Genetic Analysis of Potato Breeding Collection Using Single-Nucleotide Polymorphism (SNP) Markers
Abstract
:1. Introduction
2. Results
2.1. A Total of 3,397,137 SNPs Obtained by Genotyping-by-Sequencing (GBS)
2.2. Structure and Genetic Diversity Analysis of 135 Potatoes
2.3. Genome-Wide Perfect SNP Discovery in 135 Potato Cultivars
2.4. Analysis of 190 Potatoes’ Genetic Diversity Based on 69 SNPs
2.5. SNP Fingerprint Construction
2.6. Identification of Variety Authenticity
3. Discussion
4. Materials and Methods
4.1. Plant Materials and DNA Isolation
4.2. Genotyping by SLAF Sequencing
4.3. Phylogenetic Tree Construction and PCA
4.4. SNP Genotyping via PARMS
4.5. Data Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Devaux, A.; Kromann, P.; Ortiz, O. Potatoes for Sustainable Global Food Security. Potato Res. 2014, 57, 185–199. [Google Scholar] [CrossRef]
- Dutta, P.; Hijam, L.; Chakroborty, M.; Mandal, R.; Reddy, B.J. A Review on Potato (Solanum Tuberosum L.) and its Genetic Diversity. Int. J. Genet. 2018, 10, 360. [Google Scholar] [CrossRef]
- Zaheer, K.; Akhtar, M.H. Potato Production, Usage, and Nutrition--A Review. Crit. Rev. Food Sci. Nutr. 2016, 56, 711–721. [Google Scholar] [CrossRef]
- Wang, L. Study on Phenotypic Traits and Late Blight Resistance of 198 CIP Potato Germplasm Resources. 2021. Available online: https://kns.cnki.net/kcms2/article/abstract?v=3uoqIhG8C447WN1SO36whLpCgh0R0Z-ia63qwICAcC3-s4XdRlECrWLnTiGK0bp2YxmX1bmDqXfZYjAWyf00D4PpKBZkZWvs&uniplatform=NZKPT (accessed on 10 February 2023).
- Carputo, D.; Alioto, D.; Aversano, R.; Garramone, R.; Miraglia, V.; Villano, C.; Frusciante, L. Genetic diversity among potato species as revealed by phenotypic resistances and SSR markers. Plant Genet. Resour. 2013, 11, 131–139. [Google Scholar] [CrossRef]
- Mishra, S.; Singh, J.; Sharma, P.K. Studies on Parameters of Genetic Variability for Yield and its Attributing Traits in Potato (Solanum tuberosum L.). Biosci. Biotech. Res. Asia 2017, 14, 489–495. [Google Scholar] [CrossRef]
- Nasiruddin, M.; Ali, F.; Islam, A.K.M. Genetic diversity in potato (Solanum tuberosum L.) genotypes grown in Bangladesh. Int. Res. J. Biological. Sci. 2017, 6, 1–8. [Google Scholar]
- Solomon, F.; Asrat, A.; Daniel, T.; Zenebe, G.M.; Eshetu, A. Evaluation of potato (Solanum tuberosum L.) varieties for yield and yield components. J. Hortic. For. 2019, 11, 48–53. [Google Scholar] [CrossRef]
- Tessema, G.L.; Mohammed, A.W.; Abebe, D.T. Genetic variability studies for tuber yield and yield attributes in Ethiopian released potato (Solanum tuberosum L.) varieties. PeerJ 2022, 10, e12860. [Google Scholar] [CrossRef] [PubMed]
- Mondini, L.; Noorani, A.; Pagnotta, M. Assessing Plant Genetic Diversity by Molecular Tools. Diversity 2009, 1, 19–35. [Google Scholar] [CrossRef]
