith, M.K.; Smith, J.P.; Stirling, G.R. Integration of minimum tillage, crop rotation and organic amendments into a ginger farming system: Impacts on yield and soilborne diseases. Soil Tillage Res. 2011, 114, 108–116. [Google Scholar] [CrossRef]
- Martin, F.N.; Loper, J.E. Soilborne plant diseases caused by Pythium spp.: Ecology, epidemiology, and prospects for biological control. Crit. Rev. Plant Sci. 1999, 18, 111–181. [Google Scholar] [CrossRef]
- Javid, M.; Zhang, P.; Taylor, P.W.J.; Pethybridge, S.J.; Groom, T.; Nicolas, M.E. Interactions between waterlogging and ray blight in pyrethrum. Crop Pasture Sci. 2013, 64, 726–735. [Google Scholar] [CrossRef]
- Moslemi, A.; Ades, P.K.; Groom, T.; Nicolas, M.E.; Taylor, P.W.J. Influence of waterlogging on growth of pyrethrum plants infected by the crown and root rot pathogens, Fusarium oxysporum, Fusarium avenaceum and Paraphoma vinacea. Australas. Plant Pathol. 2018, 47, 205–213. [Google Scholar] [CrossRef]
- Harvey, P.R.; Warren, R.A.; Wakelin, S. The Pythium–Fusarium root disease complex—An emerging constraint to irrigated maize in southern New South Wales. Aust. J. Exp. Agric. 2008, 48, 367–374. [Google Scholar] [CrossRef]
- Kerr, A. The root rot-Fusarium wilt complex of peas. Aust. J. Biol. Sci. 1963, 16, 55–69. [Google Scholar] [CrossRef]
- De Cock, A.W.A.M.; Lévesque, C.A. New species of Pythium and Phytophthora. Stud. Mycol. 2004, 50, 481–487. [Google Scholar]
- White, T.J.; Bruns, T.; Lee, S.; Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: A Guide to Methods Applications; Innis, M., Gelfand, D., Sninsky, J., White, T., Eds.; Academic Press, Inc.: San Diego, CA, USA, 1990; pp. 315–322. [Google Scholar]
- Le, D.P.; Smith, M.K.; Aitken, E.A. Pythiogeton ramosum, a new pathogen of soft rot disease of ginger (Zingiber officinale) at high temperatures in Australia. Crop Prot. 2015, 77, 9–17. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- Ronquist, F.; Teslenko, M.; Van der Mark, P.; Ayres, D.L.; Darling, A.; Höhna, S.; Larget, B.; Liu, L.; Suchard, M.A.; Huelsenbeck, J.P. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 2012, 61, 539–542. [Google Scholar] [CrossRef] [Green Version]
- Nylander, J.A.A. MrModeltest Version 2. Program Distributed by the Author; Uppsala University, Evolutionary Biology Centre: Uppsala, Sweden, 2004. [Google Scholar]
Pythium and Globisporangium Species a | Dates Sampled | Total Number of Isolates b | Number of Sites Pythium and Globisporangium spp. Isolated | Substrate c | Cultures Deposited at VPRI or CBS |
---|---|---|---|---|---|
G. attrantheridium | November 2021 | 1 | 1 | R | CBS 149757 |
G. erinaceum | November 2021 | 1 | 1 | R | CBS 149756 |
G. intermedium | June 2020 | 4 | 2 | C, R | VPRI 43980 |
G. irregulare | June 2018; June 2020 | 4 | 4 | C, R, S | VPRI 43981; VPRI 43977 |
G. macrosporum | June 2020 | 1 | 1 | S | VPRI 43989 |
G. recalcitrans | June 2020 | 3 | 2 | R | VPRI 43986 |
G. rostratifingens | December 2020 | 1 | 1 | C | CBS 149755 |
