Morphological Characterization of Nicotiana tabacum Inflorescences and Chemical-Functional Analysis of Extracts Obtained from Its Powder by Using Green Solvents (NaDESs)
Abstract
:1. Introduction
2. Results and Discussion
2.1. Flowers Morphology and Anatomy
2.1.1. Perianth Anatomy
2.1.2. Gynoecium Anatomy
2.1.3. Floral Nectary Anatomy
2.1.4. Androecium Anatomy
2.1.5. Flower Pedicel Anatomy
2.2. Tobacco Inflorescence Powder Characterization
2.3. Phytochemical Characterization by Conventional and Non-Conventional Solvents
2.4. Antioxidant Activity
2.5. Correlation between the Total Phenolic Compounds, Total Flavonoid, Total Alkaloid and Total Anthocyanin Content, and Antioxidant Activities
3. Materials and Methods
3.1. Plant Material
3.2. Powder Obtention by Milling
3.3. Histological Analysis
3.3.1. Light Microscopy
3.3.2. Scanning Electron Microscopy
3.4. NaDESs Preparation
3.5. Inflorescence Powder Extraction
3.6. Determination of Chemical Composition
3.6.1. Total Polyphenols and Flavonoids Content Determination
3.6.2. Total Anthocyanins Content Determination
3.6.3. Total Alkaloids Content Determination
3.7. Antioxidant Activity Determination
3.7.1. ABTS Free Radical Scavenging Activity
3.7.2. Hydrogen Peroxide (H2O2) Scavenging
3.8. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Hunziker, A.T. Genera Solanacearum: The Genera of Solanaceae Illustrated, Arranged according to a New System; Gantner Verlag: Ruggell, Liechtenstein, 2001; pp. 1–500. [Google Scholar]
- Benowitz, N.L. Pharmacology of nicotine: Addiction and therapeutics. Ann. Rev. Pharmacol. Toxicol. 1996, 36, 597–613. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.P.; Xiao, Y.; Mao, D.B. Antioxidant activities of polysaccharide fractions isolated from burley tobacco flowers. Croat. J. Food Sci. Technol. 2013, 5, 46–52. [Google Scholar]
- Banožić, M.; Babić, J.; Jokić, S. Recent advances in extraction of bio-active compounds from tobacco industrial waste-a review. Ind. Crops Prod. 2020, 144, 112009. [Google Scholar] [CrossRef]
- Kapetanović, S. Results of extraction of tobacco flowers and inflorescences with volatile solvents with regard to yield and quality of essential oils. Tobacco 1989, 39, 91–102. [Google Scholar]
- Loughrin, J.; Hamilton-Kemp, T.; Andersen, R.; Hildebrand, D. Headspace compounds from flowers of Nicotiana tabacum and related species. J. Agric. Food Chem. 1990, 38, 455–460. [Google Scholar] [CrossRef]
- Xu, C.; Zeng, Y.; Li, M.; Zhao, S.; Hu, Z. Composition, antioxidative and antimicrobial activities of tobacco flower bud oil. Tob. Sci. Technol. 2015, 48, 76–80. [Google Scholar]
- Xu, C.; Zhao, S.; Li, M.; Dai, Y.D.; Tan, L.; Liu, Y. Chemical composition, antimicrobial and antioxidant activities of essential oil from flue-cured tobacco flower bud. Biotechnol. Biotechnol. Equip. 2016, 30, 1026–1030. [Google Scholar] [CrossRef] [Green Version]
- Duan, S.; Du, Y.; Hou, X.; Yan, N.; Dong, W.; Mao, X.; Zhang, Z. Chemical basis of the fungicidal activity of tobacco extracts against Valsa mali. Molecules 2016, 21, 1743. [Google Scholar] [CrossRef] [Green Version]
- Popova, V.; Ivanova, T.; Stoyanova, A.; Nikolova, V.; Hristeva, T.; Zheljazkov, V. GC-MS Composition and olfactory profile of concretes from the flowers of four Nicotiana species. Molecules 2020, 25, 2617. [Google Scholar] [CrossRef]
