Extraction Solvents Affect Anthocyanin Yield, Color, and Profile of Strawberries
Abstract
:1. Introduction
2. Results
2.1. Total Anthocyanins
2.2. Transmittance Spectrum
2.3. Color Parameters
2.4. UHPLC Profiling of Individual Anthocyanins
3. Discussion
3.1. Total Anthocyanins
3.2. Color Parameters
3.3. UHPLC Profiling of Individual Anthocyanins
4. Materials and Methods
4.1. Sample Preparation
4.2. Total Anthocyanins Extraction
4.3. Transmittance Spectrum and Color Parameters
4.4. UHPLC Profiling of Individual Anthocyanins
4.5. Experimental Design and Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cordenunsi, B.R.; Genovese, M.I.; Nascimiento, J.R.O.; Hassimoto, N.M.A.; Santos, R.J.; Lajolo, F.M. Effects of temperature on the chemical composition and antioxidant capacity of three strawberry cultivars. Food Chem. 2005, 91, 113–121. [Google Scholar] [CrossRef]
- Aaby, K.; Mazur, S.; Nes, A.; Skrede, G. Phenolic compounds in strawberry (Fragaria × ananassa Duch.) fruits: Composition in 27 cultivars and changes during ripening. Food Chem. 2012, 132, 86–97. [Google Scholar] [CrossRef] [PubMed]
- Tonutare, T.; Moor, U.; Szajdak, L. Strawberry anthocyanin determination by pH differential spectroscopic method- how to get true results. Acta Sci. Pol. Hortorum Cultus 2014, 13, 35–47. [Google Scholar]
- Du, Q.; Wang, X. Industrial preparation of cyanidin-3-glucoside from the fruits of Myrica rubra using slow rotatory countercurrent chromatography. Int. J. Appl. Res. Nat. Prod. 2008, 1, 1–5. [Google Scholar]
- Li, X.; Zhu, F.; Zeng, Z. Effects of different extraction methods on antioxidant properties of blueberry anthocyanins. Open Chem. 2021, 19, 138–148. [Google Scholar] [CrossRef]
- Solovchenko, A.E.; Chivkunova, O.B.; Merzlyak, M.N.; Reshetnikova, I.V. A spectrophotometric analysis of pigments in apples. Russ. J. Plant Physiol. 2001, 48, 693–700. [Google Scholar] [CrossRef]
- Lindoo, S.J.; Caldwell, M.M. Ultraviolet-B radiation-induced inhibition of leaf expansion and promotion of anthocyanin production: Lack of involvement of the low irradiance phytochrome system. Plant Physiol. 1978, 61, 278–282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva, S.; Costa, E.M.; Calhau, C.; Morais, R.M.; Pintado, M.E. Anthocyanin extraction from plant tissues: A review. Crit. Rev. Food Sci. Nutr. 2017, 57, 3072–3083. [Google Scholar] [CrossRef]
- Neff, M.M.; Chory, J. Genetic interactions between phytochrome A, phytochrome B, and cryptochrome during Arabidopsis development. Plant Physiol. 1998, 118, 27–36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khoo, H.E.; Azlan, A.; Tang, S.T.; Lim, S.M. Anthocyanidins and anthocyanins: Colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food Nutr. Res. 2017, 61, 1361779. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Durst, R.W.; Wrolstad, R.E. Determination of total monomeric anthocyanin pigment content of fruit juices, beverages, natural colorants, and wines by the pH differential method: Collaborative study. J. AOAC Int. 2005, 88, 1269–1278. [Google Scholar] [CrossRef] [Green Version]
