The Allelopathic Activity of Aqueous Extracts of Helianthus annuus L., Grown in Boreal Conditions, on Germination, Development, and Physiological Indices of Pisum sativum L.
Abstract
:1. Introduction
2. Results
2.1. Effects of the Extracts on Pea Seed Germination (SG) 4 DAS
2.2. Effects of the Extracts on Root/Shoot Length Ratio and Vigour Index (VI)
2.3. Effects of the Extracts on Above-Ground Dry Mass (AGDM) and Root Dry Mass (RDM)
2.4. Effects of the Extracts on Physiological Parameters of Pea
2.5. Effects of the Extracts on Gas Exchanges Parameters of Pea
2.6. The Amount of Biologically Active Compounds
3. Discussion
3.1. Effects of the Aqueous Extracts of Sunflower on Pea SG
3.2. Effects of the Aqueous Extracts of Sunflower on Root/Shoot Length Ratio of Pea
3.3. Effects of the Aqueous Extracts of Sunflower on Pea AGDM and RDM
3.4. Effects of the Extracts of Sunflower on Physiological Traits of Pea
4. Materials and Methods
4.1. Details of the Laboratory Experiment
4.2. Determination of Biologically Active Compounds
4.3. Data of Germination and Biometric Parameters
4.4. Details of the Field Experiment
4.5. Photosynthetic Performance and Accumulation of Dry Matter of Peas Planted in the Field
4.6. Statistical Analysis
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Iqbal, A.; Hamayun, M.; Shah, F.; Hussain, A. Role of plant bioactives in sustainable agriculture. In Environment, Climate, Plant and Vegetation Growth, 1st ed.; Fahad, S., Hasanuzzaman, M., Alam, M., Ullah, H., Eds.; Springer: Berlin/Heidelberg, Germany, 2020; pp. 591–605. [Google Scholar]
- Gniazdowska, A.; Bogatek, R. Allelopathic interactions between plants. Multi-site action of allelochemicals. Acta Physiol. Plant. 2005, 27, 395–407. [Google Scholar] [CrossRef]
- Tanase, C.; Bujor, O.C.; Popa, V.I. Phenolic natural compounds and their influence on physiological processes in plants. In Polyphenols in Plants, 2nd ed.; Watson, R.R., Ed.; Academic Press: Cambridge, MA, USA, 2019; pp. 45–58. [Google Scholar]
- Debaeke, P.; Casadebaig, P.; Langlade, N.B. New challenges for sunflower ideotyping in changing environments and more ecological cropping systems. OCL 2021, 28, 29. [Google Scholar] [CrossRef]
- Bais, H.P.; Weir, T.L.; Perry, L.G.; Gilroy, S.; Vivanco, J.M. The role of root exudates in rhizosphere interactions with plants and other organisms. Annu. Rev. Plant Biol. 2006, 57, 233–266. [Google Scholar] [CrossRef] [PubMed]
- Bonanomi, G.; Sicurezza, G.M.; Caporaso, S.; Esposito, A.; Mazzoleni, S. Phytotoxicity dynamics of decaying plant materials. New Phytol. 2006, 169, 571–578. [Google Scholar] [CrossRef]
- Sahoo, T.R.; Behera, B.; Paikaray, R.K.; Garnayak, L.M.; Sethi, D.; Jena, S.; Raza, B.; Panda, R.K.; Song, B.; Lal, M.K.; et al. Effects of sunflower residue management options on productivity and profitability of succeeding rice under different crop establishment methods. Field Crops Res. 2023, 290, 108763. [Google Scholar] [CrossRef]