- Nio, S.; Wada, E. Chemical constituent of tobacco. I. The isolation of rutin from tobacco flowers. J. Agric. Chem. Soc. Jpn. 1951, 24, 485–486. [Google Scholar]
- Watanabe, R.; Wender, S.H. Flavonoid and certain related phenolic compounds in parts of the tobacco flower. Arch. Biochem. Biophys. 1965, 112, 111–112. [Google Scholar] [CrossRef] [PubMed]
- Snook, M.; Chortyk, O.; Sisson, V.; Costello, C. The flower flavonols of Nicotiana species. Phytochemistry 1992, 31, 1639–1647. [Google Scholar] [CrossRef]
- Xiao, Q.; Zhu, Y.; Cui, G.; Zhang, X.; Hu, R.; Deng, Z.; Lei, L.; Wu, L.; Mei, L. A comparative study of flavonoids and carotenoids revealed metabolite responses for various flower colorations between Nicotiana tabacum L. and Nicotiana rustica L. Front. Plant Sci. 2022, 13, 828042. [Google Scholar] [CrossRef]
- He, X.; Li, Y.; Lawson, D.; Xie, D.-Y. Metabolic engineering of anthocyanins in dark tobacco varieties. Physiol. Plant 2016, 159, 2–12. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.A.; Zhao, T.; Wang, N.; Zheng, S.S. Ectopic expression of Lc differentially regulated anthocyanin biosynthesis in the floral parts of tobacco (Nicotiana tabacum L.) plants. Bot. Stud. 2016, 57, 24. [Google Scholar] [CrossRef] [Green Version]
- He, X.F.; Hou, X.D.; Ren, X.; Guo, K.; Li, X.Z.; Yan, Z.Q.; Du, Y.M.; Zhang, Z.F.; Qin, B. Two new cembranic diterpenoids from the flowers of Nicotiana tabacum L. Phytochem. Lett. 2016, 15, 238–244. [Google Scholar] [CrossRef]
- Cosmetic Ingredient Database (CosIng) of the European Commission. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32022D0677 (accessed on 2 January 2023).
- UNION; PEAN. Regulation (EC) No 1223/2009 of the European Parliament and of the Council. Off. J. Eur. Union 2009, 342, 59. [Google Scholar]
- Chittasupho, C.; Chaobankrang, K.; Sarawungkad, A.; Samee, W.; Singh, S.; Hemsuwimon, K.; Okonogi, S.; Kheawfu, K.; Kiattisin, K.; Chaiyana, W. Antioxidant, anti-inflammatory and attenuating intracellular reactive oxygen species activities of Nicotiana tabacum var. Virginia leaf extract phytosomes and shape memory gel formulation. Gels 2023, 9, 78. [Google Scholar] [CrossRef]
- Popova, V.; Tumbarski, Y.D.; Ivanova, T.; Hadjikinova, R.; Stoyanova, A. Tobacco resinoid (Nicotiana tabacum L.) as an active ingredient of cosmetic gels. J. Appl. Pharm. Sci. 2019, 9, 111–118. [Google Scholar]
- Chemat, F.; Abert–Vian, M.; Fabiano–Tixier, A.S.; Strube, J.; Uhlen-brock, L.; Gunjevic, V.; Cravotto, G. Green extraction of natural products. Origins, current status, and future challenges. TrAC Trends Anal. Chem. 2019, 118, 248–263. [Google Scholar] [CrossRef]
- Chemat, F.; Abert–Vian, M.; Ravi, H.K.; Khadhraoui, B.; Hilali, S.; Perino, S.; Fabiano–Tixier, A.S. Review of alternative solvents for green extraction of food and natural products: Panorama, principles, applications and prospects. Molecules 2019, 24, 3007. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Teng, C.; Yan, L. Applications of deep eutectic solvents in the extraction, dissolution, and functional materials of chitin: Research progress and prospects. Green Chem. 2022, 24, 552–564. [Google Scholar] [CrossRef]
- Dai, Y.; van Spronsen, J.; Witkamp, G.J.; Verpoorte, R.; Choi, Y.H. Natural deep eutectic solvents as new potential media for green technology. Anal. Chim. Acta 2013, 766, 61–68. [Google Scholar] [CrossRef]