- Karaaslan, N.M.; Yaman, M. Anthocyanin profile of strawberry fruit as affected by extraction conditions. Int. J. Food Prop. 2017, 20 (Suppl. S3), S2313–S2322. [Google Scholar] [CrossRef] [Green Version]
- Mazza, G.; Cacace, J.E.; Kay, C.D. Methods of analysis for anthocyanins in plants and biological fluids. J. AOAC Int. 2004, 87, 129–145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gallik, S. Determination of the anthocyanin concentration in table wines and fruit juices using visible light spectrophotometry. Cell Biol. 2012, 2, 1–12. [Google Scholar]
- Giusti, M.M.; Wrolstad, R.E. Characterization and measurement of anthocyanins by UV-Visible spectroscopy. Curr. Protoc. Food Anal. Chem. 2001, F1.2.1–F1.2.13. [Google Scholar] [CrossRef]
- Gauche, C.; Malagoli, E.S.; Bordignon Luiz, M.T. Effect of pH on the copigmentation of anthocyanins from Cabernet Sauvignon grape extracts with organic acids. Sci. Agric. 2010, 67, 41–46. [Google Scholar] [CrossRef]
- Garcia-Viguera, C.; Zafrilla, P.; Tomás-Barberán, F.A. The use of acetone as an extraction solvent for anthocyanins from strawberry fruit. J. Plant 1998, 9, 274–277. [Google Scholar] [CrossRef]
- Caballero, B.; Finglas, P.; Toldrá, F. Encyclopedia of Food and Health; Academic Press: Cambridge, MA, USA; Elsevier Inc.: Amsterdam, The Netherlands, 2015; pp. 154–196. [Google Scholar]
- Dzhanfezova, T.; Barba-Espín, G.; Müller, R.; Joernsgaard, B.; Hegelund, J.N.; Madsen, B.; Larsencd, D.H.; Martínez Vega, M.; Toldam-Andersen, T.B. Anthocyanin profile, antioxidant activity and total phenolic content of a strawberry (Fragaria × ananassa Duch) genetic resource collection. Food Biosci. 2020, 36, 100620. [Google Scholar] [CrossRef]
- da Silva, F.L.; Escribano-Bailón, M.T.; Alonso, J.J.P.; Rivas-Gonzalo, J.C.; Santos-Buelga, C. Anthocyanin pigments in strawberry. LWT-Food Sci. Technol. 2007, 40, 374–382. [Google Scholar] [CrossRef]
- Patil, G.; Madhusudhan, M.C.; Babu, B.R.; Raghavarao, K.S.M.S. Extraction, dealcoholization and concentration of anthocyanin from red radish. Chem. Eng. Process. Process Intensif. 2009, 48, 364–369. [Google Scholar] [CrossRef]
- Ge, X.; Timrov, I.; Binnie, S.; Biancardi, A.; Calzolari, A.; Baroni, S. Accurate and inexpensive prediction of the color optical properties of anthocyanins in solution. J. Phys. Chem. A 2015, 119, 3816–3822. [Google Scholar] [CrossRef] [PubMed]
- Alexieva, V.; Sergiev, I.; Mapelli, S.; Karanov, E. The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant Cell Environ. 2001, 24, 1337–1344. [Google Scholar] [CrossRef]
- Neder-Suárez, D.; Lardizabal-Gutiérrez, D.; Zazueta-Morales, J.D.J.; Meléndez-Pizarro, C.O.; Delgado-Nieblas, C.I.; Ramírez Wong, B.; Quintero-Ramos, A. Anthocyanins and functional compounds change in a third-generation snacks prepared using extruded blue maize, black bean, and chard: An optimization. Antioxidants 2021, 10, 1368. [Google Scholar] [CrossRef] [PubMed]
- SAS Institute Inc. SAS/STAT® 14.1 User’s Guide; SAS Institute Inc.: Cary, NC, USA, 2015. [Google Scholar]
- Sundberg, I. The Color Thesaurus. Available online: https://ingridsundberg.com/2014/02/04/the-color-thesaurus/ (accessed on 9 February 2023).
