Response to Hypersalinity of Four Halophytes Growing in Hydroponic Floating Systems: Prospects in the Phytomanagement of High Saline Wastewaters and Extreme Environments
Abstract
:1. Introduction
2. Results
2.1. Growth, Biomass Partitioning, and Water Content
2.2. Chlorophyll Fluorescence and Photosynthetic Pigments
2.3. Nutrients and Sodium Contents: Plant Organ Distribution and Accumulation
3. Discussion
3.1. Effects of Hypersalinity on Growth and Biomass Partitioning
3.2. Salt-Induced Modifications in Photosynthetic Characteristics
3.3. High Salinity Levels Affect the Distribution of Nutrients among Plant Organs
3.4. Sodium Accumulation and Distribution Pattern
4. Materials and Methods
4.1. Plant Material Characteristics
4.2. Growth Conditions: Hydroponic Floating Test
4.3. Growth Indicators and Hydration
4.4. Chlorophyll Fluorescence Parameters
4.5. Photosynthetic Pigments
4.6. Chemical Tissue Analysis: Major Element Distribution; Na Transport and Accumulation in Different Plant Organs
4.7. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Paul, V.G.; Mormile, M.R. A case for the protection of saline and hypersaline environments: A microbiological perspective. FEMS Microbiol. Ecol. 2017, 93, fix091. [Google Scholar] [CrossRef] [PubMed]
- Tweedley, J.R.; Dittmann, S.R.; Whitfield, A.K.; Withers, K.; Hoeksema, S.D.; Potter, I.C. Hypersalinity: Global distribution, causes, and present and future effects on the biota of estuaries and lagoons. In Coasts and Estuaries: The Future; Wolanski, E., Day, J.W., Elliott, M., Ramachandran, R., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 523–546. ISBN 9780128140031. [Google Scholar] [CrossRef]
- Zaman, M.; Shahid, S.A.; Heng, L. Guideline for Salinity Assessment, Mitigation and Adaptation Using Nuclear and Related Techniques, Joint FAO/IAEA Programme Nuclear Techniques in Food and Agriculture; Springer Nature Switzerland AG: Cham, Switzerland, 2018; ISBN 978-3-319-96190-3 (eBook). [Google Scholar] [CrossRef]
- Jimoh, A.A.; Ikhimiukor, O.O.; Adeleke, R. Prospects in the bioremediation of petroleum hydrocarbon contaminants from hypersaline environments: A review. Environ. Sci. Pollut. Res. Int. 2022, 29, 35615–35642. [Google Scholar] [CrossRef] [PubMed]
- FAO. Food and Agriculture: Key to Achieving the 2030, Agenda for Sustainable Development. Job No. I5499, Food and Agriculture Organization of the United Nations 2016, Rome, 23. Available online: https://www.fao.org/3/i5499e/i5499e.pdf (accessed on 19 December 2022).
- U.N. Water and climate change. In The United Nations World Water Development Report; UNESCO: Paris, France, 2020. [Google Scholar]
- Munns, R.; Tester, M. Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 2008, 59, 651–681. [Google Scholar] [CrossRef] [PubMed]
- Jesus, J.M.; Danko, A.S.; Fiúza, A.; Borges, M.-T. Phytoremediation of salt-affected soils: A review of processes, applicability, and the impact of climate change. Environ. Sci. Pollut. Res. 2015, 22, 6511–6525. [Google Scholar] [CrossRef]
- Ben Hamed, K.; Castagna, A.; Ranieri, A.; García-Caparrós, P.; Santin, M.; Hernandez, J.A.; Espin, G.B. Halophyte based Mediterranean agriculture in the contexts of food insecurity and global climate change. Environ. Exp. Bot. 2021, 191, 104601. [Google Scholar] [CrossRef]
- Yasseen, B.T.; Al-Thani, R.F. Endophytes and Halophytes to Remediate Industrial Wastewater and Saline Soils: Perspectives from Qatar. Plants 2022, 11, 1497. [Google Scholar] [CrossRef]
- Fakhru’l-Razi, A.; Pendashteh, A.; Abdullah, L.C.; Biak, D.R.A.; Madaeni, S.S.; Abidin, Z.Z. Review of technologies for oil and gas produced water treatment. J. Hazard. Mater. 2009, 170, 530–551. [Google Scholar] [CrossRef]
- Grifoni, M.; Pedron, F.; Barbafieri, M.; Rosellini, I.; Petruzzelli, G.; Franchi, E. Sustainable Valorization of Biomass: From Assisted Phytoremediation to Green Energy Production. In Handbook on Assisted and Amendments: Enhanced Sustainable Remediation Technology; Prasad, M.N.V., Ed.; John Wiley & Sons: London, UK, 2020; ISBN 9781119670391. [Google Scholar] [CrossRef]
- Flowers, T.J.; Colmer, T.D. Salinity tolerance in halophytes. New Phytol. 2008, 179, 945–963. [Google Scholar] [CrossRef]