- Choi, Y.H.; Verpoorte, R. Green solvents for the extraction of bioactive compounds from natural products using ionic liquids and deep eutectic solvents. Curr. Opin. Food Sci. 2019, 26, 87–93. [Google Scholar] [CrossRef]
- Benoit, C.; Virginie, C.; Boris, V. The use of NaDES to support innovation in the cosmetic industry. Adv. Bot. Res. 2020, 97, 309–332. [Google Scholar]
- Ling, J.K.U.; Hadinoto, K. Deep eutectic solvent as green solvent in extraction of biological macromolecules: A Review. Int. J. Mol. Sci. 2022, 23, 3381. [Google Scholar] [CrossRef]
- Leal, M.; Moreno, M.A.; Albornoz, P.L.; Mercado, M.I.; Zampini, I.C.; Isla, M.I. Nicotiana tabacum leaf waste: Morphological characterization and chemical-functional analysis of extracts obtained from powder leaves by using green solvents. Molecules 2023, 28, 1396. [Google Scholar] [CrossRef] [PubMed]
- Hong, J.; Deng, M.; Zhao, L. Natural deep eutectic solvent combined with ultrasonic enhancement: A green extraction strategy for solanesol in tobacco leaves. Ind. Crops Prod. 2022, 187, 115355. [Google Scholar] [CrossRef]
- Barboza, G.E.; Hunziker, A.T.; Bernardello, G.; Cocucci, A.A.; Moscone, A.E.; Carrizo García, C.; Fuentes, V.; Dillon, M.O.; Bittrich, V.; Cosa, M.T.; et al. (Eds.) Flowering Plants. Eudicots. In The Families and Genera of Vascular Plants; Springer: Cham, Switzerland, 2016; Volume 14. [Google Scholar]
- Chang, H.; Sun, F. Temporal Distinction between Male and Female Floral Organ Development in Nicotiana tabacum cv. Xanthi (Solanaceae). Plants 2020, 9, 127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phukela, B.; Adit, A.; Tandon, R. Evolutionary trends and diversity of major floral nectary types across Solanaceae. Planta 2021, 254, 55. [Google Scholar] [CrossRef] [PubMed]
- Stabentheiner, E.; Zankel, A.; Pölt, P. Environmental scanning electron microscopy (ESEM)—A versatile tool in studying plants. Protoplasma 2010, 246, 89–99. [Google Scholar] [CrossRef]
- Kerchner, A.; Darók, J.; Bacskay, I.; Felinger, A.; Jakab, G.; Farkas, Á. Protein and alkaloid patterns of the floral nectar in some solanaceous species. Acta Biol. Hung. 2015, 66, 304–315. [Google Scholar] [CrossRef] [PubMed]
- Bernardello, G. A systematic survey of floral nectaries. In Nectaries and Nectar; Nicolson, S.W., Nepi, M., Pacini, E., Eds.; Springer: Dordrecht, The Netherlands, 2007. [Google Scholar]
- Ren, G.; Healy, R.A.; Klyne, A.M.; Horner, H.T.; James, M.G.; Thornburg, R.W. Transient starch metabolism in ornamental tobacco floral nectaries regulates nectar composition and release. Plant Sci. 2007, 173, 277–290. [Google Scholar] [CrossRef]
- Cocucci, A.A.; Galetto, L. Estudios sobre la presencia del nectario y el síndrome floral en Nicotiana (Solanaceae). Darwiniana 1992, 31, 151–157. [Google Scholar]
- Bildik, F. Application of choline chloride as natural deep eutectic solvents for the green extraction of phenolic compounds from Rheum ribes leaves. Eur. J. Tech. 2021, 11, 140–143. [Google Scholar] [CrossRef]
- Kumar, V.; Yadav, S.K. Overexpression of CsANR increased flavan-3-ols and decreased anthocyanins in transgenic tobacco. Mol. Biotechnol. 2013, 54, 426–435. [Google Scholar] [CrossRef]
- Jia, H.F.; Wang, J.; Yang, Y.; Liu, G.; Bao, Y.; Cui, H. Changes in flavonol content and transcript levels of genes in the flavonoid pathway in tobacco under phosphorus deficiency. Plant Growth Regul. 2015, 76, 225–231. [Google Scholar] [CrossRef]
