Multivariate Analysis Compares and Evaluates Heat Tolerance of Potato Germplasm
Abstract
:1. Introduction
2. Results
2.1. Heat Stress Affects the Microtuber Development
2.2. The Developmental and Physiological Process Changed Significantly under Heat Stress Conditions
2.3. Correlation Analysis between All Measured Trait Indicators
2.4. Three Principal Components Analysis
2.5. Heat Comprehensive Evaluation Value (HCEV), and Comprehensive Principal Components (F) Value Represented Higher Heat Tolerance
2.6. Screening of Heat Tolerance Traits by Stepwise Regression Analysis
2.7. The Different Heat-Tolerant Cultivars in Potato Were Grouped by Cluster Analysis Based on Comprehensive HCEV and F Values
3. Discussion
4. Materials and Methods
4.1. Plant Material and Heat Stress Application
4.1.1. Measurement of Microtuber Number and Yield
4.1.2. Measurement of Growth Rate
4.1.3. Measurement of Chlorophyll Content
4.1.4. Measurement of Cell Membrane Injury
4.1.5. Measurement of Photosynthetic Parameters
4.1.6. Measurement of Biomass
4.1.7. Measurement of Tuber Number and Yield
4.2. Heat Tolerance Analysis
4.3. Data Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Levy, D.; Veilleux, R.E. Adaptation of potato to high temperatures and salinity—A review. Am. J. Potato Res. 2007, 84, 487–506. [Google Scholar] [CrossRef]
- Van Dam, J.; Kooman, P.; Struik, P. Effects of temperature and photoperiod on early growth and final number of tubers in potato (Solanum tuberosum L.). Potato Res. 1996, 39, 51–62. [Google Scholar] [CrossRef]
- Hijmans, R.J. The effect of climate change on global potato production. Am. J. Potato Res. 2003, 80, 271–279. [Google Scholar] [CrossRef]
- Tang, R.; Niu, S.; Zhang, G.; Chen, G.; Haroon, M.; Yang, Q.; Rajora, O.P.; Li, X.-Q. Physiological and growth responses of potato cultivars to heat stress. Botany 2018, 96, 897–912. [Google Scholar] [CrossRef]
- Dreesen, F.E.; De Boeck, H.J.; Janssens, I.A.; Nijs, I. Summer heat and drought extremes trigger unexpected changes in productivity of a temperate annual/biannual plant community. Environ. Exp. Bot. 2012, 79, 21–30. [Google Scholar] [CrossRef]
- Hammes, P.; De Jager, J. Net photosynthetic rate of potato at high temperatures. Potato Res. 1990, 33, 515–520. [Google Scholar] [CrossRef]
- Hastilestari, B.R.; Lorenz, J.; Reid, S.; Hofmann, J.; Pscheidt, D.; Sonnewald, U.; Sonnewald, S. Deciphering source and sink responses of potato plants (Solanum tuberosum L.) to elevated temperatures. Plant Cell Environ. 2018, 41, 2600–2616. [Google Scholar] [CrossRef]
- Merah, O.; Abhilash, P.C.; Gharnaout, M.L. Genetic Diversity as a Key to Understanding Physiological and Biochemical Mechanisms. Agronomy 2023, 13, 2315. [Google Scholar] [CrossRef]
- Barnabás, B.; Jäger, K.; Fehér, A. The effect of drought and heat stress on reproductive processes in cereals. Plant Cell Environ. 2008, 31, 11–38. [Google Scholar] [CrossRef]