- Karakas, S.; Dikilitas, M.; Tıpırdamaz, R. Phytoremediation of Salt-Affected Soils Using Halophytes. In Handbook of Halophytes. From Molecules to Ecosystems towards Biosaline Agriculture; Grigore, M.-N., Ed.; Springer International Publishing: Cham, Switzerland, 2020; pp. 1–18. ISBN 978-3-030-57634-9. [Google Scholar] [CrossRef]
- Mishra, A.; Tanna, B. Halophytes: Potential Resources for Salt Stress Tolerance Genes and Promoters. Front. Plant Sci. 2017, 8, 829. [Google Scholar] [CrossRef]
- Grigore, M.-N.; Vicente, O. Wild Halophytes: Tools for Understanding Salt Tolerance Mechanisms of Plants and for Adapting Agriculture to Climate Change. Plants 2023, 12, 221. [Google Scholar] [CrossRef]
- Parida, A.K.; Veerabathini, S.K.; Kumari, A.; Agarwal, P.K. Physiological, anatomical and metabolic implications of salt tolerance in the halophyte Salvadora persica under hydroponic culture condition. Front. Plant Sci. 2016, 7, 351. [Google Scholar] [CrossRef] [PubMed]
- Biondi, E.; Casavecchia, S.; Estrelles, E.; Soriano, P. Halocnemum M. Bieb. vegetation in the Mediterranean Basin. Plant Biosyst. -Int. J. Deal. All Asp. Plant Biol. 2013, 147, 536–547. [Google Scholar] [CrossRef]
- Al Hassan, M.; Estrelles, E.; Soriano, P.; López-Gresa, M.P.; Bellés, J.M.; Boscaiu, M.; Vicente, O. Unraveling salt tolerance mechanisms in halophytes: A comparative study on four Mediterranean Limonium species with different geographic distribution patterns. Front. Plant Sci. 2017, 8, 1438. [Google Scholar] [CrossRef] [PubMed]
- Debbagh-Nour, H.; Belcaid, M.; Ibourki, M.; Boukcim, H.; Ducousso, M.; El Kharrassi, Y.; El Mouttaqi, A.; Hirich, A. Spatial Distribution of Desert Plant Species According to Soil Salinity. Environ. Sci. Proc. 2022, 16, 10. [Google Scholar] [CrossRef]
- Matinzadeh, Z.; López-Angulo, J.; Escudero, A.; Palacio, S.; Abedi, M.; Akhani, H. Functional structure of plant communities along salinity gradients in Iranian salt marshes. Plant-Environ. Interact. 2022, 3, 16–27. [Google Scholar] [CrossRef]
- Ribeiro, H.; Almeida, C.M.R.; Magalhães, C.; Bordalo, A.A.; Mucha, A.P. Salt marsh sediment characteristics as key regulators on the efficiency of hydrocarbons bioremediation by Juncus maritimus rhizospheric bacterial community. Environ. Sci. Pollut. Res. 2015, 22, 450–462. [Google Scholar] [CrossRef]
- Wagner, T.V.; Al-Manji, F.; Xue, J.; Wetser, K.; de Wilde, V.; Parsons, J.R.; Rijnaarts, H.H.M.; Langenhoff, A.A.M. Effects of salinity on the treatment of synthetic petroleum-industry wastewater in pilot vertical flow constructed wetlands under simulated hot arid climatic conditions. Environ. Sci. Pollut. Res. 2021, 28, 2172–2181. [Google Scholar] [CrossRef]
- Al-Mailem, D.; Sorkhoh, N.; Marafie, M.; Al-Awadhi, H.; Eliyas, M.; Radwan, S. Oil phytoremediation potential of hypersaline coasts of the Arabian Gulf using rhizosphere technology. Bioresour. Technol. 2010, 101, 5786–5792. [Google Scholar] [CrossRef]
- Lin, Q.; Mendelssohn, I.A. Potential of restoration and phytoremediation with Juncus roemerianus for diesel-contaminated coastal wetlands. Ecol. Eng. 2009, 35, 85–91. [Google Scholar] [CrossRef]
- Pérez-Romero, J.A.; Barcia-Piedras, J.-M.; Redondo-Gómez, S.; Caçador, I.; Duarte, B.; Mateos-Naranjo, E. Salinity Modulates Juncus acutus L. Tolerance to Diesel Fuel Pollution. Plants 2022, 11, 758. [Google Scholar] [CrossRef]
- Purakayastha, T.J.; Mandal, A.; Kumari, S. Phytoremediation of metal-and salt-affected soils. In Bioremediation of Salt Affected Soils: An Indian Perspective; Arora, S., Singh, A.K., Singh, Y.P., Eds.; Springer International Publishing: Manhattan, NY, USA, 2017; pp. 211–231. ISBN 978-3-319-48257-6. [Google Scholar] [CrossRef]
- Fan, C. Genetic mechanisms of salt stress responses in halophytes. Plant Signal. Behav. 2019, 15, 1704528. [Google Scholar] [CrossRef]
- Khaznadar, M.; Vogiatzakis, I.; Griffiths, G. Land degradation and vegetation distribution in Chott El Beida wetland, Algeria. J. Arid. Environ. 2009, 73, 369–377. [Google Scholar] [CrossRef]
- Mercado, F.G.; Torres, F.D.M.; Luque, E.G.; Lozano, S.D.H. Salinity Tolerance of the Hygrophilous Plant Species in the Wetlands of the South of the Iberian Peninsula. Not. Bot. Horti Agrobot. Cluj-Napoca 2012, 40, 18–28. [Google Scholar] [CrossRef]
- Koull, N.; Chehma, A. Soil characteristics and plant distribution in saline wetlands of Oued Righ, northeastern Algeria. J. Arid. Land 2016, 8, 948–959. [Google Scholar] [CrossRef]
