Effects of Different Donor Ages on the Growth of Cutting Seedlings Propagated from Ancient Platycladus orientalis
Abstract
:1. Introduction
2. Results
2.1. Growth and Morphological Characteristics of Sown and Cutting Seedlings of P. orientalis Propagated from Donors at Different Ages
2.2. Analysis of Soluble Sugar, Chlorophyll, Flavonoid, and Total Phenol Content
2.3. Transcriptome Sequencing and Reassembly of P. orientalis Unigenes
2.4. Functional Classification of P. orientalis Unigenes
2.5. Functional Classification of DEGs
2.6. Changes in Age-Related Changes in Three Enrichment Pathways
2.7. Weighted Gene Co-Expression Network Analysis (WGCNA) Identifying Conserved Differentially Expressed Genes
2.8. Identification of Hub Genes in the Blue Module
2.9. qRT-PCR Validation of Selected Genes from Blue Module
3. Discussion
3.1. Increasing Age of the Donors Affected the Basal Stem Diameter and Plant Height of Cutting Seedlings
3.2. Increasing Age of the Donors Affected the Changes in Physiological Indexes of Cutting Seedlings
3.3. Regulation of Hub Gene in the Stress Resistance of Ancient Cutting Seedlings
4. Materials and Methods
4.1. Plant Materials and Growth Conditions
4.2. Phenotypic Measurements
4.3. Determination of Soluble Sugar and Chlorophyll Contents
4.4. Determination of Flavonoids and Total Phenolics
4.5. Transcriptome Sequencing Methods
4.6. Quantitative Real-Time PCR Analysis
4.7. Statistical Analysis of Data
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Nolan, V.; Reader, T.; Gilbert, F.; Atkinson, N. The ancient tree inventory: A summary of the results of a 15 year citizen science project recording ancient, veteran and notable trees across the UK. Biodivers. Conserv. 2020, 29, 3103–3129. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, L.; Chai, Y.; Wang, F.; Li, Y.; Su, L.; Zhao, Z. Physiology and proteomics research on the leaves of ancient Platycladus orientalis (L.) during winter. J. Proteomics 2015, 126, 263–278. [Google Scholar] [CrossRef] [PubMed]
- Pizarro, A.; Díaz-Sala, C. Cellular dynamics during maturation-related decline of adventitious root formation in forest tree species. Physiol. Plant. 2019, 165, 73–80. [Google Scholar] [CrossRef] [PubMed]
- Muñoz-Gutiérrez, L.; Vargas-Hernández, J.J.; López-Upton, J.; Soto-Hernández, M. Effect of cutting age and substrate temperature on rooting of Taxus globosa. New Forest. 2009, 38, 187–196. [Google Scholar] [CrossRef]
- Swamy, S.L.; Puri, S.; Singh, A.K. Effect of auxins (IBA and NAA) and season on rooting of juvenile and mature hardwood cuttings of Robinia pseudoacacia and Grewia optiva. New Forest. 2002, 23, 143–157. [Google Scholar] [CrossRef]
- Ďurkovič, J.; Husárová, H.; Javoříková, L.; Čaňová, I.; Šuleková, M.; Kardošová, M.; Lukáčik, I.; Mamoňová, M.; Lagaňa, R. Physiological, vascular and nanomechanical assessment of hybrid poplar leaf traits in micropropagated plants and plants propagated from root cuttings: A contribution to breeding programs. Plant Physiol. Bioch. 2017, 118, 449–459. [Google Scholar] [CrossRef]
- Moura, R.D.S.; Soares, T.L.; Lima, L.K.S.; Gheyi, H.R.; Jesus, O.N.; Coelho Filho, M.A. Salinity-induced changes in biometric, physiological and anatomical parameters of Passiflora edulis Sims plants propagated by different methods. Arch. Agron. Soil Sci. 2020, 66, 1692–1706. [Google Scholar] [CrossRef]