- Nunziata, A.; Ruggieri, V.; Greco, N.; Frusciante, L.; Barone, A. Genetic Diversity within Wild Potato Species (Solanum spp.) Revealed by AFLP and SCAR Markers. Am. J. Plant Sci. 2010, 1, 95–103. [Google Scholar] [CrossRef]
- Wang, J.; Hou, L.; Wang, R.Y.; He, M.M.; Liu, Q.C. Genetic diversity and population structure of 288 potato (Solanum trosum L.) germplasms revealed by SSR and AFLP markers. J. Integr. Agr. 2017, 16, 2434–2443. [Google Scholar] [CrossRef]
- Chiang, T.Y.; Berdugo-Cely, J.A.; Martínez-Moncayo, C.; Lagos-Burbano, T.C. Genetic analysis of a potato (Solanum tuberosum L.) breeding collection for southern Colombia using Single Nucleotide Polymorphism (SNP) markers. PLoS ONE 2021, 16, e0248787. [Google Scholar] [CrossRef]
- Igarashi, T.; Tsuyama, M.; Ogawa, K.; Koizumi, E.; Sanetomo, R.; Hosaka, K. Evaluation of Japanese potatoes using single nucleotide polymorphisms (SNPs). Mole Breed. 2018, 39, 9. [Google Scholar] [CrossRef]
- Selga, C.; Chrominski, P.; Carlson-Nilsson, U.; Andersson, M.; Chawade, A.; Ortiz, R. Diversity and population structure of Nordic potato cultivars and breeding clones. BMC Plant Biol. 2022, 22, 350. [Google Scholar] [CrossRef] [PubMed]
- Kolech, S.A.; Halseth, D.; Perry, K.; Wolfe, D.; Douches, D.S.; Coombs, J.; De Jong, W. Genetic diversity and relationship of Ethiopian potato varieties to germplasm from North America, Europe and the International Potato Center. Am. J. Potato Res. 2016, 93, 609–619. [Google Scholar] [CrossRef]
- Vos, P.G.; Uitdewilligen, J.G.A.M.L.; Voorrips, R.E.; Visser, R.G.F.; van Eck, H.J. Development and analysis of a 20K SNP array for potato (Solanum tuberosum): An insight into the breeding history. Theor. Appl. Genet. 2015, 128, 2387–2401. [Google Scholar] [CrossRef]
- Vieira, M.L.; Santini, L.; Diniz, A.L.; Munhoz, C.F. Microsatellite markers: What they mean and why they are so useful. Genet. Mol. Biol. 2016, 39, 312–328. [Google Scholar] [CrossRef] [PubMed]
- Broccanello, C.; Chiodi, C.; Funk, A.; McGrath, J.M.; Panella, L.; Stevanato, P. Comparison of three PCR-based assays for SNP genotyping in plants. Plant Methods 2018, 14, 28. [Google Scholar] [CrossRef]
- You, Q.; Yang, X.; Peng, Z.; Xu, L.; Wang, J. Development and Applications of a High Throughput Genotyping Tool for Polyploid Crops: Single Nucleotide Polymorphism (SNP) Array. Front. Plant Sci. 2018, 9, 104. [Google Scholar] [CrossRef]
- He, J.; Zhao, X.; Laroche, A.; Lu, Z.X.; Liu, H.; Li, Z. Genotyping-by-sequencing (GBS), an ultimate marker-assisted selection (MAS) tool to accelerate plant breeding. Front. Plant Sci. 2014, 5, 484. [Google Scholar] [CrossRef]
- Rasheed, A.; Hao, Y.; Xia, X.; Khan, A.; Xu, Y.; Varshney, R.K.; He, Z. Crop Breeding Chips and Genotyping Platforms: Progress, Challenges, and Perspectives. Mol. Plant 2017, 10, 1047–1064. [Google Scholar] [CrossRef] [PubMed]
