Mineral Content and Phytochemical Composition of Avocado var. Hass Grown Using Sustainable Agriculture Practices in Ecuador
Abstract
:1. Introduction
2. Results
2.1. Trichoderma Population in the Soil
2.2. Fruit Traits and Yield
2.3. Proximal Analysis
2.4. Mineral Content
2.5. Antioxidant Compounds and Antioxidant Activity
2.6. Fatty Acids
2.7. Principal Component Analysis
2.8. Correlation Analysis
3. Discussion
3.1. Fruit Traits and Yield
3.2. Proximal Variables
3.3. Mineral Content
3.4. Antioxidant Compounds
3.5. Fatty Acid Composition
3.6. Principal Component Analysis
3.7. Correlation Analysis
3.8. Final Remarks
4. Materials and Methods
4.1. Experimental Site and Plant Material
4.2. Agronomical Management (Sustainable Agronomic Practices)
4.3. Fruit Traits and Yield
4.4. Proximal Analyses
4.5. Mineral Analysis
4.6. Antioxidant Compound Analysis
4.7. Antioxidant Activity
4.8. Fatty Acid Analysis
4.9. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ayala Silva, T.; Ledesma, N. Avocado history, biodiversity and production. In Sustainable Horticultural Systems; Nandwani, D., Ed.; Springer: Cham, Switzerland, 2014; pp. 157–205. [Google Scholar]
- Gianciti, M.A. Visión mundial del consumo de aguacate o palta. Agroalimentaria 2002, 14, 43–50. [Google Scholar]
- Sommaruga, R.; Eldridge, H.M. Avocado production: Water footprint and socio-economic implications. EuroChoices 2020, 20, 48–53. [Google Scholar] [CrossRef]
- Transparency Market Research. Global Avocado Market to Reach Us$21.56 bn by 2026, Increasing Health Consciousness among People to Promote Growth. 2018. Available online: https://issuu.com/mandar-yoaap/docs/global_avocado_market (accessed on 17 February 2023).
- Sistema de Información Pública Agropecuaria (SIPA). Available online: http://sipa.agricultura.gob.ec/index.php/sipa-estadisticas/estadisticas-productivas (accessed on 14 February 2023).
- Viera, A.; Sotomayor, A.; Viera, W. Potential of avocado cultivation (Persea americana Mill.) in Ecuador as an alternative of commercialization in the local and international market. Rev. Cient. Tecnol. UPSE 2016, 3, 1–9. [Google Scholar]
- Ramos-Aguilar, A.L.; Ornelas-Paz, J.; Tapia-Vargas, L.M.; Gardea-Béjar, A.A.; Yahia, E.M.; Ornelas-Paz, J.J.; Ruíz-Cruz, S.; Rios-Velasco, C.; Ibarra-Junquera, V. Comparative study on the phytochemical and nutrient composition of ripe fruit of Hass and Hass type avocado cultivars. J. Food Composit. Anal. 2021, 97, 103796. [Google Scholar] [CrossRef]
- Pedreschi, R.; Hollak, S.; Harkema, H.; Otma, E.; Robledo, P.; Westra, E.; Somhorst, D.; Ferreyra, R.; Defilippi, B.G. Impact of postharvest ripening strategies on ‘Hass’ avocado fatty acid profiles. S. Afr. J. Bot. 2016, 103, 32–35. [Google Scholar] [CrossRef]
- Abbasi, F.; Rezaee, H.T.; Jolaini, M.; Alizadeh, H.A. Evaluation of fertigation in different soils and furrow irrigation regimes. Irrigat. Drain. 2012, 61, 533–541. [Google Scholar] [CrossRef]
- García-Saldaña, A.; Landeros-Sánchez, C.; Castaneda-Chávez, M.R.; Martínez-Dávila, J.P.; Pérez-Vázquez, A.; Carrillo-Ávila, E. Fertirrigation with low-pressure multi-gate irrigation systems in sugarcane agroecosystems: A review. Pedosphere 2019, 29, 1–11. [Google Scholar] [CrossRef]
- Gaona, P.; Vásquez, L.; Morales, C.; Viera, W.; Viteri, P.; Sotomayor, A.; Medina, L.; Mejía, P.; Cartagena, Y. Effect of two levels of nitrogen and potassium applied by fertirriego in variables of growth and macro and micronutrient concentration in avocado plants (Persea americana Mill.) Var. Hass. Rev. Cient. Ecuat. 2020, 7, 41–48. [Google Scholar]
- Viera, W.; Cartagena, Y.; Toaquiza, J.; Gaona, P.; Viteri, P.; Sotomayor, A.; Medina, L. Response of ‘Hass’ avocado under different nitrogen and potassium fertilizer regimes in subtropical Ecuador. Acta Hortic. 2021, 1327, 175–180. [Google Scholar] [CrossRef]