- Marsni, Z.E.; Torres, A.; Varela, R.M.; Molinillo, J.M.G.; Casas, L.; Mantell, C.; Ossa, E.J.M.; Macias, F.A. Isolation of bioactive compounds from sunflower leaves (Helianthus annuus L.) extracted with supercritical carbon dioxide. J. Agr. Food Chem. 2015, 63, 6410–6421. [Google Scholar] [CrossRef] [PubMed]
- Macias, F.A.; Mejias, F.J.R.; Molinillo, J.M.G. Recent advances in allelopathy for weed control: From knowledge to applications. Pest Manag. Sci. 2019, 75, 2413–2436. [Google Scholar] [CrossRef] [PubMed]
- Bogatek, R.; Gniazdowska, A.; Zakrzewska, W.; Oracz, K.; Gawronski, S.W. Allelopathic effects of sunflower extracts on mustard seed germination and seedling growth. Biol. Plantarum 2006, 50, 156–158. [Google Scholar] [CrossRef]
- Bashir, U.; Javaid, A.; Bajwa, R. Effects of aquous extracts of sunflower (Helianthus annuus L.) on germination of seedling growth on the selected wheat (Triticum aestivum L.) varieties. Bangladesh J. Bot. 2017, 46, 1323–1332. [Google Scholar]
- Rigon, C.A.G.; Salamoni, A.T.; Aguiar, A.C.M.; Cutti, L. Allelopathic effect of aqueous extracts of different organs of three sunflower cultivars on germination of radish. Biosci. J. 2018, 34, 577–586. [Google Scholar] [CrossRef]
- Ravlić, M.; Markulj Kulundžić, A.; Baličević, R.; Marković, M.; Viljevac Vuletić, M.; Kranjac, D.; Sarajlić, A. Allelopathic potential of sunflower genotypes at different growth stages on lettuce. Appl. Sci. 2022, 12, 12568. [Google Scholar] [CrossRef]
- Ashrafi, Y.Z.; Sagehgi, S.; Mashhadi, R.H.; Hassan, A.M. Allelopathic effects of sunflower (Helianthus annuus) on germination and growth of wild barley (Hordeum spontaneum). J. Agri. Tech. 2008, 4, 219–229. [Google Scholar]
- Muhammad, Z.; Majeed, A. Allelopathic effects of aqueous extracts of sunflower on wheat (Triticum aestivum L.) and maize (Zea mays L.). Pak. J. Bot. 2014, 46, 1715–1718. [Google Scholar]
- Kamal, J.; Bano, A. Effects of sunflower (Helianthus annuus L.) extracts on wheat (Triticum aestivum L.) and physicochemical characteristics of soil. Afr. J. Biotechnol. 2008, 7, 4130–4135. [Google Scholar]
- Dadkhah, A. Phytotoxic effects of aqueous extract of eucalyptus, sunflower and sugar beet on seed germination, growth and photosynthesis of Amaranthus retroflexus. Allelopath. J. 2012, 29, 287–296. [Google Scholar]
- Pula, J.; Zandi, P.; Stachurska-Swakori, A.; Barabasz-Krasny, B.; Mozdžen, K.; Wang, Y. Influence of alcoholic extracts from Helianthus annnus L. roots on the photosynthetic activity of Sinapis alba L. cv. Barka plants. Acta Agr. Scand. B Soil Plant Sci. 2020, 70, 8–13. [Google Scholar]
- Macias, F.A.; Torres, A.; Galindo, J.L.G.; Varela, R.M.; Alvares, J.A.; Molinillo, J.M.G. Bioactive terpenoids from sunflower leaves cv. Peredovick. Phytochemistry 2002, 61, 687–692. [Google Scholar] [CrossRef]
