Application of Data Modeling, Instrument Engineering and Nanomaterials in Selected Medid the Scientific Recinal Plant Tissue Culture
Abstract
:1. Introduction
2. Study on the Mechanism of Medicinal Plant Tissue Culture
2.1. The Generating Mechanism of Stem Cell, Callus, and Adventitious Roots
2.1.1. The Mechanism of Endogenous Plant Growth Regulators on Plant Tissue Growth and Plant Stress Resistance
2.1.2. Effects of Plant Growth Regulators on the Synthesis of Secondary Metabolites in Medicinal Plants
2.1.3. Biosensors Are Potential Tools for Plant Hormone Mechanism Research
3. Application of Technology with Different Fields
3.1. Using Data-Driven Modeling Technology to Optimize Tissue Culture Scheme
3.1.1. Application of Artificial Intelligence (AI) Model and Optimization Algorithm (OA)
3.1.2. Application of Gene Expression Programming (GEP) and Genetic Algorithm (GA)
3.2. New Technologies to Help Bioreactor Engineering
3.2.1. Design of New Bioreactor
3.2.2. Types of Bioreactors
3.2.3. Dynamic Monitoring during Scale-Up Culture
3.3. Application of Nanomaterials in Plant Tissue Culture
3.3.1. Nano-Elicitor
The Mechanism of Action of Nano-Elicitor
Application of Nano-Elicitors
3.3.2. Nanomaterials as Transport Carriers
Layered Double Hydroxide Nanomaterials as Transport Carriers
Chitosan Nanoparticles as a Transport Carrier of Substances in Plant Tissue Culture
3.3.3. Nano-Assisted Harvesting Technology
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chandran, H.; Meena, M.; Barupal, T.; Sharma, K. Plant Tissue Culture as a Perpetual Source for Production of Industrially Important Bioactive Compounds. Biotechnol. Rep. 2020, 26, e00450. [Google Scholar] [CrossRef] [PubMed]
- Espinosa-Leal, C.A.; Puente-Garza, C.A.; García-Lara, S. In Vitro Plant Tissue Culture: Means for Production of Biological Active Compounds. Planta 2018, 248, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Hesami, M.; Naderi, R.; Tohidfar, M.; Yoosefzadeh-Najafabadi, M. Development of Support Vector Machine-Based Model and Comparative Analysis with Artificial Neural Network for Modeling the Plant Tissue Culture Procedures: Effect of Plant Growth Regulators on Somatic Embryogenesis of Chrysanthemum, as a Case Study. Plant Methods 2020, 16, 112. [Google Scholar] [CrossRef] [PubMed]
- Geipel, K.; Song, X.; Socher, M.L.; Kümmritz, S.; Püschel, J.; Bley, T.; Ludwig-Müller, J.; Steingroewer, J. Induction of a Photomixotrophic Plant Cell Culture of Helianthus Annuus and Optimization of Culture Conditions for Improved A-Tocopherol Production. Appl. Microbiol. Biotechnol. 2014, 98, 2029–2040. [Google Scholar] [CrossRef] [Green Version]
- Jamshidi, S.; Yadollahi, A.; Arab, M.M.; Soltani, M.; Eftekhari, M.; Sabzalipoor, H.; Sheikhi, A.; Shiri, J. Combining Gene Expression Programming and Genetic Algorithm as a Powerful Hybrid Modeling Approach for Pear Rootstocks Tissue Culture Media Formulation. Plant Methods 2019, 15, 136. [Google Scholar] [CrossRef] [Green Version]
- Valdiani, A.; Hansen, O.K.; Nielsen, U.B.; Johannsen, V.K.; Shariat, M.; Georgiev, M.I.; Omidvar, V.; Ebrahimi, M.; Dinanai, E.T.; Abiri, R. Bioreactor-Based Advances in Plant Tissue and Cell Culture: Challenges and Prospects. Crit. Rev. Biotechnol. 2019, 39, 20–34. [Google Scholar] [CrossRef]
- Khanahmadi, M.; Paek, K.Y. Bioreactor Technology for Sustainable Production of Valuable Plant Metabolites: Challenges and Advances. In Crop Improvement: Sustainability Through Leading-Edge Technology; Springer: Cham, Switzerland, 2017; pp. 169–189. [Google Scholar]
- Kim, H.K.; Choi, Y.H.; Verpoorte, R. Nmr-Based Plant Metabolomics: Where Do We Stand, Where Do We Go? Trends Biotechnol. 2011, 29, 267–275. [Google Scholar] [CrossRef]
- Kim, D.H.; Gopal, J.; Sivanesan, I. Nanomaterials in Plant Tissue Culture: The Disclosed and Undisclosed. RSC Adv. 2017, 7, 36492–36505. [Google Scholar] [CrossRef] [Green Version]
- Ma, X.; Geiser-Lee, J.; Deng, Y.; Kolmakov, A. Interactions between Engineered Nanoparticles (Enps) and Plants: Phytotoxicity, Uptake and Accumulation. Sci. Total. Environ. 2010, 408, 3053–3061. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Demirer, G.S.; Zhang, H.; Ye, T.; Goh, N.S.; Aditham, A.J.; Cunningham, F.J.; Fan, C.; Landry, M.P. DNA Nanostructures Coordinate Gene Silencing in Mature Plants. Proc. Natl. Acad. Sci. USA 2019, 116, 7543–7548. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, M.A.; Khan, T.; Riaz, M.S.; Ullah, N.; Ali, H.; Nadhman, A. Plant Cell Nanomaterials Interaction: Growth, Physiology and Secondary Metabolism. In Comprehensive Analytical Chemistry; Elsevier: Amsterdam, The Netherlands, 2019; pp. 23–54. [Google Scholar]
- Patel, H.; Krishnamurthy, R. Elicitors in Plant Tissue Culture. J. Pharmacogn. Phytochem. 2013, 2, 60–65. [Google Scholar]
- Alcalde, M.A.; Perez-Matas, E.; Escrich, A.; Cusido, R.M.; Palazon, J.; Bonfill, M. Biotic Elicitors in Adventitious and Hairy Root Cultures: A Review from 2010 to 2022. Molecules 2022, 27, 5253. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Zhang, H.; Li, X.; Zhang, Y.; Wang, J.; Wang, Q.; Wan, Y. Optimized Synthesis of Layered Double Hydroxide Lactate Nanosheets and Their Biological Effects on Arabidopsis Seedlings. Plant Methods 2022, 18, 17. [Google Scholar] [CrossRef] [PubMed]
- Mujtaba, M.; Khawar, K.M.; Camara, M.C.; Carvalho, L.B.; Fraceto, L.F.; Morsi, R.E.; Elsabee, M.Z.; Kaya, M.; Labidi, J.; Ullah, H. Chitosan-Based Delivery Systems for Plants: A Brief Overview of Recent Advances and Future Directions. Int. J. Biol. Macromol. 2020, 154, 683–697. [Google Scholar] [CrossRef]