- Sparks, D.L. The chemistry of saline and sodic soils. In Environmental Soil Chemistry, 2nd ed.; Sparks, D.L., Ed.; Academic Press: Cambridge, MA, USA, 2003; pp. 285–300. [Google Scholar] [CrossRef]
- Isayenkov, S.V.; Maathuis, F.J.M. Plant salinity stress: Many unanswered questions remain. Front. Plant Sci. 2019, 10, 80. [Google Scholar] [CrossRef]
- Glenn, E.P.; Brown, J.J.; Blumwald, E. Salt Tolerance and crop potential of halophytes. Crit. Rev. Plant Sci. 1999, 18, 227–255. [Google Scholar] [CrossRef]
- Khan, M.A.; Ungar, I.A.; Showalter, A.M. The effect of salinity on the growth, water status, and ion content of a leaf succulent perennial halophyte, Suaeda fruticosa (L.) Forssk. J. Arid. Environ. 2000, 45, 73–84. [Google Scholar] [CrossRef]
- Houmani, H.; Debez, A.; Slatni, T.; Yousfi, S.; Jellali, N.; M’Sehli, W.; Abdelly, C.; Gharsalli, M. Insights into Physiological Responses of the Halophyte Suaeda fruticosa to Simultaneous Salinity and Iron Deficiency. CLEAN-Soil Air Water 2015, 43, 382–390. [Google Scholar] [CrossRef]
- Pujol, J.A.; Calvo, J.F.; Ramírez-Díaz, L. Recovery of germination from different osmotic conditions by four halophytes from southeastern spain. Ann. Bot. 2000, 85, 279–286. [Google Scholar] [CrossRef]
- Pujol, J.A.; Calvo, J.; Ramírez-Díaz, L. Seed germination, growth, and osmotic adjustment in response to NaCl in a rare succulent halophyte from southeastern Spain. Wetlands 2001, 21, 256–264. [Google Scholar] [CrossRef]
- Qu, X.-X.; Uang, Z.-Y.; Baskin, M.; Baskin, C.C. Effect of temperature, light and salinity on seed germination and radicle growth of the geographically widespread halophyte shrub halocnemum strobilaceum. Ann. Bot. 2008, 101, 293–299. [Google Scholar] [CrossRef]
- Gairola, S.; Shabana, H.A.; Mahmoud, T.; El-Keblawy, A.; Santo, A. Evaluating germinability of eight desert halophytes under long-term seed storage: Implications for conservation. Plant Divers. 2019, 41, 229–236. [Google Scholar] [CrossRef] [PubMed]
- Rozentsvet, O.; Nesterov, V.; Bogdanova, E.; Kosobryukhov, A.; Subova, S.; Semenova, G. Structural and molecular strategy of photosynthetic apparatus organisation of wild flora halophytes. Plant Physiol. Biochem. 2018, 129, 213–220. [Google Scholar] [CrossRef] [PubMed]
- Zörb, C.; Sümer, A.; Sungur, A.; Flowers, T.J.; Özcan, H. Ranking of 11 coastal halophytes from salt marshes in northwest Turkey according their salt tolerance. Turk. J. Bot. 2013, 37, 1125–1133. [Google Scholar] [CrossRef]
- Matinzadeh, Z.; Akhani, H.; Abedi, M.; Palacio, S. The elemental composition of halophytes correlates with key morphological adaptations and taxonomic groups. Plant Physiol. Biochem. 2019, 141, 259–278. [Google Scholar] [CrossRef]
- Packer, J.G.; Meyerson, L.A.; Skálová, H.; Pyšek, P.; Kueffer, C. Biological Flora of the British Isles: Phragmites australis. J. Ecol. 2017, 105, 1123–1162. [Google Scholar] [CrossRef]
- Boscaiu, M.; Ballesteros, G.; Naranjo, M.A.; Vicente, O.; Boira, H. Responses to salt stress in Juncus acutus and J. maritimus during seed germination and vegetative plant growth. Plant Biosyst.-Int. J. Deal. All Asp. Plant Biol. 2011, 145, 770–777. [Google Scholar] [CrossRef]
- Boscaiu, M.; Lull, C.; Llinares, J.; Vicente, O.; Boira, H. Proline as a biochemical marker in relation to the ecology of two halophytic Juncus species. J. Plant Ecol. 2013, 6, 177–186. [Google Scholar] [CrossRef]
- Eleuterius, L.N. Natural selection and genetic adaptation to hypersalinity in Juncus roemerianus Scheele. Aquat. Bot. 1989, 36, 45–53. [Google Scholar] [CrossRef]
- Selch, D.; Abbott, C.J.; Zhang, C. Applying Point Spectroscopy Data to Assess the Effects of Salinity and Sea Level Rise on Canopy Water Content of Juncus roemerianus. In Multi-sensor System Applications in the Everglades Ecosystem; CRC Press: Boca Raton, FL, USA, 2020; pp. 175–194. ISBN 9781032474878. [Google Scholar] [CrossRef]
- Pagter, M.; Bragato, C.; Malagoli, M.; Brix, H. Osmotic and ionic effects of NaCl and Na2SO4 salinity on Phragmites australis. Aquat. Bot. 2009, 90, 43–51. [Google Scholar] [CrossRef]
- Gorai, M.; Ennajeh, M.; Khemira, H.; Neffati, M. Influence of NaCl-salinity on growth, photosynthesis, water relations and solute accumulation in Phragmites australis. Acta Physiol. Plant. 2011, 33, 963–971. [Google Scholar] [CrossRef]