- Hoopes, G.; Meng, X.; Hamilton, J.P.; Achakkagari, S.R.; de Alves Freitas Guesdes, F.; Bolger, M.E.; Coombs, J.J.; Esselink, D.; Kaiser, N.R.; Kodde, L.; et al. Phased, chromosome-scale genome assemblies of tetraploid potato reveal a complex genome, transcriptome, and predicted proteome landscape underpinning genetic diversity. Mol. Plant 2022, 15, 520–536. [Google Scholar] [CrossRef]
- Leisner, C.P.; Hamilton, J.P.; Crisovan, E.; Manrique-Carpintero, N.C.; Marand, A.P.; Newton, L.; Pham, G.M.; Jiang, J.; Douches, D.S.; Jansky, S.H.; et al. Genome sequence of M6, a diploid inbred clone of the high-glycoalkaloid-producing tuber-bearing potato species Solanum chacoense, reveals residual heterozygosity. Plant J. 2018, 94, 562–570. [Google Scholar] [CrossRef] [PubMed]
- Diambra, L.A. Genome sequence and analysis of the tuber crop potato. Nature 2011, 475, 189–195. [Google Scholar] [CrossRef]
- Zhou, Q.; Tang, D.; Huang, W.; Yang, Z.; Zhang, Y.; Hamilton, J.P.; Visser, R.G.F.; Bachem, C.W.B.; Robin Buell, C.; Zhang, Z.; et al. Haplotype-resolved genome analyses of a heterozygous diploid potato. Nat. Genet. 2020, 52, 1018–1023. [Google Scholar] [CrossRef]
- Li, J.; Yu, X.; Zhang, S.; Yu, Z.; Li, J.; Jin, X.; Zhang, X.; Yang, D. Identification of starch candidate genes using SLAF-seq and BSA strategies and development of related SNP-CAPS markers in tetraploid potato. PLoS ONE 2021, 16, e0261403. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, J.P.; Hansey, C.N.; Whitty, B.R.; Stoffel, K.; Massa, A.N.; Van Deynze, A.; De Jong, W.S.; Douches, D.S.; Buell, C.R. Single nucleotide polymorphism discovery in elite north american potato germplasm. BMC Genom. 2011, 12, 302. [Google Scholar] [CrossRef]
- Obidiegwu, J.E.; Sanetomo, R.; Flath, K.; Tacke, E.; Hofferbert, H.R.; Hofmann, A.; Walkemeier, B.; Gebhardt, C. Genomic architecture of potato resistance to Synchytrium endobioticum disentangled using SSR markers and the 8.3k SolCAP SNP genotyping array. BMC Genet. 2015, 16, 38. [Google Scholar] [CrossRef]
- Ellis, D.; Chavez, O.; Coombs, J.; Soto, J.; Gomez, R.; Douches, D.; Panta, A.; Silvestre, R.; Anglin, N.L. Genetic identity in genebanks: Application of the SolCAP 12K SNP array in fingerprinting and diversity analysis in the global in trust potato collection. Genome 2018, 61, 523–537. [Google Scholar] [CrossRef]
- Majeed, U.; Darwish, E.; Rehman, S.U.; Zhang, X. Kompetitive Allele Specific PCR (KASP): A Singleplex Genotyping Platform and Its Application. J. Agr. Sci. 2018, 11, 11. [Google Scholar] [CrossRef]
- Lu, J.; Hou, J.; Ouyang, Y.; Luo, H.; Zhao, J.; Mao, C.; Han, M.; Wang, L.; Xiao, J.; Yang, Y.; et al. A direct PCR–based SNP marker–assisted selection system (D-MAS) for different crops. Mol. Breed. 2020, 40, 9. [Google Scholar] [CrossRef]
- Liu, W.; Qian, Z.; Zhang, J.; Yang, J.; Wu, M.; Barchi, L.; Zhao, H.; Sun, H.; Cui, Y.; Wen, C. Impact of fruit shape selection on genetic structure and diversity uncovered from genome-wide perfect SNPs genotyping in eggplant. Mol. Breed. 2019, 39, 140. [Google Scholar] [CrossRef]