- Khan, M.A.; Fugate, M.; Rogers, D.T.; Sambi, J.; Littleton, J.M.; Rankin, S.E.; Knutson, B.L. Mechanism of Mesoporous Silica Nanoparticle Interaction with Hairy Root Cultures During Nanoharvesting of Biomolecules. Adv. Biol. 2021, 5, 2000173. [Google Scholar] [CrossRef]
- Ramawat, K.G. An Introduction to the Process of Cell, Tissue, and Organ Differentiation, and Production of Secondary Metabolites. In Plant Cell and Tissue Differentiation and Secondary Metabolites: Fundamentals and Applications; Springer: Cham, Switzerland, 2021; pp. 1–22. [Google Scholar]
- Su, Y.-H.; Liu, Y.-B.; Zhang, X.-S. Auxin–Cytokinin Interaction Regulates Meristem Development. Mol. Plant 2011, 4, 616–625. [Google Scholar] [CrossRef]
- González-García, M.-P.; Vilarrasa-Blasi, J.; Zhiponova, M.; Divol, F.; Mora-García, S.; Russinova, E.; Caño-Delgado, A.I. Brassinosteroids Control Meristem Size by Promoting Cell Cycle Progression in Arabidopsis Roots. Development 2011, 138, 849–859. [Google Scholar] [CrossRef] [Green Version]
- Vilarrasa-Blasi, J.; González-García, M.-P.; Frigola, D.; Fabregas, N.; Alexiou, K.G.; Lopez-Bigas, N.; Rivas, S.; Jauneau, A.; Lohmann, J.U.; Benfey, P.N. Regulation of Plant Stem Cell Quiescence by a Brassinosteroid Signaling Module. Dev. Cell 2014, 30, 36–47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarkar, A.K.; Luijten, M.; Miyashima, S.; Lenhard, M.; Hashimoto, T.; Nakajima, K.; Scheres, B.; Heidstra, R.; Laux, T. Conserved Factors Regulate Signalling in Arabidopsis Thaliana Shoot and Root Stem Cell Organizers. Nature 2007, 446, 811–814. [Google Scholar] [CrossRef]
- Vasil, V.; Vasil, I.K. Plant Regeneration from Friable Embryogenic Callus and Cell Suspension Cultures of Zea mays L. J. Plant Physiol. 1986, 124, 399–408. [Google Scholar] [CrossRef]
- Le, K.-C.; Jeong, C.-S.; Lee, H.; Paek, K.-Y.; Park, S.-Y. Ginsenoside Accumulation Profiles in Long-and Short-Term Cell Suspension and Adventitious Root Cultures in Panax Ginseng. Hortic. Environ. Biotechnol. 2019, 60, 125–134. [Google Scholar] [CrossRef]
- Karwasara, V.S.; Tomar, P.; Dixit, V.K. Influence of Fungal Elicitation on Glycyrrhizin Production in Transformed Cell Cultures of Abrus precatorius Linn. Pharmacogn. Mag. 2011, 7, 307. [Google Scholar]
- Osterc, G.; Petkovšek, M.M.; Stampar, F. Quantification of Iaa Metabolites in the Early Stages of Adventitious Rooting Might Be Predictive for Subsequent Differences in Rooting Response. J. Plant Growth Regul. 2016, 35, 534–542. [Google Scholar] [CrossRef]
- Guo, D.-P.; Zhu, Z.-J.; Hu, X.-X.; Zheng, S.-J. Effect of Cytokinins on Shoot Regeneration from Cotyledon and Leaf Segment of Stem Mustard (Brassica juncea Var. Tsatsai). Plant Cell Tissue Organ Cult. 2005, 83, 123–127. [Google Scholar] [CrossRef] [Green Version]
- Ikeuchi, M.; Sugimoto, K.; Iwase, A. Plant Callus: Mechanisms of Induction and Repression. Plant Cell 2013, 25, 3159–3173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Horstman, A.; Bemer, M.; Boutilier, K. A Transcriptional View on Somatic Embryogenesis. Regeneration 2017, 4, 201–216. [Google Scholar] [CrossRef] [PubMed]
- Garcia, C.; de Almeida, A.-A.F.; Costa, M.; Britto, D.; Valle, R.; Royaert, S.; Marelli, J.-P. Abnormalities in Somatic Embryogenesis Caused by 2, 4-D: An Overview. Plant Cell Tissue Organ Cult. 2019, 137, 193–212. [Google Scholar] [CrossRef] [Green Version]
- Goldman, J.A.; Poss, K. Gene Regulatory Programmes of Tissue Regeneration. Nat. Rev. Genet. 2020, 21, 511–525. [Google Scholar] [CrossRef]
- Beeckman, T.; De Smet, I. Pericycle. Curr. Biol. 2014, 24, R79–R378. [Google Scholar] [CrossRef] [Green Version]
- Bustillo-Avendaño, E.; Ibáñez, S.; Sanz, O.; Barros, J.A.S.; Gude, I.; Perianez-Rodriguez, J.; Micol, J.L.; Del Pozo, J.C.; Moreno-Risueno, M.A.; Pérez-Pérez, J.M. Regulation of Hormonal Control, Cell Reprogramming, and Patterning During De Novo Root Organogenesis. Plant Physiol. 2018, 176, 1709–1727. [Google Scholar] [CrossRef] [Green Version]
- Ho, T.-T.; Ha, T.M.N.; Nguyen, T.K.C.; Le, T.D. Pilot-Scale Culture of Adventitious Root for the Production of Pharmacology Active from Medicinal Plants: A Mini Review. BIO Web Conf. 2021, 40, 03003. [Google Scholar] [CrossRef]
- Pacifici, E.; Polverari, L.; Sabatini, S. Plant Hormone Cross-Talk: The Pivot of Root Growth. J. Exp. Bot. 2015, 66, 1113–1121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gonin, M.; Bergougnoux, V.; Nguyen, T.D.; Gantet, P.; Champion, A. What Makes Adventitious Roots? Plants 2019, 8, 240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perez-Garcia, P.; Moreno-Risueno, M. Stem Cells and Plant Regeneration. Dev. Biol. 2018, 442, 3–12. [Google Scholar] [CrossRef]
- Bellini, C.; Pacurar, D.I.; Perrone, I. Adventitious Roots and Lateral Roots: Similarities and Differences. Annu. Rev. Plant Biol. 2014, 65, 639–666. [Google Scholar] [CrossRef]
- Jung, J.K.H.; McCouch, S. Getting to the Roots of It: Genetic and Hormonal Control of Root Architecture. Front. Plant Sci. 2013, 4, 186. [Google Scholar] [CrossRef] [Green Version]
- Sorin, C.; Bussell, J.D.; Camus, I.; Ljung, K.; Kowalczyk, M.; Geiss, G.; McKhann, H.; Garcion, C.; Vaucheret, H.; Sandberg, G. Auxin and Light Control of Adventitious Rooting in Arabidopsis Require Argonaute1. Plant Cell 2005, 17, 1343–1359. [Google Scholar] [CrossRef] [Green Version]
- Correa-Aragunde, N.; Graziano, M.; Chevalier, C.; Lamattina, L. Nitric Oxide Modulates the Expression of Cell Cycle Regulatory Genes During Lateral Root Formation in Tomato. J. Exp. Bot. 2006, 57, 581–588. [Google Scholar] [CrossRef] [Green Version]