- Rteiu, A.M.V.; Ştef, R.; Grozea, I.; Butnariu, M. Allelopathy potential of aesculus hippocastanum extracts assessed by phytobiologicaltest method using zea mays. Environ. Eng. Manag. J. 2015, 14, 1313–1321. [Google Scholar]
- Butnariu, M.; Samfira, I.; Kasapsaraçoğlu, I.; Adina, N.; Negrea, P. Allelopathic effects of Pteridium aquilinum alcoholic extract on seed germination and seedling growth of Poa pratensis. Allelopath. J. 2015, 35, 227–236. [Google Scholar]
- Chang, E.; Yao, X.; Zhang, J.; Deng, N.; Jiang, Z.; Shi, S. De novo characterization of Platycladus orientalis transcriptome 2 and analysis of its gene expression during aging. PeerJ Prepr. 2017, 5, e2866v1. [Google Scholar] [CrossRef]
- Turfan, N.; Alay, M.; Sariyildiz, T. Effect of tree age on chemical compounds of ancient Anatolian black pine (Pinus nigra subsp. pallasiana) needles in Northwest Turkey. Iforest Biogeosciences For. 2018, 11, 406. [Google Scholar] [CrossRef]
- Bostan, C.; Butnariu, M.; Butu, M.; Ortan, A.; Butu, A.; Rodino, S.; Parvu, C. Allelopathic effect of Festuca rubra on perennial grasses. Rom. Biotech. Lett. 2013, 18, 8190–8196. [Google Scholar]
- Barbat, A.; Rodino, S.; Petrache, P.; Butu, M.; BUTNARIU, M. Microencapsulation of the allelochemical compounds and study of their release from different products. Dig. J. Nanomater. Bios. 2013, 8, 945–953. [Google Scholar]
- Samfira, I.; BUTNARIU, M.; Rodino, S.; Butu, M. Structural investigation of mistletoe plants from various hosts exhibiting diverse lignin phenotypes. Dig. J. Nanomater. Bios. 2013, 8, 1679–1686. [Google Scholar]
- Alba, T.M.; Tessaro, E.; Sobottka, A.M. Seasonal effect on phenolic content and antioxidant activity of young, mature and senescent leaves from Anredera cordifolia (Ten.) Steenis (Basellaceae). Braz. J. Biol. 2022, 84, e254174. [Google Scholar] [CrossRef]
- Dong, Y.; Xiao, W.; Guo, W.; Liu, Y.; Nie, W.; Huang, R.; Tan, C.; Jia, Z.; Liu, J.; Jiang, Z.; et al. Effects of donor ages and propagation methods on seedling growth of Platycladus orientalis (L.) Franco in winter. Int. J. Mol. Sci. 2023, 24, 7170. [Google Scholar] [CrossRef]
- Bruns, E.L.; Antonovics, J.; Carasso, V.; Hood, M. Transmission and temporal dynamics of anther-smut disease (Microbotryum) on alpine carnation (Dianthus pavonius). J. Ecol. 2017, 105, 1413–1424. [Google Scholar] [CrossRef]
- Dunnell, K.L.; LeBoldus, J.M. The correlation between septoria leaf spot and stem canker resistance in hybrid poplar. Plant Dis. 2017, 101, 464–469. [Google Scholar] [CrossRef]
- Huang, L.; Zeng, Y.; Yang, S.; Zhou, H.; Xu, J.; Zhou, Y.; Wang, G. Transcriptome analysis of gene expression profiles reveals wood formation mechanisms in Chinese fir at different stand ages. Heliyon 2023, 9, e14861. [Google Scholar] [CrossRef]
- Guo, H.; Zhong, Q.; Tian, F.; Zhou, X.; Tan, X.; Luo, Z. Transcriptome analysis reveals putative induction of floral initiation by old leaves in tea-oil tree (Camellia oleifera ‘changlin53’). Int. J. Mol. Sci. 2022, 23, 13021. [Google Scholar] [CrossRef]
- Chang, E.; Zhang, J.; Deng, N.; Yao, X.; Liu, J.; Zhao, X.; Jiang, Z.; Shi, S. Transcriptome differences between 20- and 3,000-year-old Platycladus orientalis reveal that ROS are involved in senescence regulation. Electron. J. Biotechn. 2017, 29, 68–77. [Google Scholar] [CrossRef]