- Trapero-Mozos, A.; Ducreux, L.J.M.; Bita, C.E.; Morris, W.; Wiese, C.; Morris, J.A.; Paterson, C.; Hedley, P.E.; Hancock, R.D.; Taylor, M. A reversible light- and genotype-dependent acquired thermotolerance response protects the potato plant from damage due to excessive temperature. Planta 2018, 247, 1377–1392. [Google Scholar] [CrossRef]
- Bonnel, E. Potato Breeding: A Challenge, as ever! Potato Res. 2008, 51, 327–332. [Google Scholar] [CrossRef]
- Gopal, J.; Minocha, J. Effectiveness of in vitro selection for agronomic characters in potato. Euphytica 1998, 103, 67–74. [Google Scholar] [CrossRef]
- Khan, M.A.; Munive, S.; Bonierbale, M. Early generation in vitro assay to identify potato populations and clones tolerant to heat. Plant Cell Tissue Organ Cult. (PCTOC) 2015, 121, 45–52. [Google Scholar] [CrossRef]
- Xu, X.; van Lammeren, A.A.; Vermeer, E.; Vreugdenhil, D. The role of gibberellin, abscisic acid, and sucrose in the regulation of potato tuber formation in vitro. Plant Physiol. 1998, 117, 575–584. [Google Scholar] [CrossRef] [PubMed]
- Garner, N.; Blake, J. The induction and development of potato microtubers in vitro on media free of growth regulating substances. Ann. Bot. 1989, 63, 663–674. [Google Scholar] [CrossRef]
- Pantelić, D.; Dragićević, I.Č.; Rudić, J.; Fu, J.; Momčilović, I. Effects of high temperature on in vitro tuberization and accumulation of stress-responsive proteins in potato. Hortic. Environ. Biotechnol. 2018, 59, 315–324. [Google Scholar] [CrossRef]
- Wahid, A.; Gelani, S.; Ashraf, M.; Foolad, M.R. Heat tolerance in plants: An overview. Environ. Exp. Bot. 2007, 61, 199–223. [Google Scholar] [CrossRef]
- Pareek, A.; Singla, S.L.; Grover, A. Short-term Salinity and High Temperature Stress-associated Ultrastructural Alterations in Young Leaf Cells of Oryza sativa L. Ann. Bot. 1997, 80, 629–639. [Google Scholar] [CrossRef]
- Lin, C.-Y.; Chen, Y.-M.; Key, J.L. Solute leakage in soybean seedlings under various heat shock regimes. Plant Cell Physiol. 1985, 26, 1493–1498. [Google Scholar]
- Shanahan, J.F.; Edwards, I.B.; Quick, J.S.; Fenwick, J.R. Membrane Thermostability and Heat Tolerance of Spring Wheat. Crop Sci. 1990, 30, 247–251. [Google Scholar] [CrossRef]
- Neeru, K.; Kalpna, B.; Siddique, K.H.M.; Harsh, N. Food crops face rising temperatures: An overview of responses, adaptive mechanisms, and approaches to improve heat tolerance. Cogent Food Agric. 2016, 2, 1134380. [Google Scholar]
- Fernie, A.R.; Willmitzer, L. Molecular and biochemical triggers of potato tuber development. Plant Physiol. 2001, 127, 1459–1465. [Google Scholar] [CrossRef] [PubMed]
- Gautam, S.; Solis-Gracia, N.; Teale, M.K.; Mandadi, K.; Silva, J.A.D.; Vales, M.I. Development of an in vitro microtuberization and temporary immersion bioreactor system to evaluate heat stress tolerance in potatoes (Solanum tuberosum L.). Front. Plant Sci. 2021, 12, 700328. [Google Scholar] [CrossRef] [PubMed]
- Lehretz, G.G.; Sonnewald, S.; Hornyik, C.; Corral, J.M.; Sonnewald, U. Post-transcriptional Regulation of FLOWERING LOCUS T Modulates Heat-Dependent Source-Sink Development in Potato. Curr. Biol. 2019, 29, 1614–1624. [Google Scholar] [CrossRef] [PubMed]