- Kupke, B.M.; Tucker, M.R.; Able, J.A.; Porker, K.D. Manipulation of Barley Development and Flowering Time by Exogenous Application of Plant Growth Regulators. Front. Plant Sci. 2022, 12, 3171. [Google Scholar] [CrossRef]
- Du, Y.; Scheres, B. Lateral Root Formation and the Multiple Roles of Auxin. J. Exp. Bot. 2018, 69, 155–167. [Google Scholar] [CrossRef]
- Aloni, R.; Aloni, E.; Langhans, M.; Ullrich, C.I. Role of Cytokinin and Auxin in Shaping Root Architecture: Regulating Vascular Differentiation, Lateral Root Initiation, Root Apical Dominance and Root Gravitropism. Ann. Bot. 2006, 97, 883–893. [Google Scholar] [CrossRef] [PubMed]
- Phillips, G.C.; Garda, M. Plant Tissue Culture Media and Practices: An Overview. Vitr. Cell. Dev. Biol.-Plant 2019, 55, 242–257. [Google Scholar] [CrossRef]
- Zhu, L.; Jiang, B.; Zhu, J.; Xiao, G. Auxin Promotes Fiber Elongation by Enhancing Gibberellic Acid Biosynthesis in Cotton. Plant Biotechnol. J. 2022, 20, 423. [Google Scholar] [CrossRef] [PubMed]
- Ludwig-Müller, J.R. Indole-3-Butyric Acid in Plant Growth and Development. Plant Growth Regul. 2000, 32, 219–230. [Google Scholar] [CrossRef]
- Fattorini, L.; Hause, B.; Gutierrez, L.; Veloccia, A.; Della Rovere, F.; Piacentini, D.; Falasca, G.; Altamura, M.M. Jasmonate Promotes Auxin-Induced Adventitious Rooting in Dark-Grown Arabidopsis Thaliana Seedlings and Stem Thin Cell Layers by a Cross-Talk with Ethylene Signalling and a Modulation of Xylogenesis. BMC Plant Biol. 2018, 18, 182. [Google Scholar] [CrossRef]
- Greenboim-Wainberg, Y.; Maymon, I.; Borochov, R.; Alvarez, J.; Olszewski, N.; Ori, N.; Eshed, Y.; Weiss, D. Cross Talk between Gibberellin and Cytokinin: The Arabidopsis Ga Response Inhibitor Spindly Plays a Positive Role in Cytokinin Signaling. Plant Cell 2005, 17, 92–102. [Google Scholar] [CrossRef] [Green Version]
- Björklund, S.; Antti, H.; Uddestrand, I.; Moritz, T.; Sundberg, B. Cross-Talk between Gibberellin and Auxin in Development of Populus Wood: Gibberellin Stimulates Polar Auxin Transport and Has a Common Transcriptome with Auxin. Plant J. 2007, 52, 499–511. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, M.; Meng, Z.; Wang, B.; Chen, M. Research Progress on the Roles of Cytokinin in Plant Response to Stress. Int. J. Mol. Sci. 2020, 21, 6574. [Google Scholar] [CrossRef]
- Wu, Y.; Dor, E.; Hershenhorn, J. Strigolactones Affect Tomato Hormone Profile and Somatic Embryogenesis. Planta 2017, 245, 583–594. [Google Scholar] [CrossRef]
- Hedden, P.; Sponsel, V. A Century of Gibberellin Research. J. Plant Growth Regul. 2015, 34, 740–760. [Google Scholar] [CrossRef] [Green Version]
- Rivas-San Vicente, M.; Plasencia, J. Salicylic Acid Beyond Defence: Its Role in Plant Growth and Development. J. Exp. Bot. 2011, 62, 3321–3338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pasternak, T.; Groot, E.P.; Kazantsev, F.V.; Teale, W.; Omelyanchuk, N.; Kovrizhnykh, V.; Palme, K.; Mironova, V.V. Salicylic Acid Affects Root Meristem Patterning Via Auxin Distribution in a Concentration-Dependent Manner. Plant Physiol. 2019, 180, 1725–1739. [Google Scholar] [CrossRef] [PubMed]
- Arc, E.; Sechet, J.; Corbineau, F.; Rajjou, L.; Marion-Poll, A. Aba Crosstalk with Ethylene and Nitric Oxide in Seed Dormancy and Germination. Front. Plant Sci. 2013, 4, 63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Denancé, N.; Sánchez-Vallet, A.; Goffner, D.; Molina, A. Disease Resistance or Growth: The Role of Plant Hormones in Balancing Immune Responses and Fitness Costs. Front. Plant Sci. 2013, 4, 155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Broekaert, W.F.; Delauré, S.L.; De Bolle, M.F.C.; Cammue, B.P.A. The Role of Ethylene in Host-Pathogen Interactions. Annu. Rev. Phytopathol. 2006, 44, 393–416. [Google Scholar] [CrossRef]
- Rensing, S.A.; Lang, D.; Zimmer, A.D.; Terry, A.; Salamov, A.; Shapiro, H.; Nishiyama, T.; Perroud, P.-F.; Lindquist, E.A.; Kamisugi, Y. The Physcomitrella Genome Reveals Evolutionary Insights into the Conquest of Land by Plants. Science 2008, 319, 64–69. [Google Scholar] [CrossRef] [Green Version]
- Vandenbussche, F.; Fierro, A.C.; Wiedemann, G.; Reski, R.; Van Der Straeten, D. Evolutionary Conservation of Plant Gibberellin Signalling Pathway Components. BMC Plant Biol. 2007, 7, 65. [Google Scholar] [CrossRef] [Green Version]
- Choudhary, S.P.; Yu, J.-Q.; Yamaguchi-Shinozaki, K.; Shinozaki, K.; Tran, L.-S.P. Benefits of Brassinosteroid Crosstalk. Trends Plant Sci. 2012, 17, 594–605. [Google Scholar] [CrossRef]
- EL Sabagh, A.; Islam, M.S.; Hossain, A.; Iqbal, M.A.; Mubeen, M.; Waleed, M.; Reginato, M.; Battaglia, M.; Ahmed, S.; Rehman, A. Phytohormones as Growth Regulators During Abiotic Stress Tolerance in Plants. Front. Agron. 2022, 4, 4. [Google Scholar] [CrossRef]
- Khan, T.; Abbasi, B.H.; Khan, M.A. The Interplay between Light, Plant Growth Regulators and Elicitors on Growth and Secondary Metabolism in Cell Cultures of Fagonia indica. J. Photochem. Photobiol. B Biol. 2018, 185, 153–160. [Google Scholar] [CrossRef]
- Monfort, L.E.F.; Bertolucci, S.K.V.; Lima, A.F.; de Carvalho, A.A.; Mohammed, A.; Blank, A.F.; Pinto, J.E.B.P. Effects of Plant Growth Regulators, Different Culture Media and Strength Ms on Production of Volatile Fraction Composition in Shoot Cultures of Ocimum basilicum. Ind. Crop. Prod. 2018, 116, 231–239. [Google Scholar] [CrossRef]
- Sakakibara, H.; Takei, K.; Hirose, N. Interactions between Nitrogen and Cytokinin in the Regulation of Metabolism and Development. Trends Plant Sci. 2006, 11, 440–448. [Google Scholar] [CrossRef] [PubMed]