- Xianzhao, L.; Chunzhi, W.; Qing, S. Screening for salt tolerance in eight halophyte species from yellow river delta at the two initial growth stages. ISRN Agron. 2013, 2013, 8. [Google Scholar] [CrossRef]
- Murchie, E.; Lawson, T. Chlorophyll fluorescence analysis: A guide to good practice and understanding some new applications. J. Exp. Bot. 2013, 64, 3983–3998. [Google Scholar] [CrossRef] [PubMed]
- Genty, B.; Briantais, J.M.; Baker, N.R. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim. Biophys. Acta 1989, 990, 87–92. [Google Scholar] [CrossRef]
- Loggini, B.; Scartazza, A.; Brugnoli, E.; Navari-Izzo, F. Antioxidative defense system, pigment composition, and photosynthetic efficiency in two wheat cultivars subjected to drought. Plant Physiol. 1999, 119, 1091–1100. [Google Scholar] [CrossRef] [PubMed]
- Allahverdiyeva, Y.; Aro, E.M. Photosynthetic responses of plants to excess light: Mechanisms and conditions for photoinhibition, excess energy dissipation and repair. In Photosynthesis: Plastid Biology, Energy Conversion and Carbon Assimilation, Advances in Photosynthesis and Respiration; Eaton-Rye, J.J., Tripathy, B.C., Sharkey, T.D., Eds.; Springer: Dordrecht, The Netherlands, 2012; Volume 34, pp. 275–297. [Google Scholar]
- Ruban, A.V. Evolution under the sun: Optimizing light harvesting in photosynthesis. J. Exp. Bot. 2015, 66, 7–23. [Google Scholar] [CrossRef]
- Pompeiano, A.; Di Patrizio, E.; Volterrani, M.; Scartazza, A.; Guglielminetti, L. Growth responses and physiological traits of seashore paspalum subjected to short-term salinity stress and recovery. Agric. Water Manag. 2016, 163, 57–65. [Google Scholar] [CrossRef]
- Yuan, F.; Xu, Y.; Leng, B.; Wang, B. Beneficial Effects of Salt on Halophyte Growth: Morphology, Cells, and Genes. Open Life Sci. 2019, 14, 191–200. [Google Scholar] [CrossRef]
- Megdiche, W.; Hessini, K.; Gharbi, F.; Jaleel, C.A.; Ksouri, R.; Abdelly, C. Photosynthesis and photosystem II efficiency of two salt-adapted halophytic seashore Cakile maritima ecotypes. Photosynthetica 2008, 46, 410–419. [Google Scholar] [CrossRef]
- Shoukat, E.; Abideen, Z.; Ahmed, M.Z.; Gulzar, S.; Nielsen, B.L. Changes in growth and photosynthesis linked with intensity and duration of salinity in Phragmites karka. Environ. Exp. Bot. 2019, 162, 504–514. [Google Scholar] [CrossRef]
- Bankaji, I.; Caçador, I.; Sleimi, N. Assessing of tolerance to metallic and saline stresses in the halophyte Suaeda fruticosa: The indicator role of antioxidative enzymes. Ecol. Indic. 2016, 64, 297–308. [Google Scholar] [CrossRef]
- Hulkko, L.S.S.; Chaturvedi, T.; Thomsen, M.H. Extraction and quantification of chlorophylls, carotenoids, phenolic compounds, and vitamins from halophyte biomasses. Appl. Sci. 2022, 12, 840. [Google Scholar] [CrossRef]
- Nevo, R.; Charuvi, D.; Tsabari, O.; Reich, Z. Composition, architecture and dynamics of the photosynthetic apparatus in higher plants. Plant J. 2012, 70, 157–176. [Google Scholar] [CrossRef] [PubMed]
- Meloni, D.A.; Oliva, M.A.; Martinez, C.A.; Cambraia, J. Photosynthesis and activity of superoxide dismutase, peroxidase and glutathione reductase in cotton under salt stress. Environ. Exp. Bot. 2003, 49, 69–76. [Google Scholar] [CrossRef]
- Liu, J.; Shi, D.C. Photosynthesis, chlorophyll fluorescence, inorganic ion and organic acid accumulations of sunflower in responses to salt and salt-alkaline mixed stress. Photosynthetica 2010, 48, 127–134. [Google Scholar] [CrossRef]
- Rozentsvet, O.A.; Bogdanova, E.S.; Ivanova, L.A.; Tabalenkova, G.N.; Zakhozhiy, I.G.; Nesterov, V.N. Structural and functional organization of the photosynthetic apparatus in halophytes with different strategies of salt tolerance. Photosynthetica 2016, 54, 405–413. [Google Scholar] [CrossRef]
- Zakar, T.; Laczko-Dobos, H.; Toth, T.N.; Gombos, Z. Carotenoids assist in cyanobacterial photosystem II assembly and function. Front. Plant Sci. 2016, 7, 295. [Google Scholar] [CrossRef]
- Yadav, S.; Mishra, A.; Jha, B. Elevated CO2 leads to carbon sequestration by modulating C4 photosynthesis pathway enzyme (PPDK) in Suaeda monoica and S. fruticosa. J. Photochem. Photobiol. B Biol. 2017, 178, 310–315. [Google Scholar] [CrossRef]