- Yar Narváez, D.M. Evaluación físico-química y determinación de capacidad antioxidante en dos variedades de aguacate (Persea americana Mill.) por efecto del tipo de riego. Undergraduate Thesis, Universidad Central del Ecuador, Quito, Ecuador, 2021. [Google Scholar]
- Sun, G.; Hu, T.; Liu, X.; Peng, Y.; Leng, X.; Li, Y.; Yang, Q. Optimizing irrigation and fertilization at various growth stages to improve mango yield, fruit quality and water-fertilizer use efficiency in xerothermic regions. Agric. Water Manag. 2022, 260, 107296. [Google Scholar] [CrossRef]
- Viera, W.; Jackson, T. Ecuador demonstrates a sustainable way forward for small farmer producers. Chron. Horticult. 2020, 60, 19–22. [Google Scholar]
- Viera, W.; Campaña, D.; Gallardo, D.; Vásquez, W.; Viteri, P.; Sotomayor, A. Native mycorrhizae for improving seedling growth in avocado nursery (Persea americana Mill.). Indian J. Sci. Technol. 2017, 10, 1–13. [Google Scholar] [CrossRef]
- Sotomayor, A.; Gonzáles, A.; Cho, K.J.; Villavicencio, A.; Jackson, T.; Viera, W. Effect of the application of microorganisms on the nutrient absorption in avocado (Persea americana Mill.) seedlings. J. Korean Soc. Int. Agric. 2019, 31, 17–24. [Google Scholar] [CrossRef]
- Sotomayor, A.; Mejía, P.; Morocho, D.; Gaona, P.; Viteri, P.; Medina, L.; Viera, W. Microbial consortiums applied in seedling production system of avocado cultivar “Criollo”. Manglar 2022, 19, 15–23. [Google Scholar] [CrossRef]
- Wu, H.H.; Xu, Y.J.; Zou, Y.N.; Wu, Q.S. Potential practical application and assessment of arbuscular mycorrhizal fungi on horticultural crops. In Endophytic Fungi: Biodiversity, Antimicrobial Activity and Ecological Implications; Wu, Q.S., Zou, Y.N., Xu, Y.J., Eds.; Nova Science Publishers: New York, NY, USA, 2022; pp. 101–115. [Google Scholar]
- Wang, L.; Tao, L.; Hao, L.; Stanley, T.H.; Huang, K.H.; Lambert, J.D.; Kris-Etherton, P.M. A moderate-fat diet with one avocado per day increases plasma antioxidants and decreases the oxidation of small, dense LDL in adults with overweight and obesity: A randomized controlled trial. J. Nut. 2020, 150, 276–284. [Google Scholar] [CrossRef]
- Ramos-Aguilar, A.L.; Ornelas-Paz, J.; Tapia-Vargas, L.M.; Ruiz-Cruz, S.; Gardea-Béjar, A.A.; Yahia, E.M.; Ornelas-Paz, J.J.; Pérez-Martínez, J.D.; Rios-Velasco, C.; Ibarra-Junquera, V. The importance of the bioactive compounds of avocado fruit (Persea americana Mill.) on human health. Biotecnia 2019, 21, 154–162. [Google Scholar] [CrossRef]
- Ortega Tovar, M.A. Valor nutrimental de la pulpa fresca de aguacate Hass. In Proceedings of the V World Avocado Congress, Granada, España, 19–24 October 2003; Junta de Andalucía: Andalucía, España; pp. 741–748. [Google Scholar]
- Ceballos, A.M.; Montoya, S. Chemical evaluation of fiber nib, pulp and three shell avocado varieties. Biotecnol. Sector Agropecu. Agroind. 2013, 11, 101–110. [Google Scholar]
- Yahia, E.M.; Woolf, A.B. Avocado (Persea americana Mill.). In Postharvest Biology and Thecnology of Tropical and Subtropical Fruits; Yahia, E.M., Ed.; Woodhead Publishing: Oxford, UK, 2011; pp. 125–186. [Google Scholar]
- Arackal, J.J.; Parameshwari, S. A detailed evaluation of fatty acid profile and micronutrient analysis of chapattis incorporated with avocado fruit pulp. Mater. Today Proc. 2021, 45, 3268–3273. [Google Scholar] [CrossRef]
- Francisco, V.L.F.S.; Baptistella, C.S.L. Avocado cultivation in the state of São Paulo, Brazil. Rev. Inf. Econ. 2005, 35, 27–41. [Google Scholar]
- Dembitsky, V.M.; Poovarodom, S.; Leontowicz, H.; Leontowicz, M.; Vearasilp, S.; Trakhtenberg, S.; Gorinstein, S. The multiple nutrition properties of some exotic fruits: Biological activity and active metabolites. Food Res. Int. 2011, 44, 1671–1701. [Google Scholar] [CrossRef]