- Ghassempour, A.; Heydari, R.; Talebpour, Z.; Fakhari, A.R.; Rassouli, A.; Davies, N.; Aboul-Enein, H.Y. Study of new extraction methods for separation of anthocyanins from red grape skins: Analysis by HPLC and LC-MS/MS. J. Liq. Chromatogr. Relat. 2008, 31, 2686–2703. [Google Scholar] [CrossRef]
- Taghavi, T.; Patel, H.; Rafie, R. Comparing pH differential and methanol-based methods for anthocyanin assessments of strawberries. Food Sci. Nutr. 2021, 10, 2123–2131. [Google Scholar] [CrossRef]
- Taniguchi, M.; Lindsey, J.S. Database of absorption and fluorescence spectra of> 300 common compounds for use in photochem CAD. Photochem. Photobiol. 2018, 94, 290–327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martinsen, B.K.; Aaby, K.; Skrede, G. Effect of temperature on stability of anthocyanins, ascorbic acid and color in strawberry and raspberry jams. Food Chem. 2020, 316, 126297. [Google Scholar] [CrossRef]
- Howard, L.R.; Brownmiller, C.; Prior, R.L. Improved color and anthocyanin retention in strawberry puree by oxygen exclusion. J. Berry Res. 2014, 4, 107–116. [Google Scholar] [CrossRef] [Green Version]
- Garzon, G.A.; Wrolstad, R.E. Comparison of the stability of pelargonidin-based anthocyanins in strawberry juice and concentrate. J. Food Sci. 2002, 67, 1288–1299. [Google Scholar] [CrossRef]
- Donno, D.; Cavanna, M.; Beccaro, G.L.; Mellano, M.G.; Marinoni, D.T.; Cerutti, A.K.; Bounous, G. Currants and strawberries as bioactive compound sources: Determination of antioxidant profiles with HPLC-DAD/MS. J. Appl. Bot. Food Qual. 2013, 86, 1–10. [Google Scholar]
- Kawanobu, S.; Yamaguchi, M.A.; Zushi, K.; Kondo, K.; Matsuzoe, N. Identification and distribution of anthocyanins in Strawberry cultivars. J. Food Agric. Environ. 2011, 9, 140–141. Available online: https://doi-org.subzero.lib.uoguelph.ca/10.1234/4.2011.1923 (accessed on 11 March 2021).
- Kelebek, H.; Selli, S. Characterization of phenolic compounds in strawberry fruits by RP-HPLC-DAD and investigation of their antioxidant capacity. J. Liq. Chromatogr. Relat. 2011, 34, 2495–2504. [Google Scholar] [CrossRef]
- Goiffon, J.P.; Mouly, P.P.; Gaydou, E.M. Anthocyanic pigment determination in red fruit juices, concentrated juices and syrups using liquid chromatography. Anal. Chim. Acta 1999, 382, 39–50. [Google Scholar] [CrossRef]
- Tamura, H.; Takada, M.; Yoshida, Y. Pelargonidin 3-O-(6-Omalonyl-b-D-glucopyranoside) in Fragaria × ananassa Duch cv. Nyoho. Biosci. Biotechnol. Biochem. 1995, 59, 1157–1158. [Google Scholar] [CrossRef]
- Tena, N.; Asuero, A.G. Up-to-date analysis of the extraction methods for anthocyanins: Principles of the techniques, optimization, technical progress, and industrial application. Antioxidants 2022, 11, 286. [Google Scholar] [CrossRef] [PubMed]
Solvent Tested | Anthocyanin Concentration A/gFW |
---|---|
Chloroform: methanol (Solovchenko et al. [6]) | 11.9 a |
Ethanol (Karaaslan and Yaman [12]) | 11.0 b |
Methanol (Solovchenko et al. [6]) | 9.9 c |
Methanol: water (Neff and Chory [9]) | 9.4 c |
Acetone (Garcia-Viguera et al. [17]) | 8.8 d |
pH differential (Lee et al. [11]) | 7.5 e |
Methanol: water (Lindoo and Caldwell [7]) | 6.8 f |
Combined solvents (Gauch et al. [16]) | 4.9 g |
Water (Karaaslan and Yaman [12]) | 3.5 g |
LSD | 0.56 |
Solvent | Color Parameters | pH | Color | |
---|---|---|---|---|