- Wang, L.; Cui, J.; Jin, B.; Zhao, J.; Xu, H.; Lu, Z.; Li, W.; Li, X.; Li, L.; Liang, E.; et al. Multifeature analyses of vascular cambial cells reveal longevity mechanisms in old Ginkgo biloba trees. Proc. Natl. Acad. Sci. USA 2020, 117, 2201–2210. [Google Scholar] [CrossRef] [PubMed]
- Fonseca, J.P.; Lakshmanan, V.; Boschiero, C.; Mysore, K.S. The pattern recognition receptor FLS2 Can Shape the Arabidopsis rhizosphere microbiome β-diversity but not EFR1 and CERK1. Plants 2022, 11, 1323. [Google Scholar] [CrossRef] [PubMed]
- Zou, Y.; Wang, S.; Zhou, Y.; Bai, J.; Huang, G.; Liu, X.; Zhang, Y.; Tang, D.; Lu, D. Transcriptional regulation of the immune receptor FLS2 controls the ontogeny of plant innate immunity. Plant Cell 2018, 30, 2779–2794. [Google Scholar] [CrossRef]
- Dai, M.; Kang, X.; Wang, Y.; Huang, S.; Guo, Y.; Wang, R.; Chao, N.; Liu, L. Functional characterization of Flavanone 3-Hydroxylase (F3H) and its role in anthocyanin and flavonoid biosynthesis in mulberry. Molecules 2022, 27, 3341. [Google Scholar] [CrossRef]
- Singh, B.; Yadav, R.; Bhatt, B.P. Effects of mother tree ages, different rooting mediums, light conditions and auxin treatments on rooting behaviour of Dalbergia sissoo branch cuttings. J. Forestry Res. 2011, 22, 53–57. [Google Scholar] [CrossRef]
- Greenwood, M.S.; Hopper, C.A.; Hutchison, K.W. Maturation in Larch 1: I. Effect of age on shoot growth, foliar characteristics, and DNA methylation. Plant Physiol. 1989, 90, 406–412. [Google Scholar] [CrossRef]
- Gemmel, P.; Orlander, G.; Hogberg, K.A. Norway spruce cuttings perform better than seedlings of the same genetic origin. Silvae Genet. 1991, 40, 198–202. [Google Scholar] [CrossRef]
- Donaldson, J.R.; Stevens, M.T.; Barnhill, H.R.; Lindroth, R.L. Age-related shifts in leaf chemistry of clonal aspen (Populus tremuloides). J. Chem. Ecol. 2006, 32, 1415–1429. [Google Scholar] [CrossRef]
- Serkova, A.A.; Tarelkina, T.V.; Galibina, N.A.; Nikerova, K.M.; Moshchenskaya, Y.L.; Sofronova, I.N.; Nikolaeva, N.N.; Ivanova, D.S.; Semenova, L.I.; Novitskaya, L.L. Changes in the differentiation program of birch cambial derivatives following trunk girdling. Forests 2022, 13, 1171. [Google Scholar] [CrossRef]
- Gilhen-Baker, M.; Roviello, V.; Beresford-Kroeger, D.; Roviello, G.N. Old growth forests and large old trees as critical organisms connecting ecosystems and human health. A review. Environ. Chem. Lett. 2022, 20, 1529–1538. [Google Scholar] [CrossRef]
- Daryanavard, H.; Postiglione, A.E.; Mühlemann, J.K.; Muday, G.K. Flavonols modulate plant development, signaling, and stress responses. Curr. Opin. Plant Biol. 2023, 72, 102350. [Google Scholar] [CrossRef]
- Zhang, L.; Sun, X.; Wilson, I.W.; Shao, F.; Qiu, D. Identification of the genes involved in anthocyanin biosynthesis and accumulation in Taxus chinensis. Genes 2019, 10, 982. [Google Scholar] [CrossRef]
- Singh, A.; Panwar, R.; Mittal, P.; Hassan, M.I.; Singh, I.K. Plant cytochrome P450s: Role in stress tolerance and potential applications for human welfare. Int. J. Biol. Macromol. 2021, 184, 874–886. [Google Scholar] [CrossRef]
- Das, A.; Begum, K.; Akhtar, S.; Ahmed, R.; Tamuli, P.; Kulkarni, R.; Banu, S. Genome-wide investigation of Cytochrome P450 superfamily of Aquilaria agallocha: Association with terpenoids and phenylpropanoids biosynthesis. Int. J. Biol. Macromol. 2023, 234, 123758. [Google Scholar] [CrossRef]