G. capense sp. nov. | June 2020 | 1 | 1 | R | CBS 149752 |
G. commune sp. nov. | June 2018; June 2020 | 8 | 4 | R, S | CBS 149753; VPRI 43970; CBS 149753; VPRI 43972; VPRI 43973; VPRI 43976 |
G. sylvaticum | June 2020 | 10 | 4 | R, S | VPRI 43982 |
G. terrestris | June 2020 | 1 | 1 | R | VPRI 43987 |
G. ultimum var. ultimum | March 2020; June 2020; November 2021 | 17 | 7 | S | VPRI 43979 |
P. diclinum/lutarium | June 2018; June 2020 | 3 | 2 | R, S | VPRI 43984; VPRI 43974; VPRI 43975; |
P. tracheiphilum | June 2020 | 5 | 2 | C, R | CBS 149754 |
P. vanterpoolii | June 2018; June 2020 | 2 | 2 | C, S | VPRI 43988; VPRI 43978 |
Time Sampled | Site Number | Location | Plants Sampled and Comments on Sites | Number of Isolates | Pythium and Globisporangium Species (Number of Isolates) |
---|---|---|---|---|---|
June 2018 | 91808; 92012 | Dunnstown, VIC | For each site, three symptomatic plants were randomly sampled. | 9 | G. irregulare (1); P. lutarium/diclinum (2); G. commune sp. nov. (5); P. vanterpoolii (1) |
March 2020 | 46604; 46026 | Penguin, TAS | Plants were healthy. For each site, three asymptomatic plants and surrounding soil were randomly sampled. | 7 | G. ultimum var. ultimum (7) |
June 2020 | 63711; 874020; 700091; 700090; 70087; 646009 | Wynyard, TAS | Plants ranged from healthy to severe poor regrowth. For each site, three symptomatic plants were randomly sampled. | 38 | G. intermedium (4); G. irregulare (1); P. lutarium/diclinum (1); G. macrosporum (1); G. recalcitrans (3); G. capense sp. nov. (1); G. commune sp. nov. (3); G. sylvaticum (10); G. terrestris (1); P. tracheiphilum (5); G. ultimum var. ultimum (7); P. vanterpoolii (1) |
December 2020 | 902015; 910013; 918012; 922013; 949006; 954001 | Dean, VIC; Dunnstown, VIC; Mollongghip, VIC; Bullarook, VIC | Four-month-old seedlings on this site were healthy. For each site, five healthy plants and their surrounding soil were randomly sampled. | 1 | G. rostratifingens (1) |
November 2021 | 902015; 910013; 918012; 922013; 949006; 954001 | Dean, VIC; Dunnstown, VIC; Mollongghip, VIC; Bullarook, VIC | Plants were 15 months old and ready for harvest. All sites looked uniform and healthy overall, with a few plants showing wilting and stunting. For each site, three asymptomatic plants and their surrounding soil were randomly sampled. Eleven plants showing disease symptoms were sampled from five sites. | 7 | G. attrantheridium (1); G. erinaceum (1); G. irregulare (2); G. ultimum var. ultimum (3) |
Experiment | Treatment | Globisporangium and Pythium spp. | Tissues Infected b | Average Disease Incidence (DI) | Average Death Rate (DR) | Dry Weight Component (g) a | |
---|---|---|---|---|---|---|---|
Above-Ground | Below-Ground | ||||||
Experiment 1 | Control | 0% | 0% | 2.84 a | 0.62 a | ||
VPRI 43980 | G. intermedium | C, R | 57.5% | 8.4% | 2.27 ab | 0.37 ab | |
UM2130 | P. tracheiphilum | C, R | 30% | 30% | 2.36 abc | 0.52 ab | |
VPRI 43984 | P. diclinum/lutarium | C, R | 80% | 4.2% | 1.66 abc | 0.29 ab | |