- Elser, J.J.; Bracken, M.E.S.; Cleland, E.E.; Gruner, D.S.; Harpole, W.S.; Hillebrand, H.; Ngai, J.T.; Seabloom, E.W.; Shurin, J.B.; Smith, J.E. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecol. Lett. 2007, 10, 1135–1142. [Google Scholar] [CrossRef]
- Ragel, P.; Raddatz, N.; Leidi, E.O.; Quintero, F.J.; Pardo, J.M. Regulation of K+ nutrition in plants. Front. Plant Sci. 2019, 10, 281. [Google Scholar] [CrossRef]
- Sun, X.; Gao, Y.; Wang, D.; Chen, J.; Zhang, F.; Zhou, J.; Yan, X.; Li, Y. Stoichiometric variation of halophytes in response to changes in soil salinity. Plant Biol. 2017, 19, 360–367. [Google Scholar] [CrossRef]
- Zhang, J.; Xie, H.; Biswas, A.; Shan, Y.; Qi, X.; Cao, J. Response of different organs’ stoichiometry of Phragmites australis to soil salinity in arid marshes, China. Glob. Ecol. Conserv. 2021, 31, e01843. [Google Scholar] [CrossRef]
- Luo, Y.; Peng, Q.; Li, K.; Gong, Y.; Liu, Y.; Han, W. Patterns of nitrogen and phosphorus stoichiometry among leaf, stem and root of desert plants and responses to climate and soil factors in Xinjiang, China. Catena 2021, 199, 105100. [Google Scholar] [CrossRef]
- Teglia, A.; Di Baccio, D.; Matteucci, G.; Scartazza, A.; De Cinti, B.; Mazzenga, F.; Ravaioli, D.; Muzzi, E.; Marcolini, G.; Magnani, F. Effects of simulated nitrogen deposition on the nutritional and physiological status of beech forests at two climatic contrasting sites in Italy. Sci. Total Environ. 2022, 834, 155362. [Google Scholar] [CrossRef] [PubMed]
- Güsewell, S. N: P ratios in terrestrial plants: Variation and functional significance. New Phytol. 2004, 164, 243–266. [Google Scholar] [CrossRef] [PubMed]
- Shabala, S.; Cuin, T.A. Potassium transport and plant salt tolerance. Physiol. Plant. 2008, 133, 651–669. [Google Scholar] [CrossRef]
- Ahmad, I.; Devonshire, J.; Mohamed, R.; Schultze, M.; Maathuis, F.J.M. Overexpression of the potassium channel TPK b in small vacuoles confers osmotic and drought tolerance to rice. New Phytol. 2016, 209, 1040–1048. [Google Scholar] [CrossRef]
- Ran, X.; Wang, X.; Huang, X.; Ma, C.; Liang, H.; Liu, B. Study on the Relationship of Ions (Na, K, Ca) Absorption and Distribution to Photosynthetic Response of Salix matsudana Koidz Under Salt Stress. Front. Plant Sci. 2022, 13, 860111. [Google Scholar] [CrossRef]
- Wang, B.S.; Lüttge, U.; Ratajczak, R. Effects of salt treatment and osmotic stress on V-ATPase and V-PPase in leaves of the halophyte Suaeda salsa. J. Exp. Bot. 2001, 52, 2355–2365. [Google Scholar] [CrossRef]
- Ramos, J.; López, M.J.; Benlloch, M. Effect of NaCl and KCl salts on the growth and solute accumulation of the halophyte Atriplex nummularia. Plant Soil 2004, 259, 163–168. [Google Scholar] [CrossRef]
- Kadereit, G.; Mucina, L.; Freitag, H. Phylogeny of Salicornioideae (Chenopodiaceae): Diversification, biogeography, and evolutionary trends in leaf and flower morphology. Taxon 2006, 55, 617–642. [Google Scholar] [CrossRef]
- Hameed, A.; Hussain, T.; Gulzar, S.; Aziz, I.; Gul, B.; Khan, M.A. Salt tolerance of a cash crop halophyte Suaeda fruticosa: Biochemical responses to salt and exogenous chemical treatments. Acta Physiol. Plant. 2012, 34, 2331–2340. [Google Scholar] [CrossRef]
- Chaudhary, D.R.; Rathore, A.P.; Jha, B. Aboveground, belowground biomass and nutrients pool in Salicornia brachiata at coastal area of India: Interactive effects of soil characteristics. Ecol. Res. 2018, 33, 1207–1218. [Google Scholar] [CrossRef]
- Bonanno, G.; Vymazal, J.; Cirelli, G.L. Translocation, accumulation and bioindication of trace elements in wetland plants. Sci. Total. Environ. 2018, 631–632, 252–261. [Google Scholar] [CrossRef]
- Velazquez-Gonzalez, R.S.; Garcia-Garcia, A.L.; Ventura-Zapata, E.; Barceinas-Sanchez, J.D.O.; Sosa-Savedra, J.C. A Review on Hydroponics and the Technologies Associated for Medium-and Small-Scale Operations. Agriculture 2022, 12, 646. [Google Scholar] [CrossRef]
- Di Baccio, D.; Tognetti, R.; Minnocci, A.; Sebastiani, L. Responses of the Populus×euramericana clone I-214 to excess zinc: Carbon assimilation, structural modifications, metal distribution and cellular localization. Environ. Exp. Bot. 2009, 67, 153–163. [Google Scholar] [CrossRef]
- Bilger, W. Role of the xanthophyll cycle in photoprotection elucidated by measurements of light-induced absorbance changes, fluorescence and photosynthesis in leaves of Hedera canariensis. Photosynth. Res. 1990, 25, 173–185. [Google Scholar] [CrossRef]