- Ciosek, Z.; Kot, K.; Kosik-Bogacka, D.; Łanocha-Arendarczyk, N.; Rotter, I. The effects of calcium, magnesium, phosphorus, fluoride, and lead on bone tissue. Biomolecules 2021, 11, 506. [Google Scholar] [CrossRef] [PubMed]
- Figueroa, J.G.; Borras-Linares, I.; Lozano-Sanchez, J.; Segura-Carretero, A. Comprehensive identification of bioactive compounds of avocado peel by liquid chromatography coupled to ultra-high-definition accurate-mass Q-TOF. Food Chem. 2018, 245, 707–716. [Google Scholar] [CrossRef] [PubMed]
- Ornelas-Paz, J.J.; Yahia, E.M.; Gardea-Béjar, A.A.; Pérez-Martínez, J.D.; Ibarra-Junquera, V.; Escalante-Minakata, M.P.; RuizCruz, S.; Ochoa-Reyes, E. Actividad antioxidante y protectora de selectos compuestos bioactivos de frutas y hortalizas. In Antioxidantes en Alimentos y Salud; Álvarez Parrilla, E., Gónzalez Aguilar, G.A., de la Rosa, L.A., Ayala Zavala, J.F., Eds.; Clave Editorial: México City, México, 2012; pp. 9–132. [Google Scholar]
- Terés, S.; Barceló-Coblijn, G.; Benet, M.; Alvarez, R.; Bressani, R.; Halver, J.E.; Escriba, P.V. Oleic acid content is responsible for the reduction in blood pressure induced by olive oil. Proc. Natl. Acad. Sci. USA 2008, 105, 13811–13816. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.H.; Miyahara, H.; Hatanaka, A. Chronic administration of palmitoleic acid reduces insulin resistance and hepatic lipid accumulation in KK-A y Mice with genetic type 2 diabetes. Lipids Health Dis. 2011, 10, 120. [Google Scholar] [CrossRef] [PubMed]
- Bhuyan, D.J.; Alsherbiny, M.A.; Perera, S.; Low, M.; Basu, A.; Devi, O.A.; Barooah, M.S.; Li, C.G.; Papoutsis, K. The odyssey of bioactive compounds in avocado (Persea americana) and their health benefits. Antioxidants 2019, 8, 426. [Google Scholar] [CrossRef] [PubMed]
- Huaraca, H.; Viteri, P.; Sotomayor, A.; Viera, W.; Jiménez, J. Guía para Facilitar el Aprendizaje en el Manejo Integrado del Cultivo de Aguacate (Persea americana Mill.); INIAP: Quito, Ecuador, 2016; pp. 113–114.
- Viera, W.; Noboa, M.; Martínez, A.; Báez, F.; Jácome, R.; Medina, L.; Jackson, T. Trichoderma asperellum increases crop yield and fruit weight of blackberry (Rubus glaucus) under subtropical Andean conditions. Vegetos 2019, 32, 209–215. [Google Scholar] [CrossRef]
- Salazar-García, S.; Medina-Carrillo, R.E.; Álvarez-Bravo, A. Initial evaluation of some aspects of quality fruit avocado ‘Hass’ produced in three regions of Mexico. Rev. Mex. Cienc. Agric. 2016, 7, 277–289. [Google Scholar]
- García-Martínez, R.; Cortés-Flores, J.I.; López-Jiménez, A.; Etchevers-Barra, J.D.; Carrillo-Salazar, J.A.; Saucedo-Veloz, C. Yield, quality and post-harvest behavior of ‘Hass’ avocado fruits of orchards with different fertilization. Rev. Mex. Cienc. Agric. 2021, 12, 205–218. [Google Scholar]
- Cho, B.H.; Koyama, K.; Olivares Díaz, E.; Koseki, S. Determination of “Hass” avocado ripeness during storage based on smartphone image and machine learning model. Food Bioproc. Tech. 2020, 13, 1579–1587. [Google Scholar] [CrossRef]
- El-Moniem, E.A.A.A.; Thabet, A.Y.I.; Abdelaziz, A.M.R.A.; Baiea, M.H.M.; Amin, O.A. Reducing chemical fertilizers partially by using natural alternative sources of organic fertilizers and its impact on “Hass” avocado trees. Egypt J. Chem. 2022, 65, 1255–1264. [Google Scholar] [CrossRef]
- Karaklajić-Stajić, Ž.; Tomić, J.; Pešaković, M.; Paunović, S.M.; Štampar, F.; Mikulic-Petkovsek, M.; Hudina, M.; Veberic, R.; Jakopic, J. Biofertilizer from vermicompost and microorganisms: Effect on strawberry, blackberry, and blueberry phytochemical profile. Res. Sq. 2023. [Google Scholar] [CrossRef]
- Vinha, A.F.; Moreira, J.; Barreira, S.V.P. Physicochemical parameters, phytochemical composition and antioxidant activity of the Algarvian avocado (Persea Americana Mill.). J. Agric. Sci. 2013, 5, 100–109. [Google Scholar] [CrossRef]