- Vreugdenhil, D.; Boogaard, Y.; Visser, R.G.; de Bruijn, S.M. Comparison of tuber and shoot formation from in vitro cultured potato explants. Plant Cell Tissue Organ Cult. 1998, 53, 197–204. [Google Scholar] [CrossRef]
- Struik, P.C. Responses of the Potato Plant to Temperature. In Potato Biology and Biotechnology; Elsevier: Amsterdam, The Netherlands, 2007; pp. 367–393. [Google Scholar]
- Wiltshire, J.; Cobb, A. A review of the physiology of potato tuber dormancy. Ann. Appl. Biol. 1996, 129, 553–569. [Google Scholar] [CrossRef]
- Dahal, K.; Li, X.-Q.; Tai, H.; Creelman, A.; Bizimungu, B. Improving potato stress tolerance and tuber yield under a climate change scenario—A current overview. Front. Plant Sci. 2019, 10, 563. [Google Scholar] [CrossRef]
- Mathur, S.; Allakhverdiev, S.I.; Jajoo, A. Analysis of high temperature stress on the dynamics of antenna size and reducing side heterogeneity of Photosystem II in wheat leaves (Triticum aestivum). BBA-Bioenerg. 2010, 1807, 22–29. [Google Scholar] [CrossRef]
- Mehdi, L.; Daniel, E.; Michel, D. Effects of drought preconditioning on thermotolerance of photosystem II and susceptibility of photosynthesis to heat stress in cedar seedlings. Tree Physiol. 2000, 20, 1235–1241. [Google Scholar]
- Winkler, L.; Buanga, N.-F.; Goetze, E. Gas-liquid chromatographic analysis of cardiolipin from fetal and maternal liver of the rat. Biochim. Biophys. Acta (BBA)-Lipids Lipid Metab. 1971, 231, 535–536. [Google Scholar] [CrossRef]
- Cragg, G.M.; Schepartz, S.A.; Suffness, M.; Grever, M.R. The taxol supply crisis. New NCI policies for handling the large-scale production of novel natural product anticancer and anti-HIV agents. J. Nat. Prod. 1993, 56, 1657–1668. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.; Chen, Y.; Zhang, H.; Fu, P.; Fan, Z. Stronger cooling effects of transpiration and leaf physical traits of plants from a hot dry habitat than from a hot wet habitat. Funct. Ecol. 2017, 31, 2202–2211. [Google Scholar] [CrossRef]
- Tzeng, S.; Hsu, B.-D. Chlorophyll degradation in heat-treated Chlorella pyrenoidosa. A flow cytometric study. Funct. Plant Biol. 2001, 28, 79–83. [Google Scholar] [CrossRef]
- Essemine, J.; Ammar, S.; Bouzid, S. Impact of heat stress on germination and growth in higher plants: Physiological, biochemical and molecular repercussions and mechanisms of defence. J. Biol. Sci. 2010, 10, 565–572. [Google Scholar] [CrossRef]
- Ahn, Y.-J.; Claussen, K.; Zimmerman, J.L. Genotypic differences in the heat-shock response and thermotolerance in four potato cultivars. Plant Sci. 2004, 166, 901–911. [Google Scholar] [CrossRef]
- Poli, Y.; Basava, R.K.; Panigrahy, M.; Vinukonda, V.P.; Dokula, N.R.; Voleti, S.R.; Desiraju, S.; Neelamraju, S. Characterization of a Nagina22 rice mutant for heat tolerance and mapping of yield traits. Rice 2013, 6, 36. [Google Scholar] [CrossRef]