CBS 149752 | G. capense sp. nov. | C, R | 63.4% | 10% | 1.47 abc | 0.25 ab | |
VPRI 43986 | G. recalcitrans | C, R | 30.9% | 16.7% | 1.37 bc | 0.24 b | |
CBS 149753 | G. commune sp. nov. | C, R | 80.9% | 27.5% | 1.13 cd | 0.21 bc | |
VPRI 43987 | G. terrestris | C, R | 85.9% | 18.4% | 0.89 cd | 0.13 bc | |
VPRI 43982 | G. sylvaticum | C, R | 80% | 18.4% | 0.62 de | 0.06 d | |
VPRI 43981 | G. irregulare | C, R | 90.9% | 35% | 0.49 e | 0.06 cd | |
VPRI 43989 | G. macrosporum | C, R | 57.5% | 8.4% | 0.56 e | 0.09 d | |
p-value < 0.0001 | p-value < 0.0001 | ||||||
Experiment 2 | Control | 0% | 0% | N/A | N/A | ||
VPRI 43979 | G. ultimum var. ultimum | C, R | 100% | 80% | N/A | N/A |
Pythium-like Species | Isolate Accession No. | Location | Isolate Source | GenBank Accession No. | |
---|---|---|---|---|---|
ITS | Cox1 | ||||
G. abappressorium * | CBS 110198 | USA | Triticum aestivum | HQ643408.2 | HQ708455 |
G. abappressorium | Isolate 020162 | USA | Soil (Triticum sp.) | DQ091294 | - |
G. abappressorium | Isolate 131 | USA | Soil | MK886852 | - |
G. abappressorium | Isolate 216 | USA | Soil | MK886853 | - |
G. abappressorium | Isolate 712 | USA | Soil | MK886854 | - |
G. attrantheridium * | DAOM 230386 | Unknown | Unknown | HQ643476.2 | HQ708523 |
G. attrantheridium | CBS 149757 | Australia | Tanacetum cinerariifolium | OM780318 | - |
G. capense sp. nov. | CBS 149752 | Australia | T. cinerariifolium | OL342598 | OL331986 |
G. capense sp. nov. | BR879 | Canada | Unknown | HQ643817 | HQ708858 |
G. commune sp. nov. | UM2092 | Australia | T. cinerariifolium | OL342600 | OL331988 |
G. commune sp. nov. | CBS 149753 | Australia | T. cinerariifolium | OL342601 | OL331989 |
G. commune sp. nov. | UM2094 | Australia | T. cinerariifolium | OL342602 | OL331990 |
G. commune sp. nov. | VPRI 43973 | Australia | T. cinerariifolium | OL952620 | OL860922 |
G. commune sp. nov. | VPRI 43970 | Australia | T. cinerariifolium | OL952617 | OL860919 |
G. commune sp. nov. | CBS 149751 | Australia | T. cinerariifolium | OL952618 | OL860920 |
G. commune sp. nov. | VPRI 43972 | Australia | T. cinerariifolium | OL952619 | OL860921 |
G. commune sp. nov. | ADC9982 | The Netherlands | Unknown | HQ643827 | HQ708868 |
G. commune sp. nov. | BR902 | Canada | Unknown | HQ643811 | HQ708852 |
G. commune sp. nov. | Lev3106 | Japan | Unknown | HQ643798 | HQ643798 |
G. cryptoirregulare | CBS 118731 | USA | Euphorbia pulcherima | HQ643515.2 | GU071825 |
G. cylindrosporum * | CBS 218.94 | Germany | Soil | HQ643516 | HQ708562 |
G. debaryanum | CBS 752.96 | UK | Tulipa sp. | HQ643519 | HQ708565 |
G. erinaceum * | CBS 505.80 | New Zealand | Soil | HQ643534 | HQ708578 |
G. erinaceum | CBS 149756 | Australia | T. cinerariifolium | OM780317 | - |
G. heterothallicum * | CBS 450.67 | Canada | Sambucus sp. | HQ643553 | HQ708597 |
G. intermedium * | CBS 266.38 | The Netherlands | Agrostis stolonifera | HQ643572 | HQ708616 |