- Castañeda-Saucedo, M.C.; Valdés-Miramontes, E.H.; Tapia-Campos, E.; Delgado-Alvarado, A.; Bernardino-García, A.C.; Rodríguez-Ramírez, M.R.; Ramirez-Anaya, J.P. Effect of freeze-drying and production process on the chemical composition and fatty acids profile of avocado pulp. Rev. Chil. Nutr. 2014, 41, 404–411. [Google Scholar] [CrossRef]
- Ozdemir, F.; Topuz, A. Changes in dry matter, oil content and fatty acids composition of avocado during harvesting time and post-harvesting ripening period. Food Chem. 2004, 86, 79–83. [Google Scholar] [CrossRef]
- Instituto Para la Innovación Tecnológica en la Agricultura (INTAGRI). Manejo de la Fertirrigación en Aguacate. Available online: https://www.intagri.com/articulos/frutales/manejo-de-la-fertirrigacion-en-aguacate (accessed on 10 April 2023).
- Silber, A.; Naor, A.; Cohen, H.; Bar-Noy, Y.; Yechieli, N.; Levi, M.; Noy, M.; Peres, M.; Duari, D.; Narkis, K.; et al. Avocado fertilization: Matching the periodic demand for nutrients. Sci. Hortic. 2018, 241, 231–240. [Google Scholar] [CrossRef]
- Santos, N.C.; Jacinto Almeida, R.L.; Vasconcelos de Andrade, E.W.; Dantas de Medeiros, M.F.; Da Silva Pedrini, M.R. Effects of drying conditions and ethanol pretreatment on the techno-functional and morpho-structural properties of avocado powder produced by foam-mat drying. J. Food Meas. Charact. 2023. [Google Scholar] [CrossRef]
- Tan, C.X.; Tan, S.S.; Ghazali, H.M.; Tan, S.T. Physical properties and proximate composition of Thompson red avocado fruit. Br. Food J. 2021, 124, 1421–1429. [Google Scholar] [CrossRef]
- Martínez-Ballesta, M.C.; Dominguez-Perles, R.; Moreno, D.A.; Muries, B.; Alcaraz-López, C.; Bastías, E.; García-Viguera, C.; Carvajal, M. Minerals in plant food: Effect of agricultural practices and role in human health. A review. Agron. Sustain. Dev. 2010, 30, 295–309. [Google Scholar] [CrossRef]
- Nedjimi, B. Can trace element supplementations (Cu, Se, and Zn) enhance human immunity against COVID-19 and its new variants? J. Basic Appl. Sci. 2021, 10, 33. [Google Scholar] [CrossRef]
- Morais, D.R.; Rotta, E.M.; Sargi, S.C.; Bonafe, E.G.; Suzuki, R.M.; Souza, N.E.; Matsushita, M.; Visentainer, J.V. Proximate composition, mineral contents and fatty acid composition of the different parts and dried peels of tropical fruits cultivated in Brazil. J. Braz. Chem. Soc. 2017, 28, 308–318. [Google Scholar] [CrossRef]
- Araújo, R.G.; Rodríguez-Jasso, R.M.; Ruiz, H.A.; Pintado, M.M.E.; Aguilar, C.N. Avocado by-products: Nutritional and functional properties. Trends Food Sci. Technol. 2018, 80, 51–60. [Google Scholar] [CrossRef]
- Zeb, A. Concept, mechanism, and applications of phenolic antioxidants in foods. Food Biochem. 2020, 44, e13394. [Google Scholar] [CrossRef]
- Tresserra, R.A.; Lamuela, R.R.M.; Moreno, J.J. Polyphenols, food and pharma. Current knowledge and directions for future research. Biochem. Pharmacol. 2018, 156, 186–195. [Google Scholar] [CrossRef]
- Pham, N.M.; Do, V.V.; Lee, A.H. Polyphenol-rich foods and risk of gestational diabetes: A systematic review and meta-analysis. Eur. J. Clin. Nutr. 2019, 73, 647–656. [Google Scholar] [CrossRef] [PubMed]
- Husen, R.; Andou, Y.; Ismail, A.; Shirai, Y.; Hassan, M.A. Enhanced polyphenol content and antioxidant capacity in the edible portion of avocado dried with superheated-steam. Int. J. Adv. Res. 2014, 2, 241–248. [Google Scholar]
- Amado, D.A.V.; Helmann, G.A.B.; Detoni, A.M.; de Carvalho, S.L.C.; de Aguiar, C.M.; Martin, C.A.; Tiuman, T.S.; Cottica, S.M. Antioxidant and antibacterial activity and preliminary toxicity analysis of four varieties of avocado (Persea americana Mill.). Braz. J. Food Technol. 2019, 22, 1–11. [Google Scholar] [CrossRef]