- Stephen, K.; Beena, R.; Kiran, A.; Shanija, S.; Saravanan, R. Changes in physiological traits and expression of key genes involved in sugar signaling pathway in rice under high temperature stress. 3 Biotech 2022, 12, 183. [Google Scholar] [CrossRef]
- Sun, F.L.; Chen, Q.; Chen, Q.J.; Jiang, M.; Gao, W.; Qu, Y.Y. Screening of Key Drought Tolerance Indices for Cotton at the Flowering and Boll Setting Stage Using the Dimension Reduction Method. Front. Plant Sci. 2021, 12, 619926. [Google Scholar] [CrossRef]
- Levy, D.; Kastenbaum, E.; Itzhak, Y. Evaluation of parents and selection for heat tolerance in the early generations of a potato (Solanum tuberosum L.) breeding program. Theor. Appl. Genet. 1991, 82, 130–136. [Google Scholar] [CrossRef]
- Levy, D. Genotypic variation in the response of potatoes (Solanum tuberosum L.) to high ambient temperatures and water deficit. Field Crops Res. 1986, 15, 85–96. [Google Scholar] [CrossRef]
- Zhang, G.; Tang, R.; Niu, S.; Si, H.; Yang, Q.; Rajora, O.P.; Li, X.-Q. Heat-stress-induced sprouting and differential gene expression in growing potato tubers: Comparative transcriptomics with that induced by postharvest sprouting. Hortic. Res. 2021, 8, 226. [Google Scholar] [CrossRef] [PubMed]
- Murashige, T.; Skoog, F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia plantarum 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Inskeep, W.P.; Bloom, P.R. Extinction coefficients of chlorophyll a and b in N, N-dimethylformamide and 80% acetone. Plant Physiol. 1985, 77, 483–485. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Kong, L.; Zhang, Y.; Liao, Y. Gene and metabolite integration analysis through transcriptome and metabolome brings new insight into heat stress tolerance in potato (Solanum tuberosum L.). Plants 2021, 10, 103. [Google Scholar] [CrossRef]
- Tian, Z.; Yang, Y.; Wang, F. A comprehensive evaluation of heat tolerance in nine cultivars of marigold. Hortic. Environ. Biotechnol. 2015, 56, 749–755. [Google Scholar] [CrossRef]
- Wang, G.Y.; Ahmad, S.; Wang, Y.; Wang, B.W.; Huang, J.H.; Jahan, M.S.; Zhou, X.B.; Shi, C.Q. Multivariate analysis compares and evaluates drought and flooding tolerances of maize germplasm. Plant Physiol. 2023, 193, 339–355. [Google Scholar] [CrossRef]
Trait | Stress | Variation Range | Mean ± SD | CV (%) | p Value | HTC Mean | CV of HTC (%) |
---|---|---|---|---|---|---|---|
Microtuber number | Control | 1–11 | 5.40 ± 2.53 | 46.85 | - | 0.61 | 79.80 |
HS | 0–8 | 2.77 ± 1.76 | 63.47 | ||||
Microtuber yield (g/per jar) | Control | 0.27–1.86 | 0.73 ± 0.27 | 36.95 | - | 0.67 | 34.76 |
HS | 0–0.83 | 0.48 ± 0.22 | 45.93 | ||||
Plant height growth rate | Control | 0.32–2.18 | 1.14 ± 0.48 | 41.43 | ** | 1.57 | 55.89 |
HS | 0.67–2.76 | 1.53 ± 0.45 | 29.38 | ||||
Fourth internode growth rate | Control | 0.14–0.86 | 0.30 ± 0.15 | 49.37 | ** | 2.38 | 54.12 |
HS | 0.17–1.08 | 0.64 ± 0.29 | 44.68 | ||||
Aerial parts fresh weight (g) | Control | 23.08–155.27 | 51.32 ± 21.01 | 40.42 | 1.19 | 33.32 | |