- Martins, V.; Garcia, A.; Costa, C.; Sottomayor, M.; Gerós, H. Calcium-and Hormone-Driven Regulation of Secondary Metabolism and Cell Wall Enzymes in Grape Berry Cells. J. Plant Physiol. 2018, 231, 57–67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ibrahim, W.; Zhu, Y.-M.; Chen, Y.; Qiu, C.-W.; Zhu, S.; Wu, F. Genotypic Differences in Leaf Secondary Metabolism, Plant Hormones and Yield under Alone and Combined Stress of Drought and Salinity in Cotton Genotypes. Physiol. Plant. 2019, 165, 343–355. [Google Scholar] [CrossRef] [PubMed]
- Jahan, M.S.; Guo, S.; Baloch, A.R.; Sun, J.; Shu, S.; Wang, Y.; Ahammed, G.J.; Kabir, K.; Roy, R. Melatonin Alleviates Nickel Phytotoxicity by Improving Photosynthesis, Secondary Metabolism and Oxidative Stress Tolerance in Tomato Seedlings. Ecotoxicol. Environ. Saf. 2020, 197, 110593. [Google Scholar] [CrossRef]
- Naresh, V.; Lee, N. A Review on Biosensors and Recent Development of Nanostructured Materials-Enabled Biosensors. Sensors 2021, 21, 1109. [Google Scholar] [CrossRef]
- Isoda, R.; Yoshinari, A.; Ishikawa, Y.; Sadoine, M.; Simon, R.; Frommer, W.B.; Nakamura, M. Sensors for the Quantification, Localization and Analysis of the Dynamics of Plant Hormones. Plant J. 2021, 105, 542–557. [Google Scholar] [CrossRef]
- Wells, D.M.; Laplaze, L.; Bennett, M.J.; Vernoux, T. Biosensors for Phytohormone Quantification: Challenges, Solutions, and Opportunities. Trends Plant Sci. 2013, 18, 244–249. [Google Scholar] [CrossRef]
- Herud-Sikimić, O.; Stiel, A.C.; Kolb, M.; Shanmugaratnam, S.; Berendzen, K.W.; Feldhaus, C.; Höcker, B.; Jürgens, G. A Biosensor for the Direct Visualization of Auxin. Nature 2021, 592, 768–772. [Google Scholar] [CrossRef]
- Lotfi, M.; Mars, M.; Werbrouck, S. Optimizing Pear Micropropagation and Rooting with Light Emitting Diodes and Trans-Cinnamic Acid. Plant Growth Regul. 2019, 88, 173–180. [Google Scholar] [CrossRef]
- Arab, M.M.; Yadollahi, A.; Eftekhari, M.; Ahmadi, H.; Akbari, M.; Khorami, S.S. Modeling and Optimizing a New Culture Medium for In Vitro Rooting of G× N15 Prunus Rootstock Using Artificial Neural Network-Genetic Algorithm. Sci. Rep. 2018, 8, 9977. [Google Scholar] [CrossRef] [Green Version]
- Hesami, M.; Naderi, R.; Yoosefzadeh-Najafabadi, M.; Rahmati, M. Data-Driven Modeling in Plant Tissue Culture. J. Appl. Environ. Biol. Sci. 2017, 7, 37–44. [Google Scholar]
- Hesami, M.; Jones, A.M.P. Application of Artificial Intelligence Models and Optimization Algorithms in Plant Cell and Tissue Culture. Appl. Microbiol. Biotechnol. 2020, 104, 9449–9485. [Google Scholar] [CrossRef]
- Arab, M.M.; Yadollahi, A.; Shojaeiyan, A.; Ahmadi, H. Artificial Neural Network Genetic Algorithm as Powerful Tool to Predict and Optimize In Vitro Proliferation Mineral Medium for G× N15 Rootstock. Front. Plant Sci. 2016, 7, 1526. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niazian, M.; Shariatpanahi, M.E.; Abdipour, M.; Oroojloo, M. Modeling Callus Induction and Regeneration in an Anther Culture of Tomato (Lycopersicon esculentum L.) Using Image Processing and Artificial Neural Network Method. Protoplasma 2019, 256, 1317–1332. [Google Scholar] [CrossRef] [PubMed]
- Nezami-Alanagh, E.; Garoosi, G.-A.; Maleki, S.; Landín, M.; Gallego, P.P. Predicting Optimal In Vitro Culture Medium for Pistacia Vera Micropropagation Using Neural Networks Models. Plant Cell Tissue Organ Cult. 2017, 129, 19–33. [Google Scholar] [CrossRef]
- Mridula, M.R.; Nair, A.S.; Kumar, K.S. Genetic Programming Based Models in Plant Tissue Culture: An Addendum to Traditional Statistical Approach. PLoS Comput. Biol. 2018, 14, e1005976. [Google Scholar] [CrossRef]
- Prasad, A.; Prakash, O.; Mehrotra, S.; Khan, F.; Mathur, A.K.; Mathur, A. Artificial Neural Network-Based Model for the Prediction of Optimal Growth and Culture Conditions for Maximum Biomass Accumulation in Multiple Shoot Cultures of Centella Asiatica. Protoplasma 2017, 254, 335–341. [Google Scholar] [CrossRef]
- Duan, Y.; Jiang, Y.; Ye, S.; Karim, A.; Ling, Z.; He, Y.; Yang, S.; Luo, K. Ptrwrky73, a Salicylic Acid-Inducible Poplar Wrky Transcription Factor, Is Involved in Disease Resistance in Arabidopsis Thaliana. Plant Cell Rep. 2015, 34, 831–841. [Google Scholar] [CrossRef] [Green Version]
- Mansouri, A.; Fadavi, A.; Mortazavian, S.M.M. An Artificial Intelligence Approach for Modeling Volume and Fresh Weight of Callus—A Case Study of Cumin (Cuminum cyminum L.). J. Theor. Biol. 2016, 397, 199–205. [Google Scholar] [CrossRef]
- Ivashchuk, O.A.; Fedorova, V.I.; Shcherbinina, N.V.; Maslova, E.V.; Shamraeva, E.O. Microclonal Propagation of Plant Process Modeling and Optimization of Its Parameters Based on Neural Network. Drug Invent. Today 2018, 10, 3170–3175. [Google Scholar]
- Jamshidi, S.; Yadollahi, A.; Arab, M.M.; Soltani, M.; Eftekhari, M.; Shiri, J. High Throughput Mathematical Modeling and Multi-Objective Evolutionary Algorithms for Plant Tissue Culture Media Formulation: Case Study of Pear Rootstocks. PLoS ONE 2020, 15, e0243940. [Google Scholar] [CrossRef] [PubMed]
- Farhadi, S.; Salehi, M.; Moieni, A.; Safaie, N.; Sabet, M.S. Modeling of Paclitaxel Biosynthesis Elicitation in Corylus Avellana Cell Culture Using Adaptive Neuro-Fuzzy Inference System-Genetic Algorithm (Anfis-Ga) and Multiple Regression Methods. PLoS ONE 2020, 15, e0237478. [Google Scholar] [CrossRef]