- Lyu, X.; Agar, O.T.; Barrow, C.J.; Dunshea, F.R.; Suleria, H.A.R. Phenolic compounds profiling and their antioxidant capacity in the peel, pulp, and seed of Australian grown avocado. Antioxidants 2023, 12, 185. [Google Scholar] [CrossRef] [PubMed]
- Brodowska, K.M. Natural flavonoids: Classification, potential role, and application of flavonoid analogues. Eur. J. Biol. Res. 2017, 7, 108–123. [Google Scholar]
- Sellamuthu, P.S.; Mafune, M.; Sivakumar, D.; Soundy, P. Thyme oil vapour and modified atmosphere packaging reduce anthracnose incidence and maintain fruit quality in avocado. J. Sci. Food Agric. 2013, 93, 3024–3031. [Google Scholar] [CrossRef]
- Britton, G. Carotenoid research: History and new perspectives for chemistry in biological systems. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2020, 1865, 158699. [Google Scholar] [CrossRef]
- Monge-Rojas, R.; Campos, H. Tocopherol and carotenoid content of foods commonly consumed in Costa Rica. J. Food Compos. Anal. 2011, 24, 202–216. [Google Scholar] [CrossRef]
- Camacho Pérez, L.M. Determinación de la capacidad antioxidante de plantas aromáticas. Calendula officinalis. Undergraduate Thesis, Universidad de Jaén, Jaén, España, 2020. [Google Scholar]
- Van Rooijen, M.A.; Mensink, R.P. Palmitic acid versus stearic acid: Effects of interesterification and intakes on cardiometabolic risk markers—A systematic review. Nutrients 2020, 12, 615. [Google Scholar] [CrossRef]
- Kim, H.; Yoo, H.J.; Lee, K.M.; Song, H.E.; Kim, S.J.; Lee, J.O.; Hwang, J.J.; Song, J.W. Stearic acid attenuates profibrotic signalling in idiopathic pulmonary fibrosis. Respirol. 2020, 26, 255–263. [Google Scholar] [CrossRef]
- López-Huertas, E. Health effects of oleic acid and long chain omega-3 fatty acids (EPA and DHA) enriched milks. A review of intervention studies. Pharmacol. Res. 2010, 61, 200–207. [Google Scholar] [CrossRef]
- Tutunchi, H.; Ostadrahimi, A.; Saghafi-Asl, M. The effects of diets enriched in monounsaturated oleic acid on the management and prevention of obesity: A systematic review of human intervention studies. Adv. Nutr. 2020, 11, 864–877. [Google Scholar] [CrossRef]
- Yanty, N.A.M.; Marikkar, J.M.N.; Long, K. Effect of varietal differences on composition and thermal characteristics of avocado oil. J. Am. Oil. Chem. Soc. 2011, 88, 1997. [Google Scholar] [CrossRef]
- Mohd Hanif, N.; Noor Qhairul Izzreen, M.N.; Hasmadi, M. Proximate and Fatty Acid Composition of Sabah Yellow Durian (Durio graveolens). Sains Malays. 2013, 42, 1283–1288. [Google Scholar]
- Marsall, M.R. Ash analysis. In Food Analysis, 4th ed.; Nielsen, S., Ed.; Spriger: London, UK, 2010; pp. 105–115. [Google Scholar]
- Andersen, P.C.; Gorbet, D.W. Influence of year and planting date on fatty acid chemistry of high oleic acid and normal peanut genotypes. J. Agric. Food Chem. 2002, 50, 1298–1305. [Google Scholar] [CrossRef] [PubMed]
- Tang, Z.; Kong, N.; Ouyang, J.; Feng, C.; Kim, N.Y.; Ji, X.; Wang, C.; Farokhzad, O.C.; Zhang, H.; Tao, W. Phosphorus science-oriented design and synthesis of multifunctional nanomaterials for biomedical applications. Matter 2020, 2, 297–322. [Google Scholar] [CrossRef]
- Incrocci, L.; Massa, D.; Pardossi, A. New trends in the fertigation management of irrigated vegetable crops. Horticulturae 2017, 3, 37. [Google Scholar] [CrossRef]
- Vargas-Canales, J.M.; Carbajal-Flores, G.; Isela, T.; Bustamante-Lara, J.; Camacho-Vera, H.; Fresnedo-Ramírez, J.; Palacios-Rangel, M.I.; Rodríguez-Haros, B. Impact of the market on the specialization and competitiveness of avocado production in Mexico. Int. J. Fruit Sci. 2020, 20, S1942–S1958. [Google Scholar] [CrossRef]
- Viteri, P.; Viera, W.; Gaona, P.; Hinojosa, M.; Sotomayor, A.; Park, C.; Villavicencio, A. Manual para el Manejo de la Poda en Aguacate (Persea americana Mill.); INIAP: Quito, Ecuador, 2021; pp. 18–30.