- Wellburn, A.R. The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J. Plant Physiol. 1994, 144, 307–313. [Google Scholar] [CrossRef]
- EPA-United State Environmental Protection Agency. Method 3052 Microwave assisted acid digestion of siliceous and organically based matrices. In Test Methods for Evaluating Soild Waste: Physical/Chemical Methods (SW-846); U.S. Environmental Protection Agency, Ed.; EPA-United State Environmental Protection Agency: Washington, DC, USA, 1995; pp. 3052-1–3052-21. [Google Scholar]
- Olsen, S.R.; Sommers, L.E. Phosphorus. In Methods of Soil Analysis, Part 1; Klute, A., Ed.; ASA-SSSA: Madison, WI, USA, 1992; pp. 403–430. [Google Scholar] [CrossRef]
Species | Family | Habitat | Life Form and Cycle | Salt Tolerance and Eco-Morphotype | References |
---|---|---|---|---|---|
Suaeda fruticosa (L.) Forssk., syn. Suaeda vera J.F. Gmel. | Amaranthaceae | Salty marshes of the Mediterranean, Europe, and Africa. | Chamaephyte, perennial | Eu-halophyte, leaf succulent | [21,29,30] |
Halocnemum strobilaceum (Pallas) M. Bieb., syn. Salicornia strobilacea Pall. | Amaranthaceae | Salty marshes, and saline soils of the Mediterranean and Asia | Chamaephyte, perennial | Eu-halophyte, stem succulent, xerophytic type | [8,21,30,31] |
Juncus maritimus Lam. | Juncaceae | Juncetea maritimi of Europe, West Asia, and Magreb | Geo (crypto) phyte, perennial | Hydroalophyte | [8,21,30,31] |
Phragmites australis (Cav.) Trin. ex Steudel, syn. Phragmites communis Trin. | Poaceae | Phragmitetalia, ubiquitous, in both shallow lowland freshwater, and saline (marshes and swamps) habitats | Therophyte, geophyte, and helophyte—hydrophytes depending on the habitat; perennial | Eury-hygro-halophyte | [21,30,31] |
Suaeda fruticosa | |||||||||
N (%) | P (mmol 100 g−1 DW) | K (mmol 100 g−1 DW) | |||||||
NaCl | leaf | stem | root | leaf | stem | root | leaf | stem | root |
Control (0 g L−1) | 4.94 ± 0.20 a | 1.93 ± 0.11 a | 2.03 ± 0.05 bc | 10.39 ± 0.08 b | 5.22 ± 0.07 f | 7.70 ± 0.07 g | 2.26 ± 0.08 m | 10.92 ± 0.04 a | 6.90 ± 0.26 b |
15 g L−1 | 4.11 ± 0.17 b | 1.63 ± 0.02 a–d | 2.07 ± 0.18 bc | 6.39 ± 0.14 e | 4.81 ± 0.09 g | 11.77 ± 0.21 b | 18.64 ± 0.24 b | 8.77 ± 0.38 c | 9.18 ± 0.32 a |
30 g L−1 | 3.36 ± 0.14 de | 1.85 ± 0.23 a–c | 1.82 ± 0.16 c–e | 4.87 ± 0.14 g | 4.45 ± 0.08 h | 9.44 ± 0.01 d | 13.32 ± 0.80 e | 6.06 ± 0.32 e | 5.96 ± 0.50 c |
50 g L−1 | 3.58 ± 0.10 cd | 1.88 ± 0.21 a–c | 1.69 ± 0.13 d–f | 6.03 ± 0.06 f | 8.52 ± 0.22 b | 18.23 ± 0.11 a | 11.85 ± 0.60 g | 9.61 ± 0.17 b | 3.78 ± 0.15 fg |
100 g L−1 | 3.78 ± 0.03 c | 1.91 ± 0.03 ab | 1.35 ± 0.05 g | 11.69 ± 0.18 a | 11.21 ± 0.01 a | 11.11 ± 0.19 c | 17.44 ± 0.55 c | 4.51 ± 0.15 g | 4.08 ± 0.33 f |
Halocnemum strobilaceum | |||||||||
N (%) | P (mmol 100 g−1 DW) | K (mmol 100 g−1 DW) | |||||||
NaCl | leaf | stem | root | leaf | stem | root | leaf | stem | root |
Control (0 g L−1) | 2.82 ± 0.06 f | 1.46 ± 0.10 d–f | 1.81 ± 0.06 c–e | 4.02 ± 0.21 h | 2.85 ± 0.06 m | 4.26 ± 0.04 il | 14.57 ± 0.13 d | 3.61 ± 0.03 h | 5.23 ± 0.14 d |
15 g L−1 | 2.30 ± 0.09 i | 1.27 ± 0.04 e–h | 1.74 ± 0.02 d–f | 3.10 ± 0.004 1 | 2.70 ± 0.02 m | 4.36 ± 0.09 i | 11.74 ± 0.33 g | 2.45 ± 0.06 lm | 3.47 ± 0.17 gh |
30 g L−1 | 2.14 ± 0.05 il | 1.57 ± 0.27 b–e | 1.61 ± 0.07 d–f | 2.58 ± 0.05 m | 2.67 ± 0.08 m | 4.02 ± 0.20 l | 12.19 ± 0.09 fg | 3.53 ± 0.07 h | 2.72 ± 0.04 i |
50 g L−1 | 2.35 ± 0.05 h | 1.54± 0.18 c–f | 1.47 ± 0.03 fg | 2.40 ± 0.20 m | 3.56 ± 0.22 l | 3.34 ± 0.21 m | 19.74 ± 0.15 a | 5.66 ± 0.01 f | 4.77 ± 0.10 e |
100 g L−1 | 2.32 ± 0.06 hi | 1.44 ± 0.001 d–f | 1.57 ± 0.03 ef | 4.83 ± 0.07 g | 6.69 ± 0.29 c | 5.82 ± 0.15 h | 2.11 ± 0.02 m | 1.15 ± 0.02 o | 1.21 ± 0.01 mn |
Juncus maritimus | |||||||||
N (%) | P (mmol 100 g−1 DW) | K (mmol 100 g−1 DW) | |||||||
NaCl | shoot | rhizome | root | shoot | rhizome | root | shoot | rhizome | root |
Control (0 g L−1) | 1.61 ± 0.02 n | 1.34 ± 0.04 d–g | 0.79 ± 0.01 i | 3.52 ± 0.41 i | 1.95 ± 0.20 n | 0.05 ± 0.003 p | 5.70 ± 0.01 l | 2.60 ± 0.26 il | 1.71 ± 0.04 l |
15 g L−1 | 1.51 ± 0.03 n | 1.37 ± 0.19 d–g | 0.65 ± 0.04 il | 2.55 ± 0.10 m | 3.85 ± 0.06 il | 0.14 ± 0.09 op | 5.96 ± 0.03 l | 2.83 ± 0.02 i | 0.96 ± 0.02 nl |