- Nguyen, N.N.; Kim, M.; Jung, J.K.; Shim, E.J.; Chung, S.M.; Park, Y.; Lee, G.P.; Sim, S.C. Genome-wide SNP discovery and core marker sets for assessment of genetic variations in cultivated pumpkin (Cucurbita spp.). Hortic. Res. 2020, 7, 121. [Google Scholar] [CrossRef] [PubMed]
- Gazendam, I.; Mojapelo, P.; Bairu, M.W. Potato Cultivar Identification in South Africa Using a Custom SNP Panel. Plants 2022, 11, 1546. [Google Scholar] [CrossRef]
- Zhou, Q.; Zhou, C.; Zheng, W.; Mason, A.S.; Fan, S.; Wu, C.; Fu, D.; Huang, Y. Genome-Wide SNP Markers Based on SLAF-Seq Uncover Breeding Traces in Rapeseed (Brassica napus L.). Front. Plant Sci. 2017, 8, 648. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, H.; Sanetomo, R.; Hosaka, K. A System for Identification of Potato Varieties Using SNP Dosage. Am. J. Potato Res. 2017, 94, 513–523. [Google Scholar] [CrossRef]
- Zhang, F.; Qu, L.; Gu, Y.; Xu, Z.-H.; Xue, H.-W. Resequencing and genome-wide association studies of autotetraploid potato. Mol. Hortic. 2022, 2, 6. [Google Scholar] [CrossRef]
- Pereira-Dias, L.; Vilanova, S.; Fita, A.; Prohens, J.; Rodriguez-Burruezo, A. Genetic diversity, population structure, and relationships in a collection of pepper (Capsicum spp.) landraces from the Spanish centre of diversity revealed by genotyping-by-sequencing (GBS). Hortic. Res. 2019, 6, 54. [Google Scholar] [CrossRef]
- Peterson, G.; Dong, Y.; Horbach, C.; Fu, Y.-B. Genotyping-By-Sequencing for Plant Genetic Diversity Analysis: A Lab Guide for SNP Genotyping. Diversity 2014, 6, 665–680. [Google Scholar] [CrossRef]
- Uitdewilligen, J.G.; Wolters, A.M.; D’Hoop, B.B.; Borm, T.J.; Visser, R.G.; van Eck, H.J. A next-generation sequencing method for genotyping-by-sequencing of highly heterozygous autotetraploid potato. PLoS ONE 2013, 8, e62355. [Google Scholar] [CrossRef]
- Han, Z.; Hao, W.; Xie, R.; Guo, J.; Yi, L.; Hou, J.H. Analysis of Genetic Diversity of 148 Potato Germplasm Based on SNP Markers from Whole Genome Resequencing. Acta Bot. Boreal. Occident. Sin. 2021, 41, 1302–1314. [Google Scholar] [CrossRef]
- Voorrips, R.E.; Gort, G.; Vosman, B. Genotype calling in tetraploid species from bi-allelic marker data using mixture models. BMC Bioinform. 2011, 12, 172. [Google Scholar] [CrossRef] [PubMed]
- Schmitz Carley, C.A.; Coombs, J.J.; Douches, D.S.; Bethke, P.C.; Palta, J.P.; Novy, R.G.; Endelman, J.B. Automated tetraploid genotype calling by hierarchical clustering. Theor. Appl. Genet. 2017, 130, 717–726. [Google Scholar] [CrossRef] [PubMed]
- Serang, O.; Mollinari, M.; Garcia, A.A. Efficient exact maximum a posteriori computation for bayesian SNP genotyping in polyploids. PLoS ONE 2012, 7, e30906. [Google Scholar] [CrossRef]