- AOAC International. Official Methods of Analysis, 21st ed.; AOAC: Gaithersburg, MD, USA, 2019; p. 700. [Google Scholar]
- Viera, W.; Shinohara, T.; Samaniego, I.; Sanada, A.; Terada, N.; Ron, L.; Suárez-Tapia, A.; Koshio, K. Phytochemical composition and antioxidant activity of Passiflora spp. germplasm grown in Ecuador. Plants 2022, 11, 328. [Google Scholar] [CrossRef] [PubMed]
Practice | Fruit Weight (g) | Number of Fruits Per Plant | Yield (kg Plant−1) | Firmness z (N) | Soluble Solids (°Brix) |
---|---|---|---|---|---|
T1 | 245.35 ± 7.16 a | 53.89 ± 7.18 a | 13.21 ± 1.87 a | 2.05 ± 0.05 b | 9.49 ± 0.13 a |
T2 | 249.21 ± 7.33 a | 63.37 ± 5.24 a | 15.91 ± 1.39 a | 2.23 ± 0.05 a | 9.51 ± 0.12 a |
T3 | 241.08 ± 8.66 a | 54.56 ± 3.80 a | 13.08 ± 0.89 a | 1.93 ± 0.04 b | 9.41 ± 0.13 ab |
T4 | 251.65 ± 7.71 a | 50.10 ± 5.23 a | 12.62 ± 1.45 a | 1.98 ± 0.04 b | 9.01 ± 0.11 b |
Practice | Dry Matter (%) | Moisture (%) | Ash (g 100 g−1) | Protein z (g 100 g−1) | Fiber (g 100 g−1) | Fat z (g 100 g−1) | Total Carbohydrates (g 100 g−1) |
---|---|---|---|---|---|---|---|
T1 | 32.24 ± 1.58 a | 67.76 ± 1.58 a | 10.11 ± 0.52 a | 6.15 ± 0.20 ab | 8.37 ± 0.23 a | 70.71 ± 0.55 b | 4.67 ± 0.37 a |
T2 | 30.67 ± 1.47 a | 69.33 ± 1.47 a | 8.90 ± 0.39 a | 6.49 ± 0.16 a | 8.40 ± 0.58 a | 72.66 ± 0.22 a | 3.55 ± 0.70 a |
T3 | 28.19 ± 0.66 a | 71.81 ± 0.66 a | 9.32 ± 0.77 a | 6.00 ± 0.22 ab | 7.88 ± 0.15 ab | 70.98 ± 1.01 ab | 5.82 ± 1.00 a |
T4 | 29.31 ± 1.31 a | 70.69 ± 1.31 a | 10.44 ± 0.36 a | 5.13 ± 0.33 b | 7.24 ± 0.20 b | 71.97 ± 0.37 ab | 5.23 ± 0.46 a |
Practice | Ca z * | P ** | Mg * | K ** | Na * | Cu z * | Fe z * | Mn z * | Zn z * |
---|---|---|---|---|---|---|---|---|---|
T1 | 54.67 ± 14.10 a | 0.14 ± 0.01 a | 96.90 ± 5.90 a | 1.73 ± 0.07 a | 8.70 ± 1.15 a | 0.63 ± 0.04 a | 1.53 ± 0.09 a | 0.29 ± 0.03 a | 2.43 ± 0.90 a |
T2 | 36.03 ± 8.00 ab | 0.13 ± 0.01 a | 76.87 ± 5.67 b | 1.51 ± 0.04 a | 6.55 ± 1.11 a | 0.72 ± 0.03 a | 1.93 ± 0.57 a | 0.25 ± 0.02 a | 0.98 ± 0.16 b |
T3 | 31.10 ± 3.08 ab | 0.15 ± 0.01 a | 72.58 ± 3.85 b | 1.52 ± 0.12 a | 9.25 ± 1.66 a | 0.70 ± 0.03 a | 2.15 ± 0.54 a | 0.23 ± 0.02 a | 1.95 ± 0.34 a |
T4 | 26.35 ± 1.93 b | 0.15 ± 0.01 a | 68.40 ± 3.29 b | 1.39 ± 0.11 a | 6.22 ± 1.55 a | 0.70 ± 0.03 a | 3.70 ± 1.07 a | 0.23 ± 0.02 a | 1.52 ± 0.27 ab |
Practice | Polyphenols (mg GAE g−1) | Flavonoids (mg Catechin g−1) | Carotenoids (µg β Carotene g−1) | ABTS (µmol TE g−1) | FRAP (µmol TE g−1) |