- Kamal, J. Impact of allelopathy of sunflower (Helianthus annuus L.) roots extract on physiology of wheat (Triticum aestivum L.). Afr. J. Biotechnol. 2011, 10, 14465–14477. [Google Scholar]
- Khaliq, A.; Matloob, A.; Tanveer, A.; Abbas, R.N.; Khan, M.B. Bio-herbicidal properties of sorghum and sunflower aqueous extracts against germination and seedling growth of dragon spurge (Euphorbia dracunculoides Lam.). Pak. J. Weed Sci. Res. 2012, 18, 137–148. [Google Scholar]
- Rashid, H.U.; Khan, A.; Hassan, G.; Munsif, F.; Tahir, N.; Zamin, M.; Shehzad, N. Integration of some allelopathic species for weed management in spring planted hybrid maize under different tillage regimes. J. Anim. Plant Sci. 2022, 32, 114–126. [Google Scholar]
- Alsaadawi, I.S.; Sarbout, A.K.; Al-Shamma, L.M. Differential allelopathic potential of sunflower (Helianthus annuus L.) genotypes on weeds and wheat (Triticum aestivum L.) crop. Arch. Agron. Soil Sci. 2012, 58, 1139–1148. [Google Scholar] [CrossRef]
- Rashid, H.U.; Khan, A.; Hassan, G.; Khan, S.U.; Saeed, M.; Khan, S.A.; Khan, S.M.; Hashim, S. Weed suppression in maize (Zea mays L.) through the allelopathic effects of sorghum [Sorghum bicolor (L.) Conard Moench.] sunflower (Helianthus annuus L.) and parthenium (Parthenium hysterophorus L.) plants. Appl. Ecol. Environ. Res. 2020, 18, 5187–5197. [Google Scholar] [CrossRef]
- Kandhro, M.N.; Tunio, S.D.; Rajpar, I.; Chachar, Q.D.; Gandahi, A.W. Allelopathic impact of sorghum and sunflower on germination and seedling growth of summer broadleaf weeds. Pak. J. Agri. Agril. Eng. Vet. Sci. 2015, 31, 229–239. [Google Scholar]
- Scavo, A.; Abbate, C.; Mauromicale, G. Plant allelochemicals: Agronomic, nutritional and ecological relevance in the soil system. Plant Soil 2019, 442, 23–48. [Google Scholar] [CrossRef]
- Gawronska, H.; Ciarka, D.; Bernat, W.; Gawronski, S.W. Sunflower-desired Allelopathic Crop for Sustainable and Organic Agriculture. In Allelopathy New Concept and Methodology; Fujii, Y., Hiradate, S., Eds.; Science Publishers: Enfield, CT, USA, 2007; pp. 185–210. [Google Scholar]
- Bashir, U.; Javaid, A.; Bajwa, R. Allelopathic effects of sunflower residue on growth of rice and subsequent wheat crop. Chil. J. Agric. Res. 2012, 72, 326–331. [Google Scholar] [CrossRef]
- Flayyih, T.M.; Almarie, A.A. Allelopathic effect of sunflower residues on some soil properties and growth parameters of wheat, bean and flax crops. Revis Bionata 2022, 7, 38. [Google Scholar] [CrossRef]
- Faysal, M.S. Effect of Allelopathic potential of corn, sunflower, field capacity and ascorbic acid in growth of two wheat cultivars. J. Educ. Sci. 2020, 29, 260–278. [Google Scholar] [CrossRef]
- Huang, W.; Reddy, G.V.P.; Shi, P.; Huang, J.; Hu, H.; Hu, T. Allelopathic effects of Cinnamomum septentrionale leaf litter on Eucalyptus grandis saplings. Glob. Ecol. Conserv. 2020, 21, e00872. [Google Scholar] [CrossRef]