- Sun, X.; Liu, D.; Zhang, X.; Li, W.; Liu, H.; Hong, W.; Jiang, C.; Guan, N.; Ma, C.; Zeng, H.; et al. SLAF-seq: An efficient method of large-scale de novo SNP discovery and genotyping using high-throughput sequencing. PLoS ONE 2013, 8, e58700. [Google Scholar] [CrossRef] [PubMed]
- Retief, J.D. Phylogenetic Analysis Using PHYLIP. In Bioinformatics Methods and Protocols; Misener, S., Krawetz, S.A., Eds.; Humana Press: Totowa, NJ, USA, 1999; pp. 243–258. [Google Scholar]
- Husson, F.; Josse, J.; Lê, S. FactoMineR: An R Package for Multivariate Analysis. J. Stat. Softw. 2008, 25, 1–18. [Google Scholar] [CrossRef]
Marker Name | SNPs Dosage Score | OH | MA | PIC | |||||
---|---|---|---|---|---|---|---|---|---|
0 | 1 | 2 | 3 | 4 | NA | ||||
StSNP54 | 4 | 11 | 52 | 71 | 39 | 15 | 0.76 | 0.32 | 0.70 |
StSNP57 | 78 | 46 | 43 | 18 | 0 | 7 | 0.58 | 0.75 | 0.70 |
StSNP41 | 0 | 15 | 36 | 69 | 60 | 12 | 0.67 | 0.26 | 0.70 |
StSNP24 | 13 | 64 | 77 | 29 | 7 | 2 | 0.89 | 0.56 | 0.69 |
StSNP11 | 11 | 65 | 78 | 30 | 6 | 2 | 0.91 | 0.56 | 0.69 |
StSNP96 | 32 | 88 | 41 | 23 | 0 | 8 | 0.83 | 0.68 | 0.68 |
StSNP78 | 70 | 70 | 28 | 14 | 0 | 10 | 0.62 | 0.77 | 0.67 |
StSNP86 | 72 | 42 | 66 | 1 | 0 | 11 | 0.60 | 0.76 | 0.65 |
StSNP87 | 74 | 70 | 39 | 2 | 0 | 7 | 0.60 | 0.79 | 0.65 |
StSNP8 | 48 | 85 | 38 | 5 | 0 | 16 | 0.73 | 0.75 | 0.64 |
StSNP115 | 64 | 83 | 25 | 5 | 3 | 12 | 0.63 | 0.78 | 0.64 |
StSNP19 | 0 | 0 | 41 | 62 | 85 | 4 | 0.55 | 0.19 | 0.64 |
StSNP148 | 23 | 23 | 90 | 31 | 0 | 25 | 0.86 | 0.56 | 0.64 |
StSNP16 | 75 | 77 | 34 | 0 | 0 | 6 | 0.60 | 0.81 | 0.63 |
StSNP127 | 0 | 3 | 27 | 75 | 74 | 12 | 0.59 | 0.19 | 0.63 |
StSNP38 | 91 | 62 | 29 | 5 | 0 | 5 | 0.51 | 0.82 | 0.63 |
StSNP83 | 32 | 84 | 71 | 0 | 0 | 5 | 0.83 | 0.70 | 0.62 |
StSNP70 | 35 | 93 | 62 | 0 | 0 | 2 | 0.82 | 0.71 | 0.62 |
StSNP13 | 70 | 76 | 17 | 6 | 1 | 3 | 0.58 | 0.81 | 0.62 |
StSNP119 | 67 | 89 | 31 | 0 | 0 | 5 | 0.64 | 0.80 | 0.62 |
StSNP133 | 0 | 1 | 24 | 69 | 85 | 13 | 0.53 | 0.17 | 0.61 |
StSNP80 | 78 | 89 | 23 | 0 | 0 | 2 | 0.59 | 0.82 | 0.60 |
StSNP39 | 39 | 104 | 46 | 0 | 0 | 3 | 0.79 | 0.74 | 0.60 |
StSNP21 | 71 | 94 | 22 | 0 | 0 | 5 | 0.62 | 0.82 | 0.59 |
StSNP30 | 64 | 97 | 20 | 1 | 0 | 9 | 0.65 | 0.81 | 0.58 |
StSNP26 | 40 | 109 | 39 | 1 | 0 | 3 | 0.79 | 0.75 | 0.58 |
StSNP33 | 83 | 82 | 16 | 0 | 0 | 11 | 0.54 | 0.84 | 0.58 |
StSNP109 | 58 | 101 | 20 | 0 | 0 | 13 | 0.68 | 0.80 | 0.56 |
StSNP106 | 61 | 103 | 17 | 1 | 0 | 10 | 0.66 | 0.81 | 0.56 |
StSNP112 | 102 | 67 | 13 | 2 | 0 | 8 | 0.45 | 0.87 | 0.55 |
StSNP76 | 19 | 109 | 60 | 0 | 0 | 4 | 0.90 | 0.70 | 0.55 |
StSNP104 | 61 | 105 | 15 | 0 | 0 | 11 | 0.66 | 0.81 | 0.54 |
StSNP90 | 114 | 51 | 20 | 2 | 0 | 4 | 0.39 | 0.87 | 0.54 |
StSNP110 | 115 | 47 | 13 | 9 | 0 | 8 | 0.38 | 0.86 | 0.54 |
StSNP141 | 34 | 114 | 32 | 0 | 0 | 12 | 0.81 | 0.75 | 0.53 |
StSNP99 | 0 | 2 | 6 | 66 | 96 | 22 | 0.44 | 0.12 | 0.53 |
StSNP7 | 26 | 118 | 34 | 0 | 0 | 14 | 0.85 | 0.74 | 0.50 |