---|---|---|---|---|---|
T1 | 8.74 ± 0.86 a | 3.72 ± 0.13 a | 52.60 ± 1.36 a | 195.61 ± 17.21 a | 131.04 ± 10.89 a |
T2 | 10.25 ± 0.69 a | 3.91 ± 0.05 a | 49.89 ± 1.57 ab | 209.37 ± 13.03 a | 148.19 ± 11.00 a |
T3 | 9.20 ± 0.52 a | 3.54 ± 0.14 a | 49.76 ± 2.09 ab | 199.55 ± 6.23 a | 135.28 ± 8.33 a |
T4 | 9.27 ± 0.73 a | 3.89 ± 0.15 a | 45.03 ± 1.71 b | 207.13 ± 8.56 a | 142.02 ± 10.40 a |
Practice | Palmitic | Palmitoleic | Stearic z | Oleic | Linolelaidic | Linoleic | Linolenic |
---|---|---|---|---|---|---|---|
T1 | 19.83 ± 0.42 ab | 9.11 ± 0.30 a | 0.53 ± 0.01 a | 50.20 ± 0.74 a | 7.53 ± 0.49 a | 11.97 ± 0.32 a | 0.83 ± 0.03 a |
T2 | 18.45 ± 0.43 b | 8.63 ± 0.22 a | 0.56 ± 0.05 ab | 51.24 ± 0.46 a | 7.72 ± 0.37 a | 12.45 ± 0.27 a | 0.95 ± 0.03 a |
T3 | 20.04 ± 0.35 a | 9.21 ± 0.21 a | 0.50 ± 0.01 ab | 50.47 ± 0.74 a | 7.27 ± 0.44 a | 11.83 ± 0.51 a | 0.84 ± 0.04 a |
T4 | 19.88 ± 0.55 ab | 8.85 ± 0.37 a | 0.49 ± 0.02 b | 50.60 ± 1.17 a | 7.14 ± 0.87 a | 12.04 ± 0.47 a | 0.87 ± 0.03 a |
DM | Moisture | Ash | Fat | Protein | Fiber | TC | Ca | P | Mg | K | Na | Cu | Fe | Mn | Zn | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
DM | 1.00 | −0.99 ** | 0.03 | 0.13 | 0.17 | 0.37 | −0.40 | 0.31 | −0.40 | 0.19 | 0.11 | −0.16 | −0.22 | 0.20 | −0.11 | 0.08 |
Moisture | 1.00 | −0.03 | −0.13 | −0.17 | −0.37 | 0.40 | −0.31 | 0.40 | −0.19 | −0.11 | 0.16 | 0.22 | −0.20 | 0.11 | −0.08 | |
Ash | 1.00 | −0.36 | −0.40 | −0.16 | −0.20 | 0.28 | 0.62 ** | 0.26 | 0.37 | 0.05 | 0.09 | 0.37 | 0.11 | 0.43 | ||
Fat | 1.00 | 0.05 | −0.15 | −0.58 ** | −0.32 | −0.47 | −0.37 | −0.41 | −0.58 ** | 0.10 | −0.02 | −0.19 | −0.54 ** | |||
Protein | 1.00 | 0.30 | −0.31 | −0.09 | −0.22 | 0.17 | 0.04 | 0.06 | 0.07 | −0.59 ** | 0.18 | −0.07 | ||||
Fiber | 1.00 | −0.38 | 0.02 | −0.13 | 0.22 | 0.33 | 0.35 | −0.09 | −0.12 | 0.18 | 0.26 | |||||
TC | 1.00 | 0.10 | 0.11 | −0.04 | −0.10 | 0.28 | −0.14 | 0.04 | −0.08 | 0.05 | ||||||
Ca | 1.00 | 0.09 | 0.65 ** | 0.25 | 0.28 | −0.56 ** | 0.12 | 0.09 | 0.10 | |||||||
P | 1.00 | 0.16 | 0.34 | 0.30 | 0.11 | −0.01 | 0.25 | 0.48 | ||||||||
Mg | 1.00 | 0.74 ** | 0.26 | −0.22 | 0.03 | 0.34 | 0.13 | |||||||||
K | 1.00 | 0.37 | 0.07 | 0.23 | 0.32 | 0.13 | ||||||||||
Na | 1.00 | −0.32 | −0.09 | 0.13 | 0.13 | |||||||||||
Cu | 1.00 | 0.06 | 0.35 | −0.04 | ||||||||||||