- Castaneda-Ovando, A.; Pacheco-Hernandez, M.; Paez-Hernandez, M.E.; Rodríguez, J.A.; Galan-Vidal, C.A. Chemical studies of anthocyanins: A review. Food Chem. 2009, 113, 859–871. [Google Scholar] [CrossRef]
- Bosiljkov, T.; Dujmic, F.; Cvjetko Bubalo, M.; Hribar, J.; Vidrih, R.; Brnčić, M.; Zlatic, E.; Radojčić Redovniković, I.; Jokić, S. Natural deep eutectic solvents and ultrasound-assisted extraction: Green approaches for extraction of wine lees anthocyanins. Food Bioprod. Process 2017, 102, 195–203. [Google Scholar] [CrossRef]
- Loarce, L.; Oliver-Simancas, R.; Marchante, L.; Díaz-Maroto, M.C.; Alañón, M.E. Modifiers based on natural deep eutectic mixtures to enhance anthocyanins isolation from grape pomace by pressurized hot water extraction. LWT 2021, 149, 111889. [Google Scholar] [CrossRef]
- Jeong, K.M.; Zhao, J.; Jin, Y.; Heo, S.R.; Han, S.Y.; Yoo, D.E.; Lee, J. Highly efficient extraction of anthocyanins from grape skin using deep eutectic solvents as green and tunable media. Arch. Pharm. Res. 2015, 38, 2143–2152. [Google Scholar] [CrossRef]
- Fu, X.; Wang, D.; Belwal, T.; Xie, J.; Xu, Y.; Li, L.; Zou, L.; Zhang, L.; Luo, Z. Natural deep eutectic solvent enhanced pulse-ultrasonication assisted extraction as a multi-stability protective and efficient green strategy to extract anthocyanin from blueberry pomace. LWT 2021, 144, 111220. [Google Scholar] [CrossRef]
- Benvenutti, L.; Sanchez-Camargo, A.d.P.; Zielinski, A.A.F.; Ferreira, S.R.S. NADES as potential solvents for anthocyanin and pectin extraction from Myrciaria cauliflora fruit by-product: In silico and experimental approaches for solvent selection. J. Mol. Liq. 2020, 315, 113761. [Google Scholar] [CrossRef]
- Jiang, Z.; Wang, L.; Gao, Z.; Zhuang, B.; Yin, Q.; Liu, E. Green and efficient extraction of different types of bioactive alkaloids using deep eutectic solvents. Microchem. J. 2019, 145, 345–353. [Google Scholar] [CrossRef]
- Takla, S.S.; Shawky, E.; Hammoda, H.; Darwish, F. Green techniques in comparison to conventional ones in the extraction of Amaryllidaceae alkaloids: Best solvents selection and parameters optimization. J. Chromatogr. A 2018, 1567, 99–110. [Google Scholar] [CrossRef] [PubMed]
- Ru, Q.M.; Wang, L.Y.; Li, W.M.; Wang, J.L.; Ding, Y.T. In vitro antioxidant properties of flavonoids and polysaccharides extract from tobacco (Nicotiana tabacum L.) leaves. Molecules 2012, 17, 11281–11291. [Google Scholar] [CrossRef] [Green Version]
- Kaminski, K.P.; Bovet, L.; Laparra, H.; Lang, G.; De Palo, D.; Sierro, N.; Goepfert, S.; Ivanov, N.V. Alkaloid chemophenetics and transcriptomics of the Nicotiana genus. Phytochemistry 2020, 177, 112–424. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zhao, M.; Yang, B.; Jiang, Y.; Rao, G. Identification of polyphenols in tobacco leaf and their antioxidant and antimicrobial activities. Food Chem. 2008, 107, 1399–1406. [Google Scholar] [CrossRef]
- Al-Lahham, S.; Sbieh, R.; Jaradat, N.; Almasri, M.; Mosa, A.; Hamayel, A.; Hammad, F. Antioxidant, antimicrobial and cytotoxic properties of four different extracts derived from the roots of Nicotiana tabacum L. Eur. J. Integr. Med. 2020, 33, 101039. [Google Scholar] [CrossRef]