- Szopa, A.; Kokotkiewicz, A.; Bednarz, M.; Jafernik, K.; Luczkiewicz, M.; Ekiert, H. Bioreactor Type Affects the Accumulation of Phenolic Acids and Flavonoids in Microshoot Cultures of Schisandra chinensis (Turcz.) Baill. Plant Cell Tissue Organ Cult. 2019, 139, 199–206. [Google Scholar] [CrossRef] [Green Version]
- Su, R.; Sujarani, M.; Shalini, P.; Prabhu, N. A Review on Bioreactor Technology Assisted Plant Suspension Culture. Asian J. Biotechnol. Bioresour. Technol. 2019, 5, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Eibl, R.; Eibl, D. Design of Bioreactors Suitable for Plant Cell and Tissue Cultures. Phytochem. Rev. 2008, 7, 593–598. [Google Scholar] [CrossRef]
- Phelan, K.; May, K.M. Basic Techniques in Mammalian Cell Tissue Culture. Curr. Protoc. Cell Biol. 2015, 66, 1.1.1–1.1.22. [Google Scholar] [CrossRef]
- Lihua, F. Preparation and Properties of Nanoscaled Silver/Natural Polymer Antibacterial Sols. Master’s Dissertation, Beijing Forestry University, Beijing, China, 2012. [Google Scholar]
- Abu-Absi, N.R.; Martel, R.P.; Lanza, A.M.; Clements, S.J.; Borys, M.C.; Li, Z.J. Application of Spectroscopic Methods for Monitoring of Bioprocesses and the Implications for the Manufacture of Biologics. Pharm. Bioprocess. 2014, 2, 267–284. [Google Scholar] [CrossRef]
- Wang, R.C.C.; Campbell, D.A.; Green, J.R.; Čuperlović-Culf, M. Automatic 1d 1h Nmr Metabolite Quantification for Bioreactor Monitoring. Metabolites 2021, 11, 157. [Google Scholar] [CrossRef] [PubMed]
- Mehendale, N.; Jenne, F.; Joshi, C.; Sharma, S.; Masakapalli, S.K.; MacKinnon, N. A Nuclear Magnetic Resonance (Nmr) Platform for Real-Time Metabolic Monitoring of Bioprocesses. Molecules 2020, 25, 4675. [Google Scholar] [CrossRef]
- Ghormade, V.; Deshpande, M.V.; Paknikar, K.M. Perspectives for Nano-Biotechnology Enabled Protection and Nutrition of Plants. Biotechnol. Adv. 2011, 29, 792–803. [Google Scholar] [CrossRef] [PubMed]
- Lala, S. Nanoparticles as Elicitors and Harvesters of Economically Important Secondary Metabolites in Higher Plants: A Review. IET Nanobiotechnol. 2021, 15, 28–57. [Google Scholar] [CrossRef] [PubMed]
- Santo Pereira, A.E.; Silva, P.M.; Oliveira, J.L.; Oliveira, H.C.; Fraceto, L.F. Chitosan Nanoparticles as Carrier Systems for the Plant Growth Hormone Gibberellic Acid. Colloids Surf. B Biointerfaces 2017, 150, 141–152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nokandeh, S.; Ramezani, M.; Gerami, M. The Physiological and Biochemical Responses to Engineered Green Graphene/Metal Nanocomposites in Stevia rebaudiana. J. Plant Biochem. Biotechnol. 2021, 30, 579–585. [Google Scholar] [CrossRef]
- Ghorbanpour, M.; Hadian, J. Multi-Walled Carbon Nanotubes Stimulate Callus Induction, Secondary Metabolites Biosynthesis and Antioxidant Capacity in Medicinal Plant Satureja khuzestanica Grown In Vitro. Carbon 2015, 94, 749–759. [Google Scholar] [CrossRef]
- Samadi, S.; Saharkhiz, M.J.; Azizi, M.; Samiei, L.; Ghorbanpour, M. Multi-Walled Carbon Nanotubes Stimulate Growth, Redox Reactions and Biosynthesis of Antioxidant Metabolites in Thymus daenensis Celak. In Vitro. Chemosphere 2020, 249, 126069. [Google Scholar] [CrossRef]
- Rezaei, Z.; Jafarirad, S.; Kosari-Nasab, M. Modulation of Secondary Metabolite Profiles by Biologically Synthesized Mgo/Perlite Nanocomposites in Melissa officinalis Plant Organ Cultures. J. Hazard. Mater. 2019, 380, 120878. [Google Scholar] [CrossRef]
- Torres, F.G.; Troncoso, O.P.; Pisani, A.; Gatto, F.; Bardi, G. Natural Polysaccharide Nanomaterials: An Overview of Their Immunological Properties. Int. J. Mol. Sci. 2019, 20, 5092. [Google Scholar] [CrossRef] [Green Version]
- Soraki, R.K.; Gerami, M.; Ramezani, M. Effect of Graphene/Metal Nanocomposites on the Key Genes Involved in Rosmarinic Acid Biosynthesis Pathway and Its Accumulation in Melissa Officinalis. BMC Plant Biol. 2021, 21, 260. [Google Scholar] [CrossRef]
- Hadi Soltanabad, M.; Bagherieh-Najjar, M.B.; Mianabadi, M. Carnosic Acid Content Increased by Silver Nanoparticle Treatment in Rosemary (Rosmarinus officinalis L.). Appl. Biochem. Biotechnol. 2020, 191, 482–495. [Google Scholar] [CrossRef]
- Nourozi, E.; Hosseini, B.; Maleki, R.; Mandoulakani, B.A. Iron Oxide Nanoparticles: A Novel Elicitor to Enhance Anticancer Flavonoid Production and Gene Expression in Dracocephalum Kotschyi Hairy-Root Cultures. J. Sci. Food Agric. 2019, 99, 6418–6430. [Google Scholar] [CrossRef] [PubMed]
- Asgari-Targhi, G.; Iranbakhsh, A.; Ardebili, Z.O.; Tooski, A.H. Synthesis and Characterization of Chitosan Encapsulated Zinc Oxide (Zno) Nanocomposite and Its Biological Assessment in Pepper (Capsicum annuum) as an Elicitor for In Vitro Tissue Culture Applications. Int. J. Biol. Macromol. 2021, 189, 170–182. [Google Scholar] [CrossRef] [PubMed]
- Samadi, S.; Saharkhiz, M.J.; Azizi, M.; Samiei, L.; Karami, A.; Ghorbanpour, M. Single-Wall Carbon Nano Tubes (Swcnts) Penetrate Thymus daenensis Celak. Plant Cells and Increase Secondary Metabolite Accumulation In Vitro. Ind. Crop. Prod. 2021, 165, 113424. [Google Scholar] [CrossRef]
- Darzian Rostami, A.; Yazdian, F.; Mirjani, R.; Soleimani, M. Effects of Different Graphene-Based Nanomaterials as Elicitors on Growth and Ganoderic Acid Production by Ganoderma lucidum. Biotechnol. Prog. 2020, 36, e3027. [Google Scholar] [CrossRef]
- El-Saber, M.M.; Diab, M.; Hendawey, M.; Farroh, K. Magnetite Nanoparticles Different Sizes Effectiveness on Growth and Secondary Metabolites in Ginkgo biloba L. Callus. Egypt. J. Chem. 2021, 64, 4523–5432. [Google Scholar] [CrossRef]