G. intermedium | UM2128 | Australia | T. cinerariifolium | OL342577 | OL331964 |
G. intermedium | UM2129 | Australia | T. cinerariifolium | OL342578 | OL331965 |
G. intermedium | VPRI 43980 | Australia | T. cinerariifolium | OL342595 | OL331983 |
G. intermedium | UM2098 | Australia | T. cinerariifolium | OL342606 | OL331994 |
G. irregulare | VPRI 43977 | Australia | Soil (T. cinerariifolium) | OL952624 | OL860926 |
G. irregulare * | CBS 250.28 | The Netherlands | Phaseolus vulgaris | HQ643596 | HQ708640 |
G. irregulare | VPRI 43981 | Australia | T. cinerariifolium | OL342596 | OL331984 |
G. kunmingense * | CBS 550.88 | China | Vicia faba | HQ643672 | HQ708716 |
G. lucens | CBS 113342 | Unknown | Triticum sp. | HQ643681 | HQ708725 |
G. macrosporum * | CBS 574.80 | The Netherlands | Flower bulb | HQ643684 | HQ708728 |
G. macrosporum | VPRI 43989 | Australia | Soil (T. cinerariifolium) | OL342583 | OL331971 |
G. paroecandrum * | CBS 157.64 | Australia | Soil | HQ643731 | HQ708772 |
G. recalcitrans | UM2106 | Australia | T. cinerariifolium | OL342574 | OL331962 |
G. recalcitrans | Py26 | Mallorca (Spain) | Beta vulgaris(roots) | DQ357833 | EF426549 |
G. recalcitrans | VPRI 43986 | Australia | T. cinerariifolium | OL342603 | OL331991 |
G. recalcitrans | UM2096 | Australia | T. cinerariifolium | OL342604 | OL331992 |
G. rostratifingens * | CBS 115464 | USA | Soil | HQ643761.2 | HQ708802 |
G. rostratifingens | CBS 149755 | Australia | T. cinerariifolium | OL342594 | OM807117 |
G. spiculum * | CBS 122645 | France | Soil | HQ643790 | HQ708831 |
G. spinosum * | CBS 276.67 | The Netherlands | Zinnia sp. | HQ643793 | HQ708834 |
G. splendens * | CBS 462.48 | USA | Unknown | HQ643795 | HQ708836 |
G. sylvaticum | UM2111 | Australia | T. cinerariifolium | OL342575 | OL331963 |
G. sylvaticum | UM2140 | Australia | T. cinerariifolium | OL342579 | OL331966 |
G. sylvaticum | UM2171 | Australia | T. cinerariifolium | OL342580 | OL331968 |
G. sylvaticum | UM2186 | Australia | Soil (T. cinerariifolium) | OL342581 | OL331969 |
G. sylvaticum | UM2187 | Australia | Soil (T. cinerariifolium) | OL342582 | OL331970 |
G. sylvaticum | UM2190 | Australia | Soil (T. cinerariifolium) | OL342585 | OL331973 |
G. sylvaticum | UM2192 | Australia | Soil (T. cinerariifolium) | OL342586 | OL331975 |
G. sylvaticum | UM2193 | Australia | Soil (T. cinerariifolium) | OL342587 | OL331976 |
G. sylvaticum | UM2194 | Australia | Soil (T. cinerariifolium) | OL342588 | OL331977 |
G. sylvaticum | STE-U6800 | Unknown | Unknown | GQ410350 | GU071816 |
G. sylvaticum * | CBS 453.67 | USA | Prunus persica | HQ643845 | HQ708886 |
G. sylvaticum | VPRI 43982 | Australia | T. cinerariifolium | OL342597 | OL331985 |
G. terrestris | ADC9906 | The Netherlands | Unknown | HQ643858 | HQ708899 |
G. terrestris * | CBS 112352 | France | Soil | HQ643857 | HQ708898 |
G. terrestris | VPRI 43987 | Australia | T. cinerariifolium | OL342605 | OL331993 |
G. ultimum var. sporangiiferum * | CBS 219.65 | USA | Unknown | HQ643879 | HQ708920 |