30 g L−1 | 1.22 ± 0.04 o | 1.10 ± 0.09 g–i | 0.58 ± 0.01 lm | 4.87 ± 0.04 g | 6.38 ± 0.15 de | n. d. | 7.17 ± 0.19 i | 2.59 ± 0.01 il | 2.65 ± 0.27 i |
50 g L−1 | 1.52 ± 0.02 mn | 1.02 ± 0.14 h–l | 0.48 ± 0.02 m | 4.24 ± 0.15 h | 6.17 ± 0.09 e | 0.32 ± 0.04 op | 7.41 ± 0.12 i | 6.54 ± 0.22 d | 1.93 ± 0.03 l |
100 g L−1 | 1.33 ± 0.05 m–o | 0.84 ± 0.01 l | 0.61 ± 0.02 lm | 5.88 ± 0.18 f | 6.64 ± 0.17 cd | 0.42 ± 0.09 o | 7.38 ± 0.16 i | 5.34 ± 0.19 f | 1.96 ± 0.12 l |
Phragmites australis | |||||||||
N (%) | P (mmol 100 g−1 DW) | K (mmol 100 g−1 DW) | |||||||
NaCl | shoot | rhizome | root | shoot | rhizome | root | shoot | rhizome | root |
Control (0 g L−1) | 3.19 ± 0.04 e | 1.27 ± 0.04 e–h | 3.59 ± 0.36 a | 9.93 ± 0.12 c | 4.07 ± 0.09 i | 8.86 ± 0.01 e | 12.85 ± 0.30 e | 2.09 ± 0.04 n | 5.81 ± 0.01 c |
15 g L−1 | 2.53 ± 0.03 gh | 1.39 ± 0.05 d–f | 2.19 ± 0.26 b | 10.42 ± 0.14 b | 3.96 ± 0.16 i | 8.07 ± 0.003 f | 12.79 ± 0.21 ef | 2.64 ± 0.14 il | 3.08 ± 0.01 hi |
30 g L−1 | 2.29 ± 0.05 i | 1.62 ± 0.04 a–d | 1.85 ± 0.18 cd | 10.23 ± 0.003 bc | 6.18 ± 0.26 e | 9.44 ± 0.01 d | 10.27 ± 0.01 h | 2.56 ± 0.07 i–m | 1.83 ± 0.01 l |
50 g L−1 | 2.00 ± 0.03 l | 1.23 ± 0.08 g–h | 1.80 ± 0.06 c–e | 8.60 ± 0.11 d | 4.00 ± 0.07 i | 8.30 ± 0.01 f | 5.97 ± 0.14 l | 2.24 ± 0.11 mn | 1.58 ± 0.01 lm |
100 g L−1 | 2.59 ± 0.14 fg | 0.89 ± 0.001 il | 1.09 ± 0.01 h | 10.13 ± 0.003 bc | 2.65 ± 0.06 m | 1.34 ± 0.003 n | 1.80 ± 0.01 m | 11.06 ± 0.16 a | 1.61 ± 0.01 lm |
Statistics | Two-way ANOVA—F (P) | ||||||||
NaCl | 60.7 (<0.001) | 4.5 (0.008) | 50.6 (<0.001) | 386.1 (<0.001) | 673.4 (<0.001) | 459.0 (<0.001) | 302.9 (<0.001) | 272.4 (<0.001) | 150.4 (<0.001) |
species | 803.8 (<0.001) | 40.2 (<0.001) | 315.9 (<0.001) | 3173.9 (<0.001) | 914.1 (<0.001) | 7371.7 (<0.001) | 798.9 (<0.001) | 1696.2 (<0.001) | 651.9 (<0.001) |
NaCl x species | 7.1 (<0.001) | 3.6 (0.004) | 14.3 (<0.001) | 154.7 (<0.001) | 323.7 (<0.001) | 664.5 (<0.001) | 598.2 (<0.001) | 616.3 (<0.001) | 88.6 (<0.001) |
Suaeda fruticosa | ||||||
NaCl | K/Na leaf | K/Na stem | K/Na root | Ca/Na leaf | Ca/Na stem | Ca/Na root |
Control (0 g L−1) | 0.11 ± 0.004 n | 3.52 ± 0.003 a | 2.56 ± 0.08 c | 0.24 ± 0.002 l | 0.74 ± 0.03 d | 1.93 ± 0.05 cd |
15 g L−1 | 0.84 ± 0.01 h | 0.91 ± 0.002 ef | 1.49 ± 0.04 g | 0.13 ± 0.001 mn | 0.31 ± 0.02 f | 0.49 ± 0.004 ef |
30 g L−1 | 0.60 ± 0.004 l | 0.58 ± 0.02 g–l | 1.14 ± 0.07 h | 0.15 ± 0.02 m | 0.27 ± 0.01 fg | 0.38 ± 0.02 ef |
50 g L−1 | 0.62 ± 0.02 l | 0.72 ± 0.01 gh | 0.46 ± 0.002 lm | 0.22 ± 0.001 l | 0.28 ± 0.01 f | 0.28 ± 0.003 ef |
100 g L−1 | 1.80 ± 0.06 d | 0.23 ± 0.01 no | 0.23 ± 0.02 op | 0.64 ± 0.04 c | 0.24 ± 0.01 f–h | 0.09 ± 0.002 ef |
Halocnemum strobilaceum | ||||||
NaCl | K/Na leaf | K/Na stem | K/Na root | Ca/Na leaf | Ca/Na stem | Ca/Na root |
Control (0 g L−1) | 0.73 ± 0.005 i | 1.51 ± 0.17 c | 7.27 ± 0.02 b | 0.45 ± 0.03 g | 0.95 ± 0.02 c | 7.12 ± 1.15 a |
15 g L−1 | 0.57 ± 0.009 l | 1.01 ± 0.12 de | 1.74 ± 0.02 f | 0.52 ± 0.009 de | 0.70 ± 0.13 d | 2.53 ± 0.13 c |
30 g L−1 | 0.59 ± 0.01 l | 1.15 ± 0.10 d | 0.82 ± 0.01 i | 0.49 ± 0.01 ef | 0.79 ± 0.15 d | 1.85 ± 0.23 d |
50 g L−1 | 0.98 ± 0.01 g | 1.56 ± 0.03 c | 1.94 ± 0.05 e | 0.54 ± 0.001 d | 0.70 ± 0.003 d | 1.49 ± 0.02 d |
100 g L−1 | 0.11 ± 0.001 n | 0.13 ± 0.005 o | 0.11 ± 0.002 q | 0.67 ± 0.001 c | 0.36 ± 0.01 f | 0.30 ± 0.01 ef |
Juncus maritimus | ||||||
NaCl | K/Na shoot | K/Na rhizome | K/Na root | Ca/Na shoot | Ca/Na rhizome | Ca/Na root |
Control (0 g L−1) | 3.63 ± 0.03 b | 1.41 ± 0.18 c | 2.16 ± 0.22 d | 0.93 ± 0.03 b | 1.56 ± 0.03 b | 7.49 ± 0.65 a |
15 g L−1 | 1.56 ± 0.01 e | 0.97 ± 0.01 de | 0.29 ± 0.01 no | 0.44 ± 0.01 g | 0.51 ± 0.02 e | 1.85 ± 0.01 d |
30 g L−1 | 1.44 ± 0.07 f | 0.47 ± 0.003 i–m | 0.37 ± 0.03 mn | 0.31 ± 0.01 i | 0.27 ± 0.01 f | 0.68 ± 0.03 e |
50 g L−1 | 0.47 ± 0.001 m | 0.40 ± 0.01 l–n | 0.13 ± 0.005 pq | 0.11 ± 0.004 n | 0.12 ± 0.002 h | 0.20 ± 0.04 ef |
100 g L−1 | 1.75 ± 0.005 d | 0.29 ± 0.01 m–o | 0.10 ± 0.01 q | 0.48 ± 0.01 fg | 0.11 ± 0.001 h | 0.19 ± 0.001 ef |
Phragmites australis | ||||||
NaCl | K/Na shoot | K/Na rhizome | K/Na root | Ca/Na shoot | Ca/Na rhizome | Ca/Na root |
Control (0 g L−1) | 8.82 ± 0.13 a | 3.03 ± 0.27 b | 8.37 ± 0.001 a | 1.35 ± 0.04 a | 3.36 ± 0.20 a | 3.84 ± 0.001 b |
15 g L−1 | 3.23 ± 0.07 c | 0.73 ± 0.05 fg | 0.54 ± 0.001 l | 0.53 ± 0.01 d | 0.37 ± 0.01 f | 0.53 ± 0.001 ef |