- Sadeghi, S.; Rahnavard, A.; Ashrafi, Z.Y. Response of wheat (Triticum aestivum) germination and growth of seedling to allelopathic potential of sunflower (Helianthus annuus) and barley (Hordeum vulgare L.) extracts. J. Agric. Technol. 2010, 6, 573–577. [Google Scholar]
- Naeem, M.; Cheema, Z.A.; Ihsan, M.Z.; Hussain, Y.; Mazari, A.; Abbas, H.T. Allelopathic effects of different plant water extracts on yield and weeds of wheat. Planta Daninha 2018, 36, e018177840. [Google Scholar] [CrossRef]
- Oliwa, J.; Możdżeń, K.; Rut, G.; Rzepka, A. The influence of alcoholic extract from leaves of Helianthus annuus L. on germination and growth of Sinapis alba L. Mod. Phytomorphol. 2017, 11, 91–97. [Google Scholar]
- Chand, L.; Soomro, A.A.; Buriro, M.; Chachar, Q.; Kandhro, M.N.; Shaikh, T.A.; Said, F. Weed management in maize (Zea mays L.) crop using allelopathy of sunflower (Helianthus annuus L.) and johnson grass (Sorghum halepense) aquatic extracts. J. Nat. Volatiles Essent. Oils 2022, 9, 776–790. [Google Scholar]
- Rawat, L.S.; Maikhuri, R.K.; Bahuguna, Y.M.; Jha, N.K.; Phondani, P.C. Sunflower allelopathy for weed control in agriculture systems. J. Crop Sci. Biotech. 2017, 20, 45–60. [Google Scholar] [CrossRef]
- Hussain, W.S. Effects of spraying aqueous extracts of some crop plants on growth of four types of weeds. Plant Arch. 2020, 20, 1460–1464. [Google Scholar]
- Makaza, K.; Matigimu, M.; Sakadzo, N. Aqueous Leaf Extracts of Sunflower (Helianthus annuus) for Weed Management. In Climate Change Adaptations in Dryland Agriculture in Semi-Arid Areas; Poshiwa, X., Ravindra Chary, G., Eds.; Springer Nature: Singapore, 2022; pp. 145–155. [Google Scholar]
- Wang, X.; Wang, J.; Zhang, R.; Huang, Y.; Feng, S.; Ma, X.; Zhang, Y.; Sikdar, A.; Roy, R. Allelopathic effects of aqueous leaf extracts from four shrub species on seed germination and initial growth of Amygdalus pedunculata Pall. Forests 2018, 9, 711. [Google Scholar] [CrossRef]
- Khaliq, A.; Matloob, A.; Khan, M.B.; Tanveer, A. Differential suppression of rice weeds by allelopathic plant aqueous extracts. Planta Daninha 2013, 31, 21–28. [Google Scholar] [CrossRef]
- Kupidłowska, E.; Gniazdowska, A.; Stępień, J.; Corbineau, F.; Vinel, D.; Skoczowski, A.; Janeczko, A.; Bogatek, R. Impact of Sunflower (Helianthus annuus L.) Extracts Upon Reserve Mobilization and Energy Metabolism in Germinating Mustard (Sinapis alba L.) Seeds. J. Chem. Ecol. 2006, 32, 2569–2583. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Evon, P.; Ballas, S.; Trinh, H.K.; Xu, L.; Van Poucke, C.; Van Droogenbroeck, B.; Motti, P.; Mangelinckx, S.; Ramirez, A.; et al. Sunflower bark extract as a biostimulant suppresses reactive oxygen species in salt-stressed Arabidopsis. Front. Plant Sci. 2022, 13, 837441. [Google Scholar] [CrossRef] [PubMed]