G. ultimum var. ultimum | UM2189 | Australia | Soil (T. cinerariifolium) | OL342584 | OL331972 |
G. ultimum var. ultimum | UM2196 | Australia | Soil (T. cinerariifolium) | OL342589 | OL331978 |
G. ultimum var. ultimum | UM2197 | Australia | Soil (T. cinerariifolium) | OL342590 | OL331979 |
G. ultimum var. ultimum | UM2198 | Australia | Soil (T. cinerariifolium) | OL342591 | OL331980 |
G. ultimum var. ultimum | UM2200 | Australia | Soil (T. cinerariifolium) | OL342592 | OL331981 |
G. ultimum var. ultimum | UM2201 | Australia | Soil (T. cinerariifolium) | OL342593 | OL331982 |
G. ultimum var. ultimum | UM2338 | Australia | Soil (T. cinerariifolium) | OL342607 | OL331995 |
G. ultimum var. ultimum | UM2339 | Australia | Soil (T. cinerariifolium) | OL342608 | OL331996 |
G. ultimum var. ultimum | UM2340 | Australia | Soil (T. cinerariifolium) | OL342609 | OL331997 |
G. ultimum var. ultimum | UM2341 | Australia | Soil (T. cinerariifolium) | OL342610 | OL331998 |
G. ultimum var. ultimum | UM2342 | Australia | Soil (T. cinerariifolium) | OL342611 | OL331999 |
G. ultimum var. ultimum | VPRI 43979 | Australia | Soil (T. cinerariifolium) | OL342612 | OL332000 |
G. ultimum var. ultimum | UM2344 | Australia | Soil (T. cinerariifolium) | OL342612 | OL332001 |
G. ultimum var. ultimum * | CBS 398.51 | The Netherlands | Lepidium sativum | HQ643865 | HQ708906 |
G. ultimum var. ultimum | BR144 | Canada | Unknown | HQ643943 | HQ708984 |
G. ultimum var. ultimum | BR793 | South Africa | Unknown | HQ643913 | HQ708954 |
G. ultimum var. ultimum | BR816 | South Africa | Unknown | HQ643909 | HQ708950 |
G. viniferum * | CBS 119168 | France | Soil (Vitis sp.) | HQ643956 | HQ708997 |
Globisporangium sp. | ADC9966 | The Netherlands | Unknown | HQ643828 | HQ708869 |
Globisporangium sp. | Lev1457 | Canada | Unknown | HQ643804 | HQ708845 |
P. aphanidermatum * | CBS 118.80 | Unknown | Unknown | HQ643438 | HQ708485 |
P. coloratum * | CBS 154.64 | Australia | Soil | HQ643501 | HQ708547 |
P. deliense * | CBS 314.33 | Sumatra | Nicotiana tabacum | HQ643522 | HQ708568 |
P. diclinum * | CBS 664.79 | The Netherlands | B. vulgaris | HQ643524 | HQ708570 |
P. diclinum/lutarium | VPRI 43975 | Australia | T. cinerariifolium | OL952622 | OL860924 |
P. diclinum/lutarium | VPRI 43974 | Australia | T. cinerariifolium | OL952621 | OL860923 |
P. diclinum/lutarium | VPRI 43984 | Australia | T. cinerariifolium | OL342599 | OL331987 |
P. dissotocum * | CBS 166.68 | USA | Unknown | HQ643528 | HQ708574 |
P. inflatum * | CBS 168.68 | USA | Saccharum officinarum | HQ643566 | HQ708610 |
P. lutarium * | CBS 222.88 | UK | Soil | HQ643682 | HQ708726 |
P. phragmitis * | CBS 117104 | Germany | Phragmites australis | HQ643746 | HQ708787 |
P. torulosum * | CBS 316.33 | The Netherlands | Grass root | HQ643859 | HQ708900 |
P. tracheiphilum | CBS 149754 | Australia | T. cinerariifolium | OL342576 | OM807115 |
P. tracheiphilum | UM2130 | Australia | T. cinerariifolium | OM780315 | OM807116 |