- Liu, Z.; Carpenter, S.B.; Bourgeois, W.J.; Yu, Y.; Constantin, R.J.; Falcon, M.J.; Adams, J.C. Variations in the secondary metabolite camptothecin in relation to tissue age and season in Camptotheca acuminata. Tree Physiol. 1998, 18, 265–270. [Google Scholar] [CrossRef]
- Rao, M.J.; Ahmed, U.; Ahmed, M.H.; Duan, M.; Wang, J.; Wang, Y.; Wang, L. Comparison and quantification of metabolites and their antioxidant activities in young and mature leaves of sugarcane. ACS Food Sci. Technol. 2021, 1, 362–373. [Google Scholar] [CrossRef]
- Wang, X.; Feng, H.; Chang, Y.; Ma, C.; Wang, L.; Hao, X.; Li, A.; Cheng, H.; Wang, L.; Cui, P.; et al. Population sequencing enhances understanding of tea plant evolution. Nat. Commun. 2020, 11, 4447. [Google Scholar] [CrossRef]
- Zhang, J.; Zou, A.; Wen, Y.; Wei, X.; Liu, C.; Lv, X.; Ma, X.; Fan, G.; Sun, X. SlCML55, a novel Solanum lycopersicum calmodulin-like gene, negatively regulates plant immunity to Phytophthora pathogens. Sci. Hortic.-Amst. 2022, 299, 111049. [Google Scholar] [CrossRef]
- Wen, Z.; Terhonen, E.; Asiegbu, F.O. The dark septate endophyte Phialocephala sphaeroides confers growth fitness benefits and mitigates pathogenic effects of Heterobasidion on Norway spruce. Tree Physiol. 2022, 42, 891–906. [Google Scholar] [CrossRef]
- Kumar, P.; Patel, P.K.; Sonkar, M.K. Propagation through juvenile shoot cuttings in difficult-to-root Dalbergia latifolia—examining role of endogenous IAA in adventitious rooting. Plant Physiol. Rep. 2022, 27, 242–249. [Google Scholar] [CrossRef]
- Khan, N.; Bano, A.; Ali, S.; Babar, M.A. Crosstalk amongst phytohormones from planta and PGPR under biotic and abiotic stresses. Plant Growth Regul. 2020, 90, 189–203. [Google Scholar] [CrossRef]
- Schwechheimer, C. Understanding gibberellic acid signaling—Are we there yet? Curr. Opin. Plant Biol. 2008, 11, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Hirano, K.; Ueguchi-Tanaka, M.; Matsuoka, M. GID1-mediated gibberellin signaling in plants. Trends Plant Sci. 2008, 13, 192–199. [Google Scholar] [CrossRef] [PubMed]
- Wasternack, C. 9—Jasmonates—Biosynthesis and role in stress responses and developmental processes. In Plant Cell Death Processes; Noodén, L.D., Ed.; Academic Press: San Diego, CA, USA, 2004; pp. 143–155. ISBN 978-0-12-520915-1. [Google Scholar] [CrossRef]
- Yan, J.; Zhang, S.; Tong, M.; Lu, J.; Wang, T.; Xu, Y.; Li, W.; Wang, L. Physiological and genetic analysis of leaves from the resprouters of an old Ginkgo biloba tree. Forests 2021, 12, 1255. [Google Scholar] [CrossRef]
- Wu, L.; Deng, Z.; Cao, L.; Meng, L. Effect of plant density on yield and quality of perilla sprouts. Sci. Rep. 2020, 10, 9937. [Google Scholar] [CrossRef]
- Shraim, A.M.; Ahmed, T.A.; Rahman, M.M.; Hijji, Y.M. Determination of total flavonoid content by aluminum chloride assay: A critical evaluation. LWT 2021, 150, 111932. [Google Scholar] [CrossRef]
- Cicco, N.; Lanorte, M.T.; Paraggio, M.; Viggiano, M.; Lattanzio, V. A reproducible, rapid and inexpensive Folin–Ciocalteu micro-method in determining phenolics of plant methanol extracts. Microchem. J. 2009, 91, 107–110. [Google Scholar] [CrossRef]
- Kim, D.; Pertea, G.; Trapnell, C.; Pimentel, H.; Kelley, R.; Salzberg, S.L. TopHat2: Accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 2013, 14, R36. [Google Scholar] [CrossRef]
- Trapnell, C.; Roberts, A.; Goff, L.; Pertea, G.; Kim, D.; Kelley, D.R.; Pimentel, H.; Salzberg, S.L.; Rinn, J.L.; Pachter, L. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat. Protoc. 2012, 7, 562–578. [Google Scholar] [CrossRef]