StSNP93 | 25 | 117 | 34 | 0 | 0 | 16 | 0.86 | 0.74 | 0.50 |
StSNP84 | 0 | 4 | 14 | 118 | 35 | 20 | 0.80 | 0.23 | 0.47 |
StSNP47 | 130 | 42 | 7 | 5 | 0 | 8 | 0.29 | 0.90 | 0.45 |
StSNP72 | 0 | 55 | 126 | 0 | 0 | 11 | 1 | 0.58 | 0.42 |
StSNP92 | 2 | 131 | 31 | 14 | 0 | 14 | 0.99 | 0.67 | 0.42 |
StSNP81 | 0 | 0 | 15 | 28 | 132 | 17 | 0.25 | 0.08 | 0.40 |
StSNP66 | 5 | 140 | 41 | 0 | 0 | 6 | 0.97 | 0.70 | 0.38 |
StSNP113 | 7 | 140 | 38 | 0 | 0 | 7 | 0.96 | 0.71 | 0.38 |
StSNP120 | 13 | 145 | 31 | 0 | 0 | 3 | 0.93 | 0.73 | 0.38 |
StSNP65 | 0 | 1 | 135 | 44 | 0 | 2 | 1 | 0.44 | 0.38 |
StSNP75 | 0 | 0 | 1 | 37 | 150 | 4 | 0.20 | 0.05 | 0.32 |
StSNP159 | 144 | 33 | 1 | 0 | 0 | 14 | 0.19 | 0.95 | 0.31 |
StSNP160 | 30 | 154 | 2 | 0 | 0 | 6 | 0.84 | 0.79 | 0.29 |
StSNP102 | 160 | 22 | 7 | 0 | 0 | 3 | 0.15 | 0.95 | 0.27 |
StSNP123 | 149 | 26 | 0 | 1 | 0 | 16 | 0.15 | 0.96 | 0.26 |
StSNP126 | 150 | 26 | 0 | 1 | 0 | 15 | 0.15 | 0.96 | 0.26 |
StSNP36 | 29 | 160 | 0 | 0 | 0 | 3 | 0.85 | 0.79 | 0.26 |
StSNP122 | 15 | 168 | 7 | 0 | 0 | 2 | 0.92 | 0.76 | 0.21 |
StSNP48 | 0 | 0 | 0 | 22 | 166 | 4 | 0.12 | 0.03 | 0.21 |
StSNP28 | 167 | 22 | 0 | 0 | 0 | 3 | 0.12 | 0.97 | 0.21 |
StSNP29 | 163 | 19 | 0 | 0 | 0 | 10 | 0.10 | 0.97 | 0.19 |
StSNP31 | 169 | 16 | 3 | 0 | 0 | 2 | 0.10 | 0.97 | 0.18 |
StSNP64 | 175 | 15 | 0 | 0 | 0 | 2 | 0.08 | 0.98 | 0.15 |
StSNP60 | 176 | 14 | 0 | 0 | 0 | 2 | 0.07 | 0.98 | 0.14 |
StSNP50 | 0 | 180 | 10 | 0 | 0 | 2 | 1 | 0.74 | 0.10 |
StSNP116 | 2 | 172 | 5 | 2 | 0 | 11 | 0.99 | 0.74 | 0.10 |
StSNP144 | 0 | 0 | 0 | 8 | 181 | 3 | 0.04 | 0.01 | 0.08 |
StSNP138 | 0 | 0 | 0 | 8 | 182 | 2 | 0.04 | 0.01 | 0.08 |
StSNP20 | 4 | 182 | 2 | 0 | 0 | 4 | 0.98 | 0.75 | 0.06 |
StSNP117 | 0 | 2 | 177 | 3 | 0 | 10 | 1 | 0.50 | 0.05 |
StSNP150 | 185 | 5 | 0 | 0 | 0 | 2 | 0.03 | 0.99 | 0.05 |
StSNP79 | 1 | 188 | 1 | 0 | 0 | 2 | 0.99 | 0.75 | 0.02 |
StSNP63 | 190 | 0 | 0 | 0 | 0 | 2 | 0 | 1 | 0 |
StSNP139 | 0 | 0 | 190 | 0 | 0 | 2 | 1 | 0.50 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, X.-o.; Zhang, N.; Jin, H.; Si, H. Genetic Analysis of Potato Breeding Collection Using Single-Nucleotide Polymorphism (SNP) Markers. Plants 2023, 12, 1895. https://doi.org/10.3390/plants12091895
Xiao X-o, Zhang N, Jin H, Si H. Genetic Analysis of Potato Breeding Collection Using Single-Nucleotide Polymorphism (SNP) Markers. Plants. 2023; 12(9):1895. https://doi.org/10.3390/plants12091895
Chicago/Turabian StyleXiao, Xi-ou, Ning Zhang, Hui Jin, and Huaijun Si. 2023. "Genetic Analysis of Potato Breeding Collection Using Single-Nucleotide Polymorphism (SNP) Markers" Plants 12, no. 9: 1895. https://doi.org/10.3390/plants12091895
APA StyleXiao, X. -o., Zhang, N., Jin, H., & Si, H. (2023). Genetic Analysis of Potato Breeding Collection Using Single-Nucleotide Polymorphism (SNP) Markers. Plants, 12(9), 1895. https://doi.org/10.3390/plants12091895