- Tavakoli, F.; Rafieiolhossaini, M.; Ravash, R. Effects of Peg and Nano-Silica Elicitors on Secondary Metabolites Production in Crocus sativus L. Russ. J. Plant Physiol. 2021, 68, 931–940. [Google Scholar] [CrossRef]
- Shoja, A.A.; Çirak, C.; Ganjeali, A.; Cheniany, M. Stimulation of Phenolic Compounds Accumulation and Antioxidant Activity in In Vitro Culture of Salvia tebesana Bunge in Response to Nano-Tio2 and Methyl Jasmonate Elicitors. Plant Cell Tissue Organ Cult. 2022, 149, 423–440. [Google Scholar] [CrossRef]
- Ebadollahi, R.; Jafarirad, S.; Kosari-Nasab, M.; Mahjouri, S. Effect of Explant Source, Perlite Nanoparticles and Tio2/Perlite Nanocomposites on Phytochemical Composition of Metabolites in Callus Cultures of Hypericum Perforatum. Sci. Rep. 2019, 9, 12998. [Google Scholar] [CrossRef] [Green Version]
- Xu, Z.P.; Zeng, Q.H.; Lu, G.Q.; Yu, A.B. Inorganic Nanoparticles as Carriers for Efficient Cellular Delivery. Chem. Eng. Sci. 2006, 61, 1027–1040. [Google Scholar] [CrossRef]
- DeRosa, M.C.; Monreal, C.; Schnitzer, M.; Walsh, R.; Sultan, Y. Nanotechnology in Fertilizers. Nat. Nanotechnol. 2010, 5, 91. [Google Scholar] [CrossRef]
- Kah, M.; Kookana, R.S.; Gogos, A.; Bucheli, T.D. A Critical Evaluation of Nanopesticides and Nanofertilizers against Their Conventional Analogues. Nat. Nanotechnol. 2018, 13, 677–684. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.P.; Lu, G.Q.M. Layered Double Hydroxide Nanomaterials as Potential Cellular Drug Delivery Agents. Pure Appl. Chem. 2006, 78, 1771–1779. [Google Scholar] [CrossRef]
- de Castro, V.A.; Duarte, V.G.O.; Nobre, D.A.C.; Silva, G.H.; Constantino, V.R.L.; Pinto, F.G.; Macedo, W.R.; Tronto, J. Plant Growth Regulation by Seed Coating with Films of Alginate and Auxin-Intercalated Layered Double Hydroxides. Beilstein J. Nanotechnol. 2020, 11, 1082–1091. [Google Scholar] [CrossRef] [PubMed]
- Leong, K.W. Polymeric Controlled Nucleic Acid Delivery. MRS Bull. 2005, 30, 640–646. [Google Scholar] [CrossRef]
- Ladewig, K.; Xu, Z.P.; Lu, G.Q. Layered Double Hydroxide Nanoparticles in Gene and Drug Delivery. Expert Opin. Drug Deliv. 2009, 6, 907–922. [Google Scholar] [CrossRef]
- Wang, C.; Zhu, H.; Li, N.; Wu, Q.; Wang, S.; Xu, B.; Wang, Y.; Cui, H. Dinotefuran Nano-Pesticide with Enhanced Valid Duration and Controlled Release Properties Based on a Layered Double Hydroxide Nano-Carrier. Environ. Sci. Nano 2021, 8, 3202–3210. [Google Scholar] [CrossRef]
- Rebitski, E.P.; Darder, M.; Aranda, P. Layered Double Hydroxide/Sepiolite Hybrid Nanoarchitectures for the Controlled Release of Herbicides. Beilstein J. Nanotechnol. 2019, 10, 1679–1690. [Google Scholar] [CrossRef] [Green Version]
- bin Hussein, M.Z.; Zainal, Z.; Yahaya, A.H.; Foo, D.W.V. Controlled Release of a Plant Growth Regulator, A-Naphthaleneacetate from the Lamella of Zn–Al-Layered Double Hydroxide Nanocomposite. J. Control. Release 2002, 82, 417–427. [Google Scholar] [CrossRef]
- Liu, Y.; Song, J.; Jiao, F.; Huang, J. Synthesis, Characterization and Release of a-Naphthaleneacetate from Thin Films Containing Mg/Al-Layered Double Hydroxide. J. Mol. Struct. 2014, 1064, 100–106. [Google Scholar] [CrossRef]
- Hafez, I.H.; Berber, M.R.; Minagawa, K.; Mori, T.; Tanaka, M. Design of a Multifunctional Nanohybrid System of the Phytohormone Gibberellic Acid Using an Inorganic Layered Double-Hydroxide Material. J. Agric. Food Chem. 2010, 58, 10118–10123. [Google Scholar] [CrossRef]
- Li, S.; Shen, Y.; Xiao, M.; Liu, D.; Fan, L. Synthesis and Controlled Release Properties of Β-Naphthoxyacetic Acid Intercalated Mg–Al Layered Double Hydroxides Nanohybrids. Arab. J. Chem. 2019, 12, 2563–2571. [Google Scholar] [CrossRef] [Green Version]
- Thomas, S.; Ninan, N.; Mohan, S.; Francis, E. Natural Polymers, Biopolymers, Biomaterials, and Their Composites, Blends, and Ipns; CRC Press: Boca Raton, FL, USA, 2012. [Google Scholar]
- Rafique, A.; Zia, K.M.; Zuber, M.; Tabasum, S.; Rehman, S. Chitosan Functionalized Poly (Vinyl Alcohol) for Prospects Biomedical and Industrial Applications: A Review. Int. J. Biol. Macromol. 2016, 87, 141–154. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Gómez, C.P.; Cecilia, J.A. Chitosan: A Natural Biopolymer with a Wide and Varied Range of Applications. Molecules 2020, 25, 3981. [Google Scholar] [CrossRef] [PubMed]
- Bakshi, P.S.; Selvakumar, D.; Kadirvelu, K.; Kumar, N.S. Chitosan as an Environment Friendly Biomaterial—A Review on Recent Modifications and Applications. Int. J. Biol. Macromol. 2020, 150, 1072–1083. [Google Scholar] [CrossRef]
- Mirheidari, F.; Hatami, M.; Ghorbanpour, M. Effect of Different Concentrations of Iaa, Ga3 and Chitosan Nano-Fiber on Physio-Morphological Characteristics and Metabolite Contents in Roselle (Hibiscus sabdariffa L.). S. Afr. J. Bot. 2022, 145, 323–333. [Google Scholar] [CrossRef]
- Kadam, P.M.; Prajapati, D.; Kumaraswamy, R.V.; Kumari, S.; Devi, K.A.; Pal, A.; Sharma, S.K.; Saharan, V. Physio-Biochemical Responses of Wheat Plant Towards Salicylic Acid-Chitosan Nanoparticles. Plant Physiol. Biochem. 2021, 162, 699–705. [Google Scholar] [CrossRef]
- Karimi, N.; Shayesteh, L.S.; Ghasmpour, H.; Alavi, M. Effects of Arsenic on Growth, Photosynthetic Activity, and Accumulation in Two New Hyperaccumulating Populations of Isatis Cappadocica Desv. J. Plant Growth Regul. 2013, 32, 823–830. [Google Scholar] [CrossRef]
- Souri, Z.; Karimi, N.; Sarmadi, M.; Rostami, E. Salicylic Acid Nanoparticles (Sanps) Improve Growth and Phytoremediation Efficiency of Isatis cappadocica Desv., under as Stress. IET Nanobiotechnol. 2017, 11, 650–655. [Google Scholar] [CrossRef]