- Tang, X.; Liu, J.; Dong, W.; Li, P.; Li, L.; Lin, C.; Zheng, Y.; Hou, J.; Li, D. The cardio-protective effects of citric acid and L-malic acid on myocardial ischemia/reperfusion injury. Evid.-Based Complement. Altern. Med. 2013, 2013, 820695. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meng, X.; Yin, B.; Feng, H.L.; Zhang, S.; Liang, X.Q.; Meng, Q.-W. Overexpression of R2R3-MYB gene leads to accumulation of anthocyanin and enhanced resistance to chilling and oxidative stress. Biol. Plant 2014, 58, 121–130. [Google Scholar] [CrossRef]
- Dizeo de Strittmater, C. Nueva técnica de diafanización. Bol. Soc. Argent. Bot. 1973, 15, 126–129. [Google Scholar]
- D’Ambrogio de Argüeso, A. Manual de Técnicas en Histología Vegetal; Hemisferio Sur: Buenos Aires, Argentina, 1986; p. 83. [Google Scholar]
- Zarlavsky, G.E. Histología Vegetal: Técnicas Simples y Complejas; Sociedad Argentina de Botánica: Buenos Aires, Argentina, 2014; p. 198. [Google Scholar]
- Delso, I.; Lafuente, C.; Muñoz-Embid, J.; Artal, M. NMR study of choline chloride-based deep eutectic solvents. J. Mol. Liq. 2019, 290, 111236. [Google Scholar] [CrossRef]
- Grozdanova, T.; Trusheva, B.; Alipieva, K.; Popova, M.; Dimitrova, L.; Najdenski, H.; Zaharieva, M.; Ilieva, Y.; Vasileva, B.; Miloshev, G.; et al. Extracts of medicinal plants with natural deep eutectic solvents: Enhanced antimicrobial activity and low genotoxicity. BMC Chem. 2020, 14, 73. [Google Scholar] [CrossRef]
- Macchioni, V.; Carbone, K.; Cataldo, A.; Fraschini, R.; Bellucci, S. Lactic acid-based deep natural eutectic solvents for the ex-traction of bioactive metabolites of Humulus lupulus L.: Supramolecular organization, phytochemical profiling and biological activity. Sep. Purif. Technol. 2021, 264, 118039. [Google Scholar] [CrossRef]
- Doldolova, K.; Bener, M.; Lalikoğlu, M.; Aşçı, Y.S.; Arat, R.; Apak, R. Optimization and modeling of microwave-assisted ex-traction of curcumin and antioxidant compounds from turmeric by using natural deep eutectic solvents. Food Chem. 2021, 353, 129337. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic cid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar]
- Woisky, R.G.; Salatino, A. Analysis of propolis: Some parameters and procedures for chemical quality control. J. Apic. Res. 1998, 37, 99–105. [Google Scholar] [CrossRef]
- Lee, J.; Durst, R.W.; Wrolstad, R.E. Determination of total monomeric anthocyanin pigment content of fruits juices, beverages, natural colorants, and wines by the pH differential method: Collaborative study. J. AOAC Int. 2005, 88, 1269–1278. [Google Scholar] [CrossRef] [Green Version]
- Önal, A.; Kepekçi, Ş.E.; Öztunç, A. Spectrophotometric methods for the determination of the antidepressant drug Paroxetine hydrochloride in tablets. J. AOAC Int. 2005, 88, 490–495. [Google Scholar] [CrossRef] [Green Version]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef] [PubMed]
- Fernando, C.D.; Soysa, P. Optimized enzymatic colorimetric assay for determination of hydrogen peroxide (H2O2) scavenging activity of plant extracts. MethodsX 2015, 2, 283–291. [Google Scholar] [CrossRef] [PubMed]
- Di Rienzo, J.A.; Casanoves, F.; Balzarini, M.G.; Gonzalez, L.; Tablada, M.; Robledo, C.W. InfoStat Versión 2015; Grupo InfoStat, FCA; Universidad Nacional de Córdoba: Córdoba, Argentina, 2015. [Google Scholar]
- RStudio Team. RStudio: Integrated Development for R; RStudio, PBC: Boston, MA, USA, 2020; Available online: http://www.rstudio.com/ (accessed on 16 January 2023).