Methanol: water (Neff and Chory [9]) | L* 81.41 a* 33.89 b* 14.63 H 23.35 C 36.91 | f a b d a | 1.73 | |
Methanol: water (Lindoo and Caldwell [7]) | L* 81.17 a* 33.84 b* 13.57 H 21.85 C 36.46 | f a c d a | 1.20 | |
Methanol (Solovchenko et al. [6]) | L* 81.47 a* 33.84 b* 11.32 H 18.50 C 35.68 | f a e e a | 2.21 | |
pH differential (Lee et al. [11]) | L* 84.84 a* 24.32 b* 20.56 H 40.21 C 31.84 | e b a b b | 1.67 | |
Ethanol (Karaaslan and Yaman [12]) | L* 85.82 a* 24.07 b* 3.55 H 8.38 C 24.32 | d b h f c | 2.4 | |
Chloroform: methanol (Solovchenko et al. [6]) | L* 87.959 a* 19.48 b* 1.34 H 3.93 C 19.53 | c c i g e | 3.02 | |
Combined solvents (Gauch et al. [16]) | L* 88.0 a* 19.22 b* 10.04 H 27.58 C 21.68 | c c f c d | 1.63 | |
Water (Karaaslan and Yaman [12]) | L* 88.37 a* 17.25 b* 13.77 H 38.61 C 22.07 | c d c b d | 1.95 | |
Acetone (Garcia-Viguera et al. [17]) | L* 95.37 a* 0.45 b* 5.12 H 85.03 C 5.13 | a f g a g | 0.008 |
Solvent | Compound Name Formula | RT (min) | m/z Detect | m/z Adduct | Area | MS/MS Fragment | % |
---|---|---|---|---|---|---|---|
Chloroform: methanol (Solovchenko et al. [6]) | Pelargonidin C15H11O5 | 10.04 | 271.0593 | 271.0601 | 1.62 × 106 | - | 20.40 |
Cyanidin C15H11O6 | 16.82 | 287.0536 | 287.0550 | 9.84 × 105 | 287.06 | 12.36 | |
Petunidin C16H13O7 | 16.84 | 317.0651 | 317.0656 | 1.12 × 106 | 317.07 | 14.09 | |
Methanol (Solovchenko et al. [6]) | Delphinidin C15H11O7 | 12.98 | 303.0491 | 303.0499 | 1.42 × 107 | 303.05 | 87.09 |
Methanol: water (Lindoo and Caldwell [7]) | Delphinidin C15H11O7 | 12.99 | 303.0491 | 303.0499 | 6.86 × 106 | 303.05 | 50.86 |
pH differential (Lee et al. [11]) | Delphinidin C15H11O7 | 12.99 | 303.0491 | 303.0499 | 8.97 × 106 | 303.05 | 79.53 |
Methanol: water (Neff and Chory [9]) | Delphinidin C15H11O7 | 12.97 | 303.0489 | 303.0499 | 1.50 × 107 | 303.05 | 86.22 |
Combined solvents (Gauch et al. [16]) | Delphinidin C15H11O7 | 12.98 | 303.0489 | 303.0499 | 2.47 × 106 | 303.05 | 39.97 |
Delphinidin-3,5-O-diglucoside C27H31O17 | 1.10 | 627.1594 | 627.1556 | 2.84 × 106 | 465.10, 303.05 | 45.93 | |
Water (Karaaslan and Yaman [12]) | Delphinidin C15H11O7 | 12.89 | 303.0489 | 303.0499 | 2.74 × 106 | 303.05 | 39.79 |
Delphinidin-3,5-O-diglucoside C27H31O17 | 1.10 | 627.1594 | 627.1556 | 2.48 × 106 | 465.10, 303.05 | 45.39 | |
Ethanol (Karaaslan and Yaman [12]) | Delphinidin C15H11O7 | 12.98 | 303.0493 | 303.0499 | 1.08 × 106 | 303.05 | 45.84 |
Pelargonidin C15H11O5 | 10.01 | 271.0600 | 271.0601 | 4.26 × 105 | - | 18.14 | |
Cyanidin C15H11O6 | 16.82 | 287.0541 | 287.0550 | 4.06 × 105 | 287.06 | 17.27 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Taghavi, T.; Patel, H.; Rafie, R. Extraction Solvents Affect Anthocyanin Yield, Color, and Profile of Strawberries. Plants 2023, 12, 1833. https://doi.org/10.3390/plants12091833
Taghavi T, Patel H, Rafie R. Extraction Solvents Affect Anthocyanin Yield, Color, and Profile of Strawberries. Plants. 2023; 12(9):1833. https://doi.org/10.3390/plants12091833
Chicago/Turabian StyleTaghavi, Toktam, Hiral Patel, and Reza Rafie. 2023. "Extraction Solvents Affect Anthocyanin Yield, Color, and Profile of Strawberries" Plants 12, no. 9: 1833. https://doi.org/10.3390/plants12091833
APA StyleTaghavi, T., Patel, H., & Rafie, R. (2023). Extraction Solvents Affect Anthocyanin Yield, Color, and Profile of Strawberries. Plants, 12(9), 1833. https://doi.org/10.3390/plants12091833