30 g L−1 | 1.73 ± 0.001 d | 0.62 ± 0.02 g–i | 0.18 ± 0.001 o–q | 0.29 ± 0.001 i | 0.30 ± 0.02 f | 0.38 ± 0.001 ef |
50 g L−1 | 1.57 ± 0.03 e | 0.24 ± 0.01 no | 0.10 ± 0.001 q | 0.38 ± 0.03 h | 0.13 ± 0.01 gh | 0.22 ± 0.001 ef |
100 g L−1 | 0.11 ± 0.001 n | 0.54 ± 0.01 h–l | 0.08 ± 0.001 q | 0.10 ± 0.001 n | 0.11 ± 0.004 h | 0.04 ± 0.001 f |
Statistics | Two-way ANOVA—F (P) | |||||
NaCl | 5193.7 (<0.001) | 621.9 (<0.001) | 9969.6 (<0.001) | 724.4 (<0.001) | 667.2 (<0.001) | 350.1 (<0.001) |
species | 8207.1 (<0.001) | 52.2 (<0.001) | 1803.4 (<0.001) | 417.3 (<0.001) | 108.0 (<0.001) | 96.4 (<0.001) |
NaCl x species | 3846.9 (<0.0001) | 86.3 (<0.001) | 1309.1 (<0.001) | 481.5 (<0.001) | 163.7 (<0.001) | 25.4 (<0.001) |
Suaeda fruticosa | ||||
NaCl | BAFshoot | BAFroot | BAFwhole plant | TF |
Control (0 g L−1) | – | – | – | 11.06 ± 0.39 c |
15 g L−1 | 8.31 ± 0.02 a | 0.87 ± 0.07 cd | 9.18 ± 0.56 a | 9.55 ± 0.24 cd |
30 g L−1 | 2.27 ± 0.11 c | 0.26 ± 0.07 fg | 2.06 ± 0.04 cd | 9.09 ± 2.75 cd |
50 g L−1 | 1.61 ± 0.26 d | 0.32 ± 0.07 fg | 1.90 ± 0.33 e | 5.04 ± 0.37 e |
100 g L−1 | 0.55 ± 0.03 f | 0.33 ± 0.07 fg | 1.05 ± 0.05 fg | 1.70 ± 0.44 fg |
Halocnemum strobilaceum | ||||
NaCl | BAFshoot | BAFroot | BAFwhole plant | TF |
Control (0 g L−1) | – | – | – | 35.43 ± 1.75 a |
15 g L−1 | 4.32 ± 0.31 b | 0.28 ± 0.08 fg | 4.60 ± 0.40 b | 16.23 ± 3.73 b |
30 g L−1 | 2.32 ± 0.11 c | 0.29 ± 0.05 fg | 2.61 ± 0.06 c | 8.07 ± 1.75 d |
50 g L−1 | 1.21 ± 0.04 e | 0.11 ± 0.02 g | 1.32 ± 0.06 f | 11.59 ± 2.22 c |
100 g L−1 | 0.46 ± 0.10 f | 0.14 ± 0.07 g | 0.61 ± 0.17 g | 3.38 ± 0.87 ef |
Juncus maritimus | ||||
NaCl | BAFshoot | BAFunderground | BAFwhole plant | TF |
Control (0 g L−1) | – | – | – | 0.80 ± 0.10 fg |
15 g L−1 | 1.01 ± 0.07 e | 1.63 ± 0.23 b | 2.64 ± 0.29 c | 0.62 ± 0.05 g |
30 g L−1 | 0.43 ± 0.02 fg | 1.64 ± 0.21 b | 2.06 ± 0.24 de | 0.26 ± 0.02 g |
50 g L−1 | 0.47 ± 0.06 f | 1.43 ± 0.22 b | 1.90 ± 0.27 e | 0.33 ± 0.01 g |
100 g L−1 | 0.06 ± 0.01 h | 0.99 ± 0.17 c | 1.05 ± 0.18 fg | 0.07 ± 0.003 g |
Phragmites australis | ||||
NaCl | BAFshoot | BAFunderground | BAFwhole plant | TF |
Control (0 g L−1) | – | – | – | 0.42 ± 0.11 g |
15 g L−1 | 0.31 ± 0.02 f–h | 2.00 ± 0.19 a | 2.31 ± 0.21 c–e | 0.15 ± 0.01 g |
30 g L−1 | 0.08 ± 0.05 gh | 0.53 ± 0.10 ef | 0.61 ± 0.15 g | 0.15 ± 0.07 g |
50 g L−1 | 0.05 ± 0.01 h | 0.87 ± 0.04 cd | 0.92 ± 0.05 fg | 0.06 ± 0.01 g |
100 g L−1 | 0.08 ± 0.04 gh | 0.68 ± 0.12 de | 0.76 ± 0.16 g | 0.11 ± 0.03 g |
Statistics | Two-way ANOVA—F (P) | |||
NaCl | 557.3 (<0.001) | 39.48 (<0.001) | 378.39 (<0.001) | 74.03 (<0.001) |
species | 572.2 (<0.001) | 142.69 (<0.001) | 142.60 (<0.001) | 287.96 (<0.001) |
NaCl x species | 171.8 (<0.0001) | 11.63 (<0.001) | 75.39 (<0.001) | 41.51 (<0.001) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barbafieri, M.; Bretzel, F.; Scartazza, A.; Di Baccio, D.; Rosellini, I.; Grifoni, M.; Pini, R.; Clementi, A.; Franchi, E. Response to Hypersalinity of Four Halophytes Growing in Hydroponic Floating Systems: Prospects in the Phytomanagement of High Saline Wastewaters and Extreme Environments. Plants 2023, 12, 1737. https://doi.org/10.3390/plants12091737
Barbafieri M, Bretzel F, Scartazza A, Di Baccio D, Rosellini I, Grifoni M, Pini R, Clementi A, Franchi E. Response to Hypersalinity of Four Halophytes Growing in Hydroponic Floating Systems: Prospects in the Phytomanagement of High Saline Wastewaters and Extreme Environments. Plants. 2023; 12(9):1737. https://doi.org/10.3390/plants12091737
Chicago/Turabian StyleBarbafieri, Meri, Francesca Bretzel, Andrea Scartazza, Daniela Di Baccio, Irene Rosellini, Martina Grifoni, Roberto Pini, Alice Clementi, and Elisabetta Franchi. 2023. "Response to Hypersalinity of Four Halophytes Growing in Hydroponic Floating Systems: Prospects in the Phytomanagement of High Saline Wastewaters and Extreme Environments" Plants 12, no. 9: 1737. https://doi.org/10.3390/plants12091737
APA StyleBarbafieri, M., Bretzel, F., Scartazza, A., Di Baccio, D., Rosellini, I., Grifoni, M., Pini, R., Clementi, A., & Franchi, E. (2023). Response to Hypersalinity of Four Halophytes Growing in Hydroponic Floating Systems: Prospects in the Phytomanagement of High Saline Wastewaters and Extreme Environments. Plants, 12(9), 1737. https://doi.org/10.3390/plants12091737