HS | 1.75–9.36 | 55.64 ± 16.84 | 33.58 | ||||
Aerial parts dry weight (g) | Control | 23.79–96.09 | 5.62 ± 1.91 | 29.88 | 1.10 | 36.55 | |
HS | 2.27–12.45 | 5.74 ± 2.04 | 35.10 | ||||
(%) Injury cell membrane (%) | Control | 10.74–21.84 | 14.84 ± 2.45 | 16.32 | 0.99 | 22.70 | |
HS | 10.89–20.87 | 14.39 ± 2.27 | 15.61 | ||||
Chlorophyll a (mg/g) | Control | 1.5–3.85 | 2.60 ± 0.50 | 18.86 | * | 0.95 | 18.94 |
HS | 1.6–3.56 | 2.42 ± 0.45 | 18.36 | ||||
Chlorophyll b (mg/g) | Control | 0.08–1.16 | 0.68 ± 0.28 | 40.48 | 1.91 | 1.40 | |
HS | 0.08–1.24 | 0.65 ± 0.29 | 43.22 | ||||
Total chlorophyll (mg/g) | Control | 2.44–5 | 3.46 ± 0.51 | 14.64 | ** | 0.89 | 21.45 |
HS | 2.14–4.54 | 3.04 ± 0.60 | 19.66 | ||||
Pn (µmol/m2/ s) | Control | 3.21–21.55 | 11.49 ± 4.54 | 39.03 | 1.24 | 81.24 | |
HS | 2.61–17.46 | 10.54 ± 4.23 | 39.60 | ||||
Gs (mol/m2/s) | Control | 0.01–0.37 | 0.17 ± 0.10 | 60.56 | 1.94 | 142.05 | |
HS | 0.02–0.44 | 0.16 ± 0.10 | 63.44 | ||||
Tr (mol/m2/s) | Control | 0–0.01 | 0.002 ± 0.001 | 61.69 | 1.25 | 101.68 | |
HS | 0–0.01 | 0.002 ± 0.001 | 63.22 | ||||
Ci (µmol/mol) | Control | 84.78–312.72 | 254.89 ± 43.16 | 16.72 | 1.03 | 28.28 | |
HS | 103.39–332.5 | 248.90 ± 52.56 | 20.85 | ||||
Tuber number | Control | 2–20.33 | 9.62 ± 3.76 | 38.54 | 1.03 | 37.53 | |
HS | 25.82–89.78 | 9.62 ± 4.90 | 25.01 | ||||
Tuber yield (g) | Control | 1.67–27 | 56.04 ± 14.20 | 50.30 | 1.03 | 34.95 | |
HS | 14.29–88.86 | 55.56 ± 15.56 | 27.66 |
Principal Component | Weight of Principal Component | |||||
---|---|---|---|---|---|---|
Index | F1 | F2 | F3 | F1 | F2 | F3 |
Pn | 0.87 | −0.31 | 0.21 | 0.40 | −0.29 | 0.21 |
Fourth internode growth rate | 0.86 | 0.07 | −0.17 | 0.40 | 0.07 | −0.17 |
Tuber number | 0.79 | 0.04 | 0.02 | 0.36 | 0.04 | 0.02 |
Tuber yield | 0.76 | 0.48 | 0.04 | 0.35 | 0.44 | 0.04 |
Tr | 0.74 | −0.15 | 0.38 | 0.34 | −0.13 | 0.38 |
Gs | −0.73 | 0.04 | 0.29 | −0.33 | 0.04 | 0.29 |
(%) Injury cell membrane | 0.71 | −0.43 | 0.27 | 0.33 | −0.39 | 0.27 |
Plant height growth rate | 0.417 | 0.78 | 0.13 | 0.19 | 0.72 | 0.13 |
Chlorophyll b | 0.51 | −0.15 | −0.78 | 0.24 | −0.14 | −0.78 |
CR/% | 52.22 | 13.03 | 11.21 | - | - | - |
CCR/% | 52.22 | 65.24 | 76.46 | - | - | - |
Eigen value | 4.84 | 1.18 | 1.04 | - | - | - |
Weight | 0.69 | 0.17 | 0.14 | - | - | - |
Cultivar | HCEV | F | CHTC | Cultivar | HCEV | F | CHTC | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Value | Rank | Value | Rank | Value | Rank | Value | Rank | Value | Rank | Value | Rank | ||
D | 0.17 | 39 | −1.61 | 38 | 0.47 | 37 | C109 | 0.42 | 16 | 0.49 | 17 | 0.91 | 17 |
C13 | 0.25 | 26 | −0.94 | 26 | 0.57 | 26 | C122 | 0.22 | 30 | −1.24 | 31 | 0.57 | 27 |
C15 | 0.13 | 40 | −1.96 | 40 | 0.51 | 34 | C132 | 0.59 | 3 | 1.90 | 3 | 1.35 | 11 |
C17 | 0.20 | 33 | −1.32 | 32 | 0.53 | 32 | C133 | 0.46 | 12 | 0.89 | 14 | 1.20 | 12 |
C20 | 0.54 | 6 | 1.50 | 8 | 1.13 | 15 | D13 | 0.38 | 17 | 0.51 | 16 | 1.41 | 10 |
C28 | 0.24 | 27 | −1.00 | 27 | 0.58 | 24 | D17 | 0.17 | 37 | −1.52 | 36 | 0.44 | 39 |