- Hussain, I.; Baloch, M.S.; Khan, E.A.; Khan, A.A. Morphological and physiological response of maize to some allelopathic plant extracts. Pak. J. Weed Sci. Res. 2019, 25, 137–145. [Google Scholar]
- Sarvadamana, A.K.; Singh, V.P.; Guru, S.K.; Singh, S.P.; Pratap, T.; Sirazuddin; Nath, S. Allelopathic potential assessment of sorghum and sunflower on germination characteristics of Phalaris minor and wheat. Int. J. Curr. Microbiol. App. Sci. 2019, 8, 256–260. [Google Scholar] [CrossRef]
- Nafees, A.; Abbas, A. Bioassay test of allelopathic potential of sunflower (Helianthus annuus L.) against mung bean (Vigna radiata (L.) R. Wilczek). GU J. Phytosci. 2021, 1, 70–79. [Google Scholar]
- Nafees, A.; Abbas, A.; Salam, I.; Hussain, F. Allelopathic effects of sunflower (Helianthus annuus L.) against Luffa cylindrica (L.) Roem. GU J. Phytosci. 2021, 1, 124–132. [Google Scholar]
- Sarma, D.; Basumatary, P.; Datta, B.K. Allelopathic impact of Melastoma malabathricum l. on the seed germination and seedling growth of three agricultural crops. J. Indian Bot. Soc. 2019, 98, 183–193. [Google Scholar] [CrossRef]
- Javaid, A.; Shafique, S.; Bajwa, R.; Shafique, S. Effect of aqueous extracts of allelopathic crops on germination and growth of Parthenium hysterophorus L. S. Afr. J. Bot. 2006, 72, 609–612. [Google Scholar] [CrossRef]
- Tanase, C.; Boz, I.; Stingu, A.; Volf, I.; Popa, V.I. Physiological and biochemical responses induced by spruce bark aqueous extract and deuterium depleted water with synergistic action in sunflower (Helianthus annuus L.) plants. Ind. Crops Prod. 2014, 60, 160–167. [Google Scholar] [CrossRef]
- Janusauskaite, D.; Kadzienė, G. Influence of different intensities of tillage on physiological characteristics and productivity of crop-rotation plants. Plants 2022, 11, 3107. [Google Scholar] [CrossRef] [PubMed]
- Siyar, S.; Majeed, A.; Muhammad, Z.; Ali, H.; Inayat, N. Allelopathic effect of aqueous extracts of three weed species on the growth and leaf chlorophyll content of bread wheat. Acta Ecol. Sin. 2019, 39, 63–68. [Google Scholar] [CrossRef]
- Li, J.; Zhao, T.; Chen, L.; Chen, H.; Luo, D.; Chen, C.; Miao, Y.; Liu, D. Artemisia argyi allelopathy: A generalist compromises hormone balance, element absorption, and photosynthesis of receptor plants. BMC Plant Biol. 2022, 22, 368. [Google Scholar] [CrossRef] [PubMed]
- Hussain, M.I.; González, L.; Reigosa, M.J. Phytotoxic effect of allelochemicals and herbicides on photosynthesis, growth and carbon isotope discrimination in Lactuca sativa. Allelop. J. 2010, 26, 157–174. [Google Scholar]
- Watt, M.; Moosavi, S.; Cunningham, S.C.; Kirkegaard, J.A.; Rebetzke, G.J.; Richards, R.A. A rapid, controlled-environment seedling roots creen for wheat correlates well with rooting depths at vegetative, but not reproductive, stages at two field sites. Ann. Bot. 2013, 112, 447–455. [Google Scholar] [CrossRef]