P. tracheiphilum * | CBS 323.65 | Italy | Lactuca sativa | HQ643862 | HQ708903 |
P. vanterpoolii | VPRI 43978 | Australia | Soil (T. cinerariifolium) | - | OL860927 |
P. vanterpoolii | VPRI 43988 | Australia | T. cinerariifolium | - | OL331967 |
P. vanterpoolii * | CBS 295.37 | UK | T. aestivum | HQ643952 | HQ708993 |
Phytophthora capsici * | CBS 128.23 | USA | Capsicum annuum | HQ643180 | HQ708249 |
Experiment | Trial | Pyrethrum Variety | Isolates | Replicates |
---|---|---|---|---|
Experiment 1 | Trial 1/Trial 2 | RS5 | 7 isolates G. commune sp. nov. (VPRI 43970, CBS 149753, VPRI 43972, VPRI 43973, VPRI 43976) P. diclinum/lutarium (VPRI 43974, VPRI 43975) | 10 plates (Trial 1) 5 plates (Trial 2) 10 seeds/plate |
Experiment 2 | Trial 1/Trial 2 | BR2 | 12 isolates G. intermedium (VPRI 43980), G. irregulare (VPRI 43981), G. sylvaticum (VPRI 43982), G. capense sp. nov. (CBS 149752), P. lutarium/diclinum (VPRI 43984), G. commune sp. nov. (CBS 149753), G. recalcitrans (VPRI 43986), G. terrestris (VPRI 43987), P. tracheiphilum (UM2130), P. vanterpoolii (VPRI 43988), G. macrosporum (VPRI 43989), G. ultimum var. ultimum (VPRI 43979) | 5 plates 10 seeds/plate |
Experiment | Trial | Growth Condition | Pyrethrum Seed Cultivars | Pythium Isolates | Replication per Treatment |
---|---|---|---|---|---|
Experiment 1 | Trial 1 and Trial 2 | Glasshouse at 20–24 °C under natural light | BR2 | G. intermedium (VPRI 43980); G. irregulare (VPRI 43981); G. sylvaticum (VPRI 43982); G. capense sp. nov. (CBS 149752); P. lutarium/diclinum (VPRI 43984); G. commune sp. nov. (CBS 149753); G. recalcitrans (VPRI 43986); G. terrestris (VPRI 43987); P. tracheiphilum (UM2130); G. macrosporum (VPRI 43989) | 12 (Trial 1)/10 (Trial 2) |
Experiment 2 | Trial 1 and Trial 2 | Plant growth chamber at 20–24 °C in a 12/12 light/dark cycle | BR2 | G. ultimum var. ultimum (VPRI 43979) | 10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Vaghefi, N.; Ades, P.K.; Idnurm, A.; Ahmed, A.; Taylor, P.W.J. Globisporangium and Pythium Species Associated with Yield Decline of Pyrethrum (Tanacetum cinerariifolium) in Australia. Plants 2023, 12, 1361. https://doi.org/10.3390/plants12061361
Liu Y, Vaghefi N, Ades PK, Idnurm A, Ahmed A, Taylor PWJ. Globisporangium and Pythium Species Associated with Yield Decline of Pyrethrum (Tanacetum cinerariifolium) in Australia. Plants. 2023; 12(6):1361. https://doi.org/10.3390/plants12061361
Chicago/Turabian StyleLiu, Yuzhu, Niloofar Vaghefi, Peter K. Ades, Alexander Idnurm, Aabroo Ahmed, and Paul W. J. Taylor. 2023. "Globisporangium and Pythium Species Associated with Yield Decline of Pyrethrum (Tanacetum cinerariifolium) in Australia" Plants 12, no. 6: 1361. https://doi.org/10.3390/plants12061361
APA StyleLiu, Y., Vaghefi, N., Ades, P. K., Idnurm, A., Ahmed, A., & Taylor, P. W. J. (2023). Globisporangium and Pythium Species Associated with Yield Decline of Pyrethrum (Tanacetum cinerariifolium) in Australia. Plants, 12(6), 1361. https://doi.org/10.3390/plants12061361