- Vincekovic, M.; Jalsenjak, N.; Topolovec-Pintaric, S.; Đermic, E.; Bujan, M.; Juric, S. Encapsulation of Biological and Chemical Agents for Plant Nutrition and Protection: Chitosan/Alginate Microcapsules Loaded with Copper Cations and Trichoderma Viride. J. Agric. Food Chem. 2016, 64, 8073–8083. [Google Scholar] [CrossRef]
- Perez, J.J.; Francois, N.J.; Maroniche, G.A.; Borrajo, M.P.; Pereyra, M.A.; Creus, C.M. A Novel, Green, Low-Cost Chitosan-Starch Hydrogel as Potential Delivery System for Plant Growth-Promoting Bacteria. Carbohydr. Polym. 2018, 202, 409–417. [Google Scholar] [CrossRef] [PubMed]
- Aljafree, N.F.A.; Kamari, A. Synthesis, Characterisation and Potential Application of Deoxycholic Acid Carboxymethyl Chitosan as a Carrier Agent for Rotenone. J. Polym. Res. 2018, 25, 133. [Google Scholar] [CrossRef]
- Pereira, A.E.S.; da Silva, P.M.; de Melo, N.F.; Rosa, A.H.; Fraceto, L.F. Alginate/Chitosan Nanoparticles as Sustained Release System for Plant Hormone Gibberellic Acid. Colloids Surf B Biointerfaces 2017, 150, 141–152. [Google Scholar] [CrossRef] [Green Version]
- Kumaraswamy, R.V.; Kumari, S.; Choudhary, R.C.; Sharma, S.S.; Pal, A.; Raliya, R.; Biswas, P.; Saharan, V. Salicylic Acid Functionalized Chitosan Nanoparticle: A Sustainable Biostimulant for Plant. Int. J. Biol. Macromol. 2019, 123, 59–69. [Google Scholar] [CrossRef] [PubMed]
- Sampedro-Guerrero, J.; Vives-Peris, V.; Gomez-Cadenas, A.; Clausell-Terol, C. Improvement of Salicylic Acid Biological Effect through Its Encapsulation with Silica or Chitosan. Int. J. Biol. Macromol. 2022, 199, 108–120. [Google Scholar] [CrossRef] [PubMed]
- Valderrama, A.; Lay, J.; Flores, Y.; Zavaleta, D.; Delfín, A.R. Factorial Design for Preparing Chitosan Nanoparticles and Its Use for Loading and Controlled Release of Indole-3-Acetic Acid with Effect on Hydroponic Lettuce Crops. Biocatal. Agric. Biotechnol. 2020, 26, 101640. [Google Scholar] [CrossRef]
- Do, B.H.; Ryu, H.-B.; Hoang, P.; Koo, B.-K.; Choe, H. Soluble Prokaryotic Overexpression and Purification of Bioactive Human Granulocyte Colony-Stimulating Factor by Maltose Binding Protein and Protein Disulfide Isomerase. PLoS ONE 2014, 9, e89906. [Google Scholar] [CrossRef] [Green Version]
- Slowing, I.; Vivero-Escoto, J.; Zhao, Y.; Kandel, K.; Peeraphatdit, C.; Trewyn, B.; Lin, V. Exocytosis of Mesoporous Silica Nanoparticles from Mammalian Cells: From Asymmetric Cell-to-Cell Transfer to Protein Harvesting. Small 2011, 7, 1526–1532. [Google Scholar] [CrossRef]
Plant-Growth Regulator | Classification | Function | Hormone Crosstalk |
---|---|---|---|
Auxin | IBA | Root contact induction [47] | The hypocotyl and is enhanced by application of (IBA) combined with kinetin (Kin) [48] |
IAA | IAA affects plant growth and development including growth response, vascular development, leaf and flower initiation, root growth, and lateral root formation [49] | GA enhances auxin levels in stems by stimulating polar transport of IAA [50] | |
Cytokinin | 6-BA | Involved in cell division [51] | 2,4-dichlorophenoxyacetic acid (2,4-D), indoleacetic acid (IAA), and 6-BA promote the production of somatic cells [52] |
Gibberellins | GA | Promote germination, growth and flowering, promote leaf expansion, but inhibit root growth [53] | GA and cytokinins antagonize many developmental processes including shoot and root elongation, cell differentiation, shoot regeneration in culture and meristem activity [49] |
SA | Depending on its concentration and plant growth conditions and developmental stages [54] | SA regulates IAA biosynthesis and transport. Low concentration of SA (50 μM) promotes adventitious roots and changes the structure of root apical meristem [55] | |
ABA | Regulate seed dormancy and germination [56] | ABA, SA, and auxin can increase plant resistance to pathogens [57] | |
Ethylene | Branch elongation and leaf abscission [58] | The signaling mechanisms of gibberellin, ethylene, and brassinolide may not evolve until mosses and vascular plants have evolved [59,60] | |
Brassinolide | Can promote the growth of plant seedlings | Working with other PGRs alone affects plant growth and development and abiotic and biotic stress responses such as ABA, ethylene, SA, JA [61] |
Modeling | Plant | Optimal Results |
---|---|---|
Multilayer perceptron (MLP) as an artificial ANN and support vector regression (SVR) | chrysanthemum | The highest embryogenesis rate (99.09%) and the maximum number of somatic embryos per explant (56.24) can be obtained [3] |
Artificial neural network–genetic algorithm | Garnem | The results showed that the optimized rooting medium was more effective than the other standard medium [74] |
GEP and M5′ model tree | Pear rootstocks | Proliferation rate, shoot length, shoot tip necrosis, vitrification and quality index; GEP had a higher prediction accuracy than the M5′ model tree [74] |
Adaptive neuro-fuzzy inference system–genetic algorithm | Corylus avellana | Cell culture-responsive taxol biosynthesis was modeled and predicted by cell extract, culture filtrate, and cell wall alone or in combination with methyl-β-cyclodextrin [86] |
Image processing and ANN | Lycopersicon esculentum L. | Plant growth regulators, the concentration of gum Arabic (GA) additive, the cold pretreatment duration, and flower length on callus induction percentage and number of regenerated callus in an anther culture of tomato [78] |
ANNs-GA | Pistacia vera | Gain insights, predict, and optimize the effect of several independent factors on four growth parameters [79] |
Classification of Nanomaterials | Size/Concentration | Source of Plant Materials | Results |