- Miliauskas, G.; Venskutonis, P.R.; van Beek, T.A. Screening of radical scavenging activity of some medicinal and aromatic plant extracts. Food Chem. 2004, 85, 231–237. [Google Scholar] [CrossRef]
- Amena, D.; Azra, B.H.; Nazneen, S. Evaluation of allelopathic effect of aqueous leaf extract of parthenium (Pathenium hysterophorus L.) on seed germination and seedling growth in sunflower (Helianthus annus L.), soybean (Glycine max L.) and green gram (Phaseolus mungo L.). Int. J. Appl. Sci. Eng. Tech. 2019, 7, 429–438. [Google Scholar] [CrossRef]
- Rohaček, K.; Soukupova, J.; Bartak, M. Chlorophyll fluorescence: A wonderful tool to study plant physiology and plant stress. In Plant Cell Compartments—Selected Topisc; Schoefs, B., Ed.; Research Signpost: Kerala, India, 2008; pp. 41–104. [Google Scholar]
- Cosentino, S.L.; Patane, C.; Sanzone, E.; Testa, G.; Scordia, D. Leaf gas exchange, water status and radiation use efficiency of giant reed (Arundo donax L.) in a changing soil nitrogen fertilization and soil water availability in a semi-arid Mediterranean area. Europ. J. Agron. 2016, 72, 56–69. [Google Scholar] [CrossRef]
- Saeidi, M.; Abdoli, M. Effect of drought stress during grain filling on yield and its components, gas exchange variables, and some physiological traits of wheat cultivars. J. Agr. Sci. Tech. 2015, 17, 885–898. [Google Scholar]
- Scavo, A.; Pandino, G.; Restuccia, A.; Caruso, P.; Lombardo, S.; Mauromicale, G. Allelopathy in durum wheat landraces as affected by genotype and plant part. Plants 2022, 11, 1021. [Google Scholar] [CrossRef] [PubMed]
Donor Plant | Extract from | Concentration, | SPAD | ||
---|---|---|---|---|---|
Fertilization | Plant Part | % w/v | BBCH 30 | BBCH 34–35 | BBCH 65 |
Data, averaged across plant part and extract concentration | |||||
N0P0K0 | 32.0 a | 33.5 a | 30.6 a | ||
N80P60K90 | 30.4 b | 33.6 a | 31.7 a | ||
Data, averaged across donor plant fertilization and extract concentration | |||||
L+S | 30.9 a | 33.3 a | 31.1 a | ||
H | 31.7 a | 33.6 a | 30.9 a | ||
R | 31.0 a | 33.9 a | 31.5 a | ||
Data, averaged across donor plant fertilization and plant part | |||||
0 | 34.0 a | 42.7 a | 35.9 a | ||
25 | 32.1 b | 32.1 b | 30.4 b | ||
50 | 29.1 b | 29.3 b | 30.3 b | ||
75 | 29.6 b | 30.2 b | 26.1 b | ||
Contribution (% of sum of squares) of donor plant fertilization, plant part, aqueous extract concentration and their interaction and significance | |||||
Fertilization (Factor A) | 3.6 * | 0.01 | 0.4 | ||
Plant part extract (Factor B) | 0.7 | 0.1 | 0.1 | ||
Concentration (Factor C) | 22.6 ** | 57.9 ** | 18.5 ** | ||
A × B | 11.1 ** | 2.6 * | 12.4 ** | ||
A × C | 3.8 | 7.4 ** | 2.5 | ||
B × C | 6.3 | 2.8 | 5.3 | ||
A × B × C | 6.5 | 5.6 ** | 5.0 | ||
Total | 54.9 | 76.4 | 34.3 |
Donor Plant | Extract from | Concentration, | Fv/Fm | ||
---|---|---|---|---|---|
Fertilization | Plant Part | % w/v | BBCH 30 | BBCH 34–35 | BBCH 65 |