Fe | 1.00 | −0.05 | 0.08 | |||||||||||||
Mn | 1.00 | 0.24 | ||||||||||||||
Zn | 1.00 |
Polyphenol | FRAP | ABTS | Flavonoid | Carotenoid | Palmitic | Palmitoleic | Stearic | Oleic | Linolelaidic | Linoleic | Linolenic | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Polyphenol | 1.00 | 0.93 ** | 0.73 ** | 0.63 ** | −0.03 | −0.44 | −0.04 | −0.18 | −0.06 | 0.50 ** | 0.36 | 0.43 |
FRAP | 1.00 | 0.62 ** | 0.62 ** | −0.09 | −0.33 | 0.16 | −0.16 | −0.18 | 0.48 | 0.34 | 0.38 | |
ABTS | 1.00 | 0.41 | 0.01 | −0.26 | −0.13 | −0.13 | 0.01 | 0.17 | 0.26 | 0.37 | ||
Flavonoid | 1.00 | −0.11 | −0.51 ** | −0.22 | −0.19 | −0.04 | 0.54 ** | 0.50 ** | 0.60 ** | |||
Carotenoid | 1.00 | 0.11 | −0.02 | 0.15 | −0.25 | 0.14 | 0.27 | −0.04 | ||||
Palmitic | 1.00 | 0.58 ** | 0.06 | −0.55 ** | −0.59 ** | −0.14 | −0.59 ** | |||||
Palmitoleic | 1.00 | 0.13 | −0.73 ** | 0.06 | 0.02 | −0.30 | ||||||
Stearic | 1.00 | 0.04 | −0.13 | −0.21 | −0.15 | |||||||
Oleic | 1.00 | −0.28 | −0.62 ** | −0.14 | ||||||||
Linolelaidic | 1.00 | 0.59 ** | 0.58 ** | |||||||||
Linoleic | 1.00 | 0.79 ** | ||||||||||
Linolenic | 1.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Viera, W.; Gaona, P.; Samaniego, I.; Sotomayor, A.; Viteri, P.; Noboa, M.; Merino, J.; Mejía, P.; Park, C.H. Mineral Content and Phytochemical Composition of Avocado var. Hass Grown Using Sustainable Agriculture Practices in Ecuador. Plants 2023, 12, 1791. https://doi.org/10.3390/plants12091791
Viera W, Gaona P, Samaniego I, Sotomayor A, Viteri P, Noboa M, Merino J, Mejía P, Park CH. Mineral Content and Phytochemical Composition of Avocado var. Hass Grown Using Sustainable Agriculture Practices in Ecuador. Plants. 2023; 12(9):1791. https://doi.org/10.3390/plants12091791
Chicago/Turabian StyleViera, William, Pablo Gaona, Iván Samaniego, Andrea Sotomayor, Pablo Viteri, Michelle Noboa, Jorge Merino, Paúl Mejía, and Chang Hwan Park. 2023. "Mineral Content and Phytochemical Composition of Avocado var. Hass Grown Using Sustainable Agriculture Practices in Ecuador" Plants 12, no. 9: 1791. https://doi.org/10.3390/plants12091791
APA StyleViera, W., Gaona, P., Samaniego, I., Sotomayor, A., Viteri, P., Noboa, M., Merino, J., Mejía, P., & Park, C. H. (2023). Mineral Content and Phytochemical Composition of Avocado var. Hass Grown Using Sustainable Agriculture Practices in Ecuador. Plants, 12(9), 1791. https://doi.org/10.3390/plants12091791