- Goh, H.-H.; Abu Bakar, S.; Kamal Azlan, N.D.; Zainal, Z.; Mohd Noor, N. Transcriptional reprogramming during Garcinia-type recalcitrant seed germination of Garcinia mangostana. Sci. Hortic.-Amst. 2019, 257, 108727. [Google Scholar] [CrossRef]
- Marum, L.; Miguel, A.; Ricardo, C.P.; Miguel, C. Reference gene selection for quantitative real-time PCR normalization in Quercus suber. PLoS ONE 2012, 7, e35113. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Wang, L.; Feng, Z.; Wang, X.; Wang, X.; Zhang, X. DEGseq: An R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics 2010, 26, 136–138. [Google Scholar] [CrossRef]
- Conway, J.R.; Lex, A.; Gehlenborg, N. UpSetR: An R package for the visualization of intersecting sets and their properties. Bioinformatics 2017, 33, 2938–2940. [Google Scholar] [CrossRef]
- Chen, C.; Chen, H.; Zhang, Y.; Thomas, H.R.; Frank, M.H.; He, Y.; Xia, R. TBtools: An integrative toolkit developed for interactive analyses of big biological data. Mol. Plant 2020, 13, 1194–1202. [Google Scholar] [CrossRef]
Items | Number |
---|---|
Total number | 104,764 |
Total base | 105,530,209 |
Average length (bp) | 1007.31 |
N50 | 1858 |
GC percent | 38.75% |
BUSCO score | C: 73.9% |
Number of transcripts between 0 and 500 | 50,912 (49%) |
Number of transcripts between 501 and 1000 | 23,652 (23%) |
Number of transcripts between 1001 and 1500 | 9559 (9%) |
Number of transcripts >1500 | 20,641 (19%) |
Number of Unigenes | Percentage (%) | |
---|---|---|
Annotated in NR | 24,080 | 50.12 |
Annotated in NT | 8380 | 17.44 |
Annotated in KO | 7783 | 16.19 |
Annotated in SwissProt | 18,483 | 38.47 |
Annotated in PFAM | 18,546 | 38.6 |
Annotated in GO | 20,029 | 41.68 |
Annotated in KOG | 9877 | 20.55 |
Annotated in all Databases | 3105 | 6.46 |
Annotated in at least one Database | 26,226 | 54.58 |
Total unigenes | 48,044 | 100 |
Specific Up-Regulated | Specific Down-Regulated | PPI (Nodes) | Percentage | |
---|---|---|---|---|
A5 vs. B5 | 1225 | 384 | 73 | 21.60% |
A5 vs. C300 | 3319 | 683 | 123 | 53.80% |
A5 vs. D700 | 932 | 556 | 45 | 20% |
B5 vs. C300 | 55 | 69 | 73 | 1.70% |
B5 vs. D700 | 27 | 18 | 14 | 0.60% |
C300 vs. D700 | 50 | 121 | 8 | 2.30% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, Y.; Guo, W.; Xiao, W.; Liu, J.; Jia, Z.; Zhao, X.; Jiang, Z.; Chang, E. Effects of Different Donor Ages on the Growth of Cutting Seedlings Propagated from Ancient Platycladus orientalis. Plants 2023, 12, 1754. https://doi.org/10.3390/plants12091754
Dong Y, Guo W, Xiao W, Liu J, Jia Z, Zhao X, Jiang Z, Chang E. Effects of Different Donor Ages on the Growth of Cutting Seedlings Propagated from Ancient Platycladus orientalis. Plants. 2023; 12(9):1754. https://doi.org/10.3390/plants12091754
Chicago/Turabian StyleDong, Yao, Wei Guo, Wenfa Xiao, Jianfeng Liu, Zirui Jia, Xiulian Zhao, Zeping Jiang, and Ermei Chang. 2023. "Effects of Different Donor Ages on the Growth of Cutting Seedlings Propagated from Ancient Platycladus orientalis" Plants 12, no. 9: 1754. https://doi.org/10.3390/plants12091754
APA StyleDong, Y., Guo, W., Xiao, W., Liu, J., Jia, Z., Zhao, X., Jiang, Z., & Chang, E. (2023). Effects of Different Donor Ages on the Growth of Cutting Seedlings Propagated from Ancient Platycladus orientalis. Plants, 12(9), 1754. https://doi.org/10.3390/plants12091754