The Influence of the Explant’s Type on the Performance of Synthetic Seeds of Blackberry (Rubus spp.)
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Plant Material
4.2. Encapsulating Procedure and Growing Conditions
4.3. Growth Parameters
4.4. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Muñoz-Concha, D.; Quintero, J.; Ercişli, S. Media and Hormones Influence in Micropropagation Success of Blackberry cv. ‘Chester’. Res. J. Biotechnol. Vol. 2021, 16, 5. [Google Scholar]
- Vujović, T.; Ružić, D.; Cerović, R.; Leposavić, A.; Karaklajić-Stajić, Ž.; Mitrović, O.; Žurawicz, E. An Assessment of the Genetic Integrity of Micropropagated Raspberry and Blackberry Plants. Sci. Hortic. 2017, 225, 454–461. [Google Scholar] [CrossRef]
- Hunková, J.; Gajdošová, A.; Szabóová, M. Effect of Mesos Components (MgSO4, CaCl2, KH2PO4) on In Vitro Shoot Growth of Blackberry, Blueberry, and Saskatoon. Plants 2020, 9, 935. [Google Scholar] [CrossRef] [PubMed]
- Kefayeti, N.; Kafkas, E.; Ercişli, S. Micropropagation of’Chester Thornless’ Blackberry Cultivar Using Axillary Bud Explants. Not. Bot. Horti Agrobot. 2019, 47, 162–168. [Google Scholar] [CrossRef]
- Kolarević, T.; Milinčić, D.D.; Vujović, T.; Gašić, U.M.; Prokić, L.; Kostić, A.Ž.; Cerović, R.; Stanojevic, S.P.; Tešić, Ž.L.; Pešić, M.B. Phenolic Compounds and Antioxidant Properties of Field-Grown and in Vitro Leaves, and Calluses in Blackberry and Blueberry. Horticulturae 2021, 7, 420. [Google Scholar] [CrossRef]
- Foster, T.M.; Bassil, N.V.; Dossett, M.; Leigh Worthington, M.; Graham, J. Genetic and Genomic Resources for Rubus Breeding: A Roadmap for the Future. Hortic. Res. 2019, 6, 116. [Google Scholar] [CrossRef] [PubMed]
- Hall, H.K. World Blackberry Production. In Blackberries and Their Hybrids; CABI: Wallingford, UK, 2017; pp. 308–314. [Google Scholar]
- Zia-Ul-Haq, M.; Riaz, M.; De Feo, V.; Jaafar, H.Z.; Moga, M. Rubus Fruticosus L.: Constituents, Biological Activities and Health Related Uses. Molecules 2014, 19, 10998–11029. [Google Scholar] [CrossRef] [PubMed]
- Reed, B.; Poothong, S.; Hall, H.K. Propagation of Blackberries and Related Rubus Species. In Blackberries and Their Hybrids; CABI: Wallingford, UK, 2017; pp. 101–112. [Google Scholar]
- Gomes, H.T.; Bartos, P.M.C.; Andrade, M.T.D.; Almeida, R.F.; Lacerda, L.F.D.; Scherwinski-Pereira, J.E. In Vitro Conservation of Blackberry Genotypes under Minimal Growth Conditions and Subsequent Large-Scale Micropropagation. Pesqui. Agropecu. Bras. 2017, 52, 1286–1290. [Google Scholar] [CrossRef]
- Ayub, R.A.; Santos, J.N.D.; Zanlorensi Junior, L.A.; Silva, D.M.D.; Carvalho, T.C.D.; Grimaldi, F. Sucrose Concentration and Volume of Liquid Medium on the In Vitro Growth and Development of Blackberry cv. Tupy in Temporary Immersion Systems. Ciênc. Agrotecnol. 2019, 43, e007219. [Google Scholar] [CrossRef]
- Bobrowski, V.L.; Mello-Farias, P.; Petters, J. Micropropagation of Blackberries (Rubus Sp.) Cultivars. Curr. Agric. Sci. Technol. 1996, 2, 17–20. [Google Scholar]
- Najaf-Abadi, A.J.; Hamidoghli, Y. Micropropagation of Thornless Trailing Blackberry (‘Rubus sp.’) by Axillary Bud Explants. Aust. J. Crop Sci. 2009, 3, 191–194. Available online: https://search.informit.org/doi/abs/10.3316/informit.037509152756777 (accessed on 24 August 2023).