C31 | 0.19 | 34 | −1.50 | 35 | 0.50 | 35 | D24 | 0.19 | 35 | −1.43 | 34 | 0.45 | 38 |
C44 | 0.25 | 24 | −0.94 | 25 | 0.56 | 29 | D54 | 0.55 | 4 | 1.65 | 5 | 1.69 | 5 |
C56 | 0.21 | 31 | −1.23 | 30 | 0.53 | 31 | D58 | 0.49 | 11 | 1.12 | 12 | 1.14 | 14 |
C57 | 0.30 | 20 | −0.46 | 19 | 0.56 | 28 | D68 | 0.23 | 28 | −1.05 | 28 | 0.49 | 36 |
C72 | 0.55 | 5 | 1.52 | 6 | 1.42 | 9 | D72 | 0.30 | 21 | −0.61 | 21 | 0.58 | 25 |
C84 | 0.45 | 15 | 1.06 | 13 | 1.66 | 7 | D73 | 0.72 | 2 | 2.90 | 2 | 2.13 | 2 |
C85 | 0.51 | 9 | 1.51 | 7 | 1.77 | 4 | D148 | 0.46 | 13 | 1.14 | 11 | 1.67 | 6 |
C86 | 0.52 | 8 | 1.33 | 10 | 1.18 | 13 | D149 | 0.53 | 7 | 1.67 | 4 | 2.17 | 1 |
C91 | 0.25 | 23 | −0.90 | 23 | 0.60 | 23 | D162 | 0.50 | 10 | 1.41 | 9 | 1.57 | 8 |
C95 | 0.17 | 36 | −1.69 | 39 | 0.55 | 30 | D189 | 0.28 | 22 | −0.71 | 22 | 0.82 | 18 |
C98 | 0.45 | 14 | 0.73 | 15 | 1.06 | 16 | D211 | 0.17 | 38 | −1.55 | 37 | 0.41 | 40 |
C100 | 0.25 | 25 | −0.90 | 24 | 0.52 | 33 | L10 | 0.21 | 32 | −1.33 | 33 | 0.61 | 22 |
C105 | 0.22 | 29 | −1.14 | 29 | 0.65 | 20 | FA | 0.93 | 1 | 4.58 | 1 | 1.90 | 3 |
C106 | 0.32 | 18 | −0.36 | 18 | 0.65 | 21 | L6 | 0.31 | 19 | −0.48 | 20 | 0.66 | 19 |
Trait | X1 | X2 | X3 | X4 | X5 | X6 | X7 | X8 | X9 | HCEV | F |
---|---|---|---|---|---|---|---|---|---|---|---|
HCEV | 0.52 | 0.87 | −0.74 | 0.58 | 0.76 | 0.58 | 0.64 | 0.77 | 0.82 | - | 1 |
*** | *** | *** | *** | *** | *** | *** | *** | *** | *** | ||
F | 0.5 | 0.87 | −0.72 | 0.54 | 0.79 | 0.62 | 0.68 | 0.79 | 0.82 | 1 | - |
*** | *** | *** | *** | *** | *** | *** | *** | *** | *** | ||
CHTC | 0.37 | 0.84 | −0.63 | 0.66 | 0.89 | 0.76 | 0.68 | 0.66 | 0.6 | 0.91 | 0.92 |
* | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** |
Models | R2 | F | p > F |
---|---|---|---|
HCEV = 0.039 + 0.043X1 + 0.021X2 − 0.080X3 − 0.003X4 + 0.031X5 + 0.009X6 + 0.028X7 + 0.080X8 + 0.110X9 | 1.000 | 18,610.5 | <0.001 |
F = −2.503 + 0.311X1 + 0.198X2 − 0.799X3 + 0.009X4 + 0.254X5 + 0.071X6 + 0.210X7 + 0.669X8 + 0.891X9 | 1.000 | 1,026,039.9 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, S.; Ye, H.; Kong, L.; Li, X.; Chen, Y.; Wang, S.; Liu, B. Multivariate Analysis Compares and Evaluates Heat Tolerance of Potato Germplasm. Plants 2024, 13, 142. https://doi.org/10.3390/plants13010142
Zhang S, Ye H, Kong L, Li X, Chen Y, Wang S, Liu B. Multivariate Analysis Compares and Evaluates Heat Tolerance of Potato Germplasm. Plants. 2024; 13(1):142. https://doi.org/10.3390/plants13010142
Chicago/Turabian StyleZhang, Sujie, Han Ye, Lingshuang Kong, Xiaoyu Li, Yeqing Chen, Shipeng Wang, and Bailin Liu. 2024. "Multivariate Analysis Compares and Evaluates Heat Tolerance of Potato Germplasm" Plants 13, no. 1: 142. https://doi.org/10.3390/plants13010142
APA StyleZhang, S., Ye, H., Kong, L., Li, X., Chen, Y., Wang, S., & Liu, B. (2024). Multivariate Analysis Compares and Evaluates Heat Tolerance of Potato Germplasm. Plants, 13(1), 142. https://doi.org/10.3390/plants13010142