Data, averaged across plant part and extract concentration | |||||
N0P0K0 | 0.797 a | 0.665 a | 0.651 a | ||
N80P60K90 | 0.828 b | 0.654 a | 0.677 b | ||
Data, averaged across donor plant fertilization and extract concentration | |||||
L+S | 0.807 a | 0.665 a | 0.665 a | ||
H | 0.820 b | 0.658 a | 0.666 a | ||
R | 0.810 a | 0.665 a | 0.661 a | ||
Data, averaged across donor plant fertilization and plant part | |||||
0 | 0.810 a | 0.673 a | 0.693 a | ||
25 | 0.809 a | 0.667 a | 0.652 b | ||
50 | 0.812 a | 0.651 a | 0.650 b | ||
75 | 0.817 a | 0.646 a | 0.601 b | ||
Contribution (% of sum of squares) of donor plant fertilization, plant part, aqueous extract concentration and their interaction and significance | |||||
Fertilization (Factor A) | 17.0 ** | 0.7 | 3.4 * | ||
Plant part extract (Factor B) | 2.2 | 0.4 | 0.1 | ||
Concentration (Factor C) | 0.7 | 2.9 | 6.3 ** | ||
A × B | 18.3 ** | 6.4 * | 1.1 | ||
A × C | 5.9 ** | 2.8 | 4.0 | ||
B × C | 5.3 | 8.2 | 6.8 | ||
A × B × C | 9.8 ** | 10.9 * | 4.3 | ||
Total | 59.1 | 32.3 | 26.0 |
Donor Plant Fertilization | Extract from Plant Part | Concentration, % w/v | A | E | WUE | PWUE | gs | Ci | gm | Ls |
---|---|---|---|---|---|---|---|---|---|---|
Data, averaged across plant part and extract concentration | ||||||||||
N0P0K0 | 2.57 a | 0.69 b | 5.49 a | 72.4 b | 0.05 b | 273 b | 0.012 a | 0.35 a | ||
N80P60K90 | 1.72 b | 1.00 a | 3.62 b | 33.9 c | 0.06 a | 327 a | 0.007 b | 0.21 b | ||
Data, averaged across donor plant fertilization and extract concentration | ||||||||||
L+S | 2.70 a | 0.70 b | 5.92 a | 81.9 b | 0.05 b | 256 b | 0.015 a | 0.38 a | ||
H | 2.07 a | 0.82 b | 4.27 a | 48.9 c | 0.05 b | 302 a | 0.008 b | 0.28 a | ||
R | 1.68 b | 1.02 a | 3.48 b | 28.8 c | 0.07 a | 342 a | 0.005 b | 0.18 b | ||
Data, averaged across donor plant fertilization and plant part | ||||||||||
0 | 2.28 a | 0.36 b | 8.8 a | 33.9 c | 0.07 b | 276 b | 0.090 a | 0.34 a | ||
25 | 2.82 a | 1.05 a | 4.12 b | 84.6 a | 0.06 b | 305 b | 0.012 a | 0.27 a | ||
50 | 1.84 b | 0.85 a | 3.22 b | 51.3 b | 0.05 c | 286 b | 0.010 a | 0.32 a | ||
75 | 1.64 b | 1.13 a | 2.09 b | 43.0 b | 0.05 c | 333 a | 0.006 a | 0.19 b | ||
Contribution (% of sum of squares) of donor plant fertilization, plant part, aqueous extract concentration and their interaction and significance | ||||||||||
Fertilization (Factor A) | 7.2 * | 6.0 ** | 5.2 ** | 10.9 ** | 4.6 * c | 8.5 ** | 6.6 * | 8.6 ** | ||
Plant part (Factor B) | 7.0 * | 4.6 | 6.1 * | 14.2 ** | 4.0 | 14.4 ** | 14.2 ** | 13.5 ** | ||
Concentration (Factor C) | 8.2 * | 22.7 ** | 38.4 ** | 10.8 ** | 6.6 * | 5.5 | 3.8 | 6.7 * | ||
A × B | 1.7 | 3.6 | 3.7 | 6.2 * | 4.9 * | 5.3 | 3.3 | 4.4 | ||
A × C | 5.0 | 2.2 | 4.3 | 9.7 ** | 2.6 | 3.0 | 6.0 | 3.1 | ||
B × C | 5.6 | 6.9 | 3.9 | 8.0 | 6.5 | 8.1 | 6.9 | 8.0 | ||
A × B × C | 1.9 | 2.3 | 1.8 | 7.3 | 7.6 | 3.7 | 4.2 | 3.4 | ||