Mesh Size (µm) | Weight after Sieving (g) | Yield in Percentage (%) |
---|---|---|
840 | 50.00 | 46.53 |
500 | 24.81 | 23.08 |
149 | 25.71 | 23.92 |
105 | 4.96 | 4.61 |
74 | 1.67 | 1.55 |
<74 | 0.30 | 0.27 |
NaDESs Code | Components | Molar Ratio | pH |
---|---|---|---|
LAS | sucrose: lactic acid | 1:4 | 4 |
SALA | sucrose: lactic acid: distilled water | 1:5:7 | 1 |
CAP | propilen glycol: citric acid | 4:1 | 5 |
FGS | fructose: glucose: sucrose: distilled water | 1:1:1:11 | 6 |
CU | choline chloride: urea: distilled water | 1:2:1.5 | 6 |
N. tabacum Inflorescence Powder | TPC µg GAE/mL | TF µg QE/mL | TA µg ACE/mL | TAC mg C-3-GE/L |
---|---|---|---|---|
DW | 1326.0 ± 7.6 a | 122.5 ± 8.8 d | 336.7 ± 2.9 c | 2.9 ± 0.3 b |
EW | 2711.0 ± 11.5 c | 204.8 ± 5.1 e | 578.7 ± 5.6 e | N/D |
Methanol/HCl 1% | - | - | - | 5.7 ± 0.0 c |
AW | 2230.0 ± 4.0 b | 133.0 ± 2.3 d | 606.2 ± 1.8 e | 3.5 ± 0.4 b |
NaDESs | ||||
LAS | 2740.0 ± 5.5 c | 44.9 ± 6.1 b | 62.3 ± 0.4 b | 2.9 ± 0.1 b |
CAP | 1305.0 ± 9.0 a | 14.4 ± 6.3 a | 30.0 ± 4.0 a | 1.5 ± 0.5 a |
FGS | 2402.5 ± 9.7 b | 84.3 ± 4.9 c | 324.1 ± 3.2 c | N/D |
SALA * | 3420.0 ± 9.4 d | 74.3 ± 5.5 c | 60.0 ± 4.4 b | 3.3 ± 0.9 b |
CU | 2883.0 ± 9.7 c | 215.3 ± 3.2 e | 392.3 ± 8.0 d | N/D |
N. tabacum Inflorescence | ABTS (SC50 µg GAE/mL) | H2O2 (SC50 µg GAE/mL) |
---|---|---|
Conventional Extraction Solvents | ||
DW | 12.0 ± 2.5 e | 37.0 ± 5.4 e |
EW | 3.6 ± 0.9 b | 60.0 ± 6.6 h |
AW | 8.0 ± 0.9 d | 42.0 ± 3.2 f |
Non-Conventional Extraction Solvents | ||
LAS | 17.0 ± 2.4 f | 10.9 ± 2.8 b |
CAP | 9.0 ± 1.8 d | 5.2 ± 0.9 a |
FGS | 2.1 ± 0.8 a | 56.0 ± 9.3 g |
SALA | 8.76 ± 1.2 d | 13.6 ± 5.1 c |
CU | 5.7 ± 0.8 c | 45.0 ± 4.5 f |
Quercetin | 1.40 ± 0.1 a | 17.3 ± 0.5 d |
Pearson’s Correlation Coefficients | ||
---|---|---|
ABTS | H2O2 | |
TPC | −0.12 | 0.09 |
TF | −0.48 * | 0.77 * |
TA | −0.52 * | 0.87 * |
TAC | 0.73 * | −0.58 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leal, M.; Moreno, M.A.; Albornoz, P.L.; Mercado, M.I.; Zampini, I.C.; Isla, M.I. Morphological Characterization of Nicotiana tabacum Inflorescences and Chemical-Functional Analysis of Extracts Obtained from Its Powder by Using Green Solvents (NaDESs). Plants 2023, 12, 1554. https://doi.org/10.3390/plants12071554
Leal M, Moreno MA, Albornoz PL, Mercado MI, Zampini IC, Isla MI. Morphological Characterization of Nicotiana tabacum Inflorescences and Chemical-Functional Analysis of Extracts Obtained from Its Powder by Using Green Solvents (NaDESs). Plants. 2023; 12(7):1554. https://doi.org/10.3390/plants12071554
Chicago/Turabian StyleLeal, Mariana, María Alejandra Moreno, Patricia Liliana Albornoz, María Inés Mercado, Iris Catiana Zampini, and María Inés Isla. 2023. "Morphological Characterization of Nicotiana tabacum Inflorescences and Chemical-Functional Analysis of Extracts Obtained from Its Powder by Using Green Solvents (NaDESs)" Plants 12, no. 7: 1554. https://doi.org/10.3390/plants12071554
APA StyleLeal, M., Moreno, M. A., Albornoz, P. L., Mercado, M. I., Zampini, I. C., & Isla, M. I. (2023). Morphological Characterization of Nicotiana tabacum Inflorescences and Chemical-Functional Analysis of Extracts Obtained from Its Powder by Using Green Solvents (NaDESs). Plants, 12(7), 1554. https://doi.org/10.3390/plants12071554