---|---|---|---|
AgNPs | 0, 25, 50, 100 nm, and 200 ppm | Rosmarinus officinalis L. | Increased carnosic acid (CA) levels by more than 11% [104]. |
FeNPs | 75 mg/L | Hairy-root of Dracocephalum kotschyi | Rosmarinic acid (RA) increased by 9.7-fold, xanthomicrol, cirsimaritin, and isokaempferide increased by 11.87, 3.85, and 2.27-fold, respectively [105]. |
Chitosan encapsulated zinc oxide nanocomposite | 10–50 nm, | Capsicum annuum | Photosynthetic pigments (about 50%), proline (about 2 times), proteins (about 2 times), antioxidant enzyme activity (about 2 times), PAL activity (about 2 times), soluble phenols (40%), and alkaloids (60%) [106]. |
Single-wall carbon nano tubes | 25, 50, 100, 125, and 250 μg/mL | Callus of Thymus daenensis | Total phenolic (TPC) content increased by 1.290 ± 0.19 mgGAEg−1 DW, total flavonoid (TFC) content increased by 2.113 ± 0.05 mgGAEg−1 DWimproved [107]. |
Graphene-based nanomaterials (GBNs) | 50, 100, and 150 mg/L | Ganoderma lucidum | All GBNs increased the ganoderic acid (GA) content [108]. |
Magnetite nanoparticles (MNPs) | 10.77, 20.5, 29.3 nm and 0.5, 1, 2 ppm | Callus of Ginkgo biloba L. | 2 ppm + 10 nm MNPs increased the content of quercetin, kaempferol, p-coumarin, luding, caffeic acid, ginkgolide A, etc. [109]. |
SiO2NPs | 2 mM | Crocus sativus L. | Increased the content of crocin and activity of superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX) [110]. |
Nano-TiO2 | 10, 60, and 120 mg/L | Callus of Salvia tebesana | The combination with methyl jasmonate increased the total phenols. O-diphenols, phenolic acid, flavonoid, flavane, flavonol, and proanthocyanidin were all increased [111]. |
TiO2/perlite nanocomposites (NCs) | 15.50–24.61 nm | Callus of Hypericum perforatum | Induced the production of hypericin, pseudohypericin, and volatile compounds [112]. |
MgO/perlite nanocomposites (NCs) | 10–30 nm | Melissa officinalis | Elevated volatile compounds. The new compound rosmarinic acid was detected [101]. |
Chitosan Nanomaterials and Carrier Materials | Dimensions (MD) | Results |
---|---|---|
Novel chitosan/alginate microcapsules simultaneously loaded with copper(II)cations and trichoderma viride | - | Chitosan/alginate microcapsules may incorporate both viral spores and chemical bioactivators without inhibiting their activity [134]. |
Deoxycholic acid carboxymethyl chitosan (DACMC) loaded with rotenone | 91.3–140.0 nm | The in vitro release data of rotenone-loaded DACMC followed the Ritger and Peppas Case II transport mechanism. Highlights the potential of DACMC to reduce the use of organic solvents in the production of water-insoluble pesticides [136]. |
Alginate/chitosan nanoparticles encapsulated GA3 | 472–503 nm | Nanoparticles can improve the biological activity of gibberellic acid and have good application prospects in agriculture. Good performance and time stability [137]. |
Nanocarriers of plant growth regulator gibberellic acid (GA3) composed of alginate/chitosan (ALG/CS) and chitosan/tripolyphosphate (CS/TPP) | 450 ± 10 nm | ALG/CS-GA3 nanoparticles have higher stability and efficiency in increasing the leaf area and chlorophyll and carotenoid content [97]. |
SA-CS NPs | 368.7 ± 0.05 nm | SA-CS NPs can significantly affect the source activity by slowly releasing SA to manipulate various physiological and biochemical reactions of wheat plants [131]. |
SA-CS NPs | - | The results showed that the activity of antioxidant defense enzymes in maize increased, and the balance of reactive oxygen species (ROS) and the deposition of cell wall lignin increased, which had a positive effect on disease control and maize plant growth. It is a potential biological promoter [138]. |
Silica or chitosan encapsulated salicylic acid (SA) capsules | 9.6–11.0 mm, 7.2–8.5 mm | In the in vitro system, the plants treated with a low proportion capsule had the best antifungal effect. At the same time, the capsule treated plants had higher levels of root and rosette development than the free SA treated plants [139]. |
Chitosan nanoparticles loaded with indole-3-acetic acid (IAA) | 149–183 nm | CNPs-IAA can be applied to the hydroponic crop of crocantela variety Latuca sativa L. and has beneficial effects on plant growth, increasing the number of lettuce leaves by 30.9% [140]. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ji, B.; Xuan, L.; Zhang, Y.; Mu, W.; Paek, K.-Y.; Park, S.-Y.; Wang, J.; Gao, W. Application of Data Modeling, Instrument Engineering and Nanomaterials in Selected Medid the Scientific Recinal Plant Tissue Culture. Plants 2023, 12, 1505. https://doi.org/10.3390/plants12071505
Ji B, Xuan L, Zhang Y, Mu W, Paek K-Y, Park S-Y, Wang J, Gao W. Application of Data Modeling, Instrument Engineering and Nanomaterials in Selected Medid the Scientific Recinal Plant Tissue Culture. Plants. 2023; 12(7):1505. https://doi.org/10.3390/plants12071505
Chicago/Turabian StyleJi, Baoyu, Liangshuang Xuan, Yunxiang Zhang, Wenrong Mu, Kee-Yoeup Paek, So-Young Park, Juan Wang, and Wenyuan Gao. 2023. "Application of Data Modeling, Instrument Engineering and Nanomaterials in Selected Medid the Scientific Recinal Plant Tissue Culture" Plants 12, no. 7: 1505. https://doi.org/10.3390/plants12071505
APA StyleJi, B., Xuan, L., Zhang, Y., Mu, W., Paek, K. -Y., Park, S. -Y., Wang, J., & Gao, W. (2023). Application of Data Modeling, Instrument Engineering and Nanomaterials in Selected Medid the Scientific Recinal Plant Tissue Culture. Plants, 12(7), 1505. https://doi.org/10.3390/plants12071505