Total | 36.7 | 48.3 | 63.3 | 67.2 | 36.7 | 48.5 | 45.0 | 47.8 |
Plant Part | Concentration | IRA | IRE | IRWUE | IRPWUE | IRgs | IRCi | IRgm | IRLs | IRSPAD | IRFv/Fm |
---|---|---|---|---|---|---|---|---|---|---|---|
N0P0K0 | |||||||||||
L+S | 25 | 0.45 | 0.38 | 0.06 | −0.67 | 0.81 | −0.25 | 0.50 | 0.38 | −0.19 | −0.07 |
50 | −0.23 | −0.12 | −0.17 | −0.61 | 0.25 | −0.21 | −0.28 | 0.34 | −0.22 | −0.08 | |
75 | −0.01 | 0.29 | −0.19 | −0.66 | 0.61 | −0.18 | −0.11 | −0.10 | −0.29 | −0.08 | |
H | 25 | 0.28 | 0.28 | −0.11 | −0.59 | 0.67 | −0.13 | 0.28 | 0.26 | −0.12 | −0.06 |
50 | −0.03 | 0.44 | −0.61 | −0.35 | 0.29 | −0.04 | 0.02 | 0.02 | −0.22 | −0.04 | |
75 | −0.02 | 0.65 | −0.70 | −0.32 | 0.21 | 0.03 | −0.02 | −0.01 | −0.14 | −0.04 | |
R | 25 | −0.09 | 0.77 | −0.80 | 0.07 | −0.14 | 0.22 | −0.24 | −0.42 | −0.01 | −0.01 |
50 | −0.32 | 0.55 | −0.77 | −0.36 | 0.08 | 0.19 | −0.43 | −0.29 | −0.04 | −0.04 | |
75 | −0.12 | 0.78 | −0.81 | 0.05 | −0.15 | 0.22 | −0.22 | −0.42 | −0.13 | −0.01 | |
N80P60K90 | |||||||||||
L+S | 25 | 0.13 | 0.78 | −0.74 | 0.11 | −0.05 | 0.24 | −0.09 | −0.52 | −0.09 | −0.02 |
50 | −0.08 | 0.58 | −0.60 | −0.29 | 0.21 | −0.18 | 0.10 | −0.06 | −0.16 | −0.01 | |
75 | −0.52 | 0.61 | −0.78 | −0.48 | −0.10 | 0.20 | −0.64 | −0.48 | −0.11 | 0.04 | |
H | 25 | −0.14 | 0.50 | −0.71 | −0.24 | 0.22 | 0.18 | −0.24 | −0.29 | 0.04 | 0.02 |
50 | −0.16 | 0.62 | −0.77 | −0.28 | 0.09 | 0.18 | −0.26 | −0.28 | −0.18 | −0.02 | |
75 | −0.56 | 0.78 | −0.95 | 0.01 | −0.56 | 0.29 | −0.69 | −0.77 | −0.15 | −0.04 | |
R | 25 | −0.31 | 0.76 | −0.85 | −0.03 | −0.22 | 0.21 | −0.47 | −0.45 | −0.16 | −0.05 |
50 | −0.48 | 0.38 | −0.29 | −0.01 | −0.30 | 0.21 | −0.53 | −0.46 | −0.17 | −0.01 | |
75 | −0.65 | 0.73 | −0.90 | −0.05 | −0.40 | 0.26 | −0.73 | −0.59 | −0.22 | −0.29 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Janusauskaite, D. The Allelopathic Activity of Aqueous Extracts of Helianthus annuus L., Grown in Boreal Conditions, on Germination, Development, and Physiological Indices of Pisum sativum L. Plants 2023, 12, 1920. https://doi.org/10.3390/plants12091920
Janusauskaite D. The Allelopathic Activity of Aqueous Extracts of Helianthus annuus L., Grown in Boreal Conditions, on Germination, Development, and Physiological Indices of Pisum sativum L. Plants. 2023; 12(9):1920. https://doi.org/10.3390/plants12091920
Chicago/Turabian StyleJanusauskaite, Daiva. 2023. "The Allelopathic Activity of Aqueous Extracts of Helianthus annuus L., Grown in Boreal Conditions, on Germination, Development, and Physiological Indices of Pisum sativum L." Plants 12, no. 9: 1920. https://doi.org/10.3390/plants12091920
APA StyleJanusauskaite, D. (2023). The Allelopathic Activity of Aqueous Extracts of Helianthus annuus L., Grown in Boreal Conditions, on Germination, Development, and Physiological Indices of Pisum sativum L. Plants, 12(9), 1920. https://doi.org/10.3390/plants12091920