- Ružić, D.; Lazić, T. Micropropagation as Means of Rapid Multiplication of Newly Developed Blackberry and Black Currant Cultivars. Agric. Conspec. Sci. 2006, 71, 149–153. [Google Scholar]
- Lepse, L.; Laugale, V. Micropropagation, Rooting and Acclimatization of Blackberry ‘Agavam’. In Proceedings of the I International Symposium on Biotechnology of Fruit Species: BIOTECHFRUIT2008 839, Dresden, Germany, 1 September 2008; pp. 43–49. [Google Scholar]
- Aly, A.A.; El-Desouky, W.; El-Leel, O.F.A. Micropropagation, Phytochemical Content and Antioxidant Activity of Gamma-Irradiated Blackberry (Rubus fruticosus L.) Plantlets. In Vitro Cell. Dev. Biol.-Plant 2022, 58, 457–469. [Google Scholar] [CrossRef]
- Standardi, A.; Micheli, M. Encapsulation of In Vitro-Derived Explants: An Innovative Tool for Nurseries. In Protocols for Micropropagation of Selected Economically-Important Horticultural Plants; Humana Press: Totowa, NJ, Canada, 2012; pp. 397–418. [Google Scholar] [CrossRef]
- Ahmad, N.; Shahid, A.; Javed, S.B.; Khan, M.I.; Anis, M. Micropropagation of Vitex Spp. through In Vitro Manipulation: Current Status and Future Prospectives. J. Appl. Res. Med. Aromat. Plants 2015, 2, 114–123. [Google Scholar] [CrossRef]
- Rai, M.K.; Asthana, P.; Singh, S.K.; Jaiswal, V.S.; Jaiswal, U. The Encapsulation Technology in Fruit Plants—A Review. Biotechnol. Adv. 2009, 27, 671–679. [Google Scholar] [CrossRef] [PubMed]
- Bettoni, J.C.; Costa, M.D.; Souza, J.A.; Volk, G.M.; Nickel, O.; da Silva, F.N.; Kretzschmar, A.A. Cryotherapy by Encapsulation-Dehydration Is Effective for In Vitro Eradication of Latent Viruses from ‘Marubakaido’ Apple Rootstock. J. Biotechnol. 2018, 269, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.-R.; Bi, W.-L.; Bettoni, J.C.; Zhang, D.; Volk, G.M.; Wang, Q.-C. Shoot Tip Cryotherapy for Plant Pathogen Eradication. Plant Pathol. 2022, 71, 1241–1254. [Google Scholar] [CrossRef]
- Rihan, H.Z.; Kareem, F.; El-Mahrouk, M.E.; Fuller, M.P. Artificial Seeds (Principle, Aspects and Applications). Agronomy 2017, 7, 71. [Google Scholar] [CrossRef]
- Lambardi, M.; Benelli, C.; Ozudogru, E.A.; Ozden-Tokatli, Y. Synthetic Seed Technology in Ornamental Plants. In Floriculture, Ornamental and Plant Biotechnology; CABI: Wallingford, UK, 2006; pp. 347–354. [Google Scholar]
- Jadán, M.; Ruiz, J.; Soria, N.; Mihai, R. Synthetic Seeds Production and the Induction of Organogenesis in Blackberry (Rubus glaucus Benth). Rom. Biotechnol. Lett. 2015, 20, 10134–10142. [Google Scholar]
- Gupta, S.; Reed, B.M. Cryopreservation of Shoot Tips of Blackberry and Raspberry by Encapsulation-Dehydration and Vitrification. Cryoletters 2006, 27, 29–42. Available online: https://www.ingentaconnect.com/content/cryo/cryo/2006/00000027/00000001/art00004# (accessed on 24 August 2023).
- Micheli, M.; Standardi, A.; Fernandes da Silva, D. Encapsulation and Synthetic Seeds of Olive (Olea europaea L.): Experiences and Overview. In Synthetic Seeds: Germplasm Regeneration, Preservation and Prospects; Springer: Berlin/Heidelberg, Germany, 2019; pp. 347–361. [Google Scholar]
- Piccioni, E.; Standardi, A. Encapsulation of Micropropagated Buds of Six Woody Species. Plant Cell Tissue Organ Cult. 1995, 42, 221–226. [Google Scholar] [CrossRef]
- Piccioni, E. Plantlets from Encapsulated Micropropagated Buds of M.26 Apple Rootstock. Plant Cell Tissue Organ Cult. 1997, 47, 255–260. [Google Scholar] [CrossRef]
- Gangopadhyay, G.; Roy, S.K.; Gangopadhyay, S.B.; Mukherjee, K.K. Agrobacterium-Mediated Genetic Transformation of Pineapple Var. Queen Using a Novel Encapsulation-Based Antibiotic Selection Technique. Plant Cell Tissue Organ Cult. 2009, 97, 295–302. [Google Scholar] [CrossRef]
- Germana, M.A.; Micheli, M.; Chiancone, B.; Macaluso, L.; Standardi, A. Organogenesis and Encapsulation of In Vitro-Derived Propagules of Carrizo Citrange [Citrus sinensis (L.) Osb. × Poncirius trifoliata (L.) Raf]. Plant Cell Tissue Organ Cult. 2011, 106, 299–307. [Google Scholar] [CrossRef]
- Naik, S.K.; Chand, P.K. Nutrient-Alginate Encapsulation of In Vitro Nodal Segments of Pomegranate (Punica granatum L.) for Germplasm Distribution and Exchange. Sci. Hortic. 2006, 108, 247–252. [Google Scholar] [CrossRef]
- Adriani, M.; Piccioni, E.; Standardi, A. Effect of Different Treatments on the Conversion of ‘Hayward’ Kiwifruit Synthetic Seeds to Whole Plants Following Encapsulation of In Vitro-Derived Buds. N. Z. J. Crop Hortic. Sci. 2000, 28, 59–67. [Google Scholar] [CrossRef]
- Sicurani, M.; Piccioni, E.; Standardi, A. Micropropagation and Preparation of Synthetic Seed in M.26 Apple Rootstock I: Attempts towards Saving Labor in the Production of Adventitious Shoot Tips Suitable for Encapsulation. Plant Cell Tissue Organ Cult. 2001, 66, 207–216. [Google Scholar] [CrossRef]
- Pattnaik, S.; Chand, P.K. Morphogenic Response of the Alginate-Encapsulated Axillary Buds from In Vitro Shoot Cultures of Six Mulberries. Plant Cell Tissue Organ Cult. 2000, 60, 177–185. [Google Scholar] [CrossRef]
- Gayatri, M.C.; Revanasiddaiah, H.M. Propagation of Mulberry Variety—S54 by Synseeds of Axillary Bud. Plant Cell Tissue Organ Cult. 2006, 84, 245–249. [Google Scholar] [CrossRef]
- Micheli, M.; Hafiz, I.A.; Standardi, A. Encapsulation of In Vitro-Derived Explants of Olive (Olea europaea L. cv. Moraiolo): II. Effects of Storage on Capsule and Derived Shoots Performance. Sci. Hortic. 2007, 113, 286–292. [Google Scholar] [CrossRef]
- Liberatore, C.M.; Rodolfi, M.; Beghè, D.; Fabbri, A.; Ganino, T.; Chiancone, B. Adventitious Shoot Organogenesis and Encapsulation Technology in Hop (Humulus lupulus L.). Sci. Hortic. 2020, 270, 109416. [Google Scholar] [CrossRef]
- Sandoval-Yugar, E.W.; Dal Vesco, L.L.; Steinmacher, D.A.; Stolf, E.C.; Guerra, M.P. Microshoots Encapsulation and Plant Conversion of Musa sp. cv. “Grand Naine”. Cienc. Rural 2009, 39, 998–1004. [Google Scholar] [CrossRef]
- Lata, H.; Chandra, S.; Khan, I.A.; ElSohly, M.A. Propagation through Alginate Encapsulation of Axillary Buds of Cannabis sativa L.—An Important Medicinal Plant. Physiol. Mol. Biol. Plants 2009, 15, 79–86. [Google Scholar] [CrossRef] [PubMed]
- Chand, S.; Singh, A.K. Plant Regeneration from Encapsulated Nodal Segments of Dalbergia sissoo Roxb., a Timber-Yielding Leguminous Tree Species. J. Plant Physiol. 2004, 161, 237–243. [Google Scholar] [CrossRef]
- Rout, G.R.; Das, G.; Samantaray, S.; Das, P. Micropropagation of Plumbago zeylanica L. by Encapsulated Nodal Explants. J. Hortic. Sci. Biotechnol. 2001, 76, 24–29. [Google Scholar] [CrossRef]
- Verma, S.K.; Rai, M.K.; Asthana, P.; Jaiswal, V.S.; Jaiswal, U. In Vitro Plantlets from Alginate-Encapsulated Shoot Tips of Solanum nigrum L. Sci. Hortic. 2010, 124, 517–521. [Google Scholar] [CrossRef]
- Dave, A.; Joshi, N.; Purohit, S.D. In Vitro Propagation of Chlorophytum Borivilianum Using Encapsu-Lated Shoot Buds. Eur. J. Hortic. Sci. 2004, 69, 37–42. [Google Scholar]
- Singh, A.K.; Sharma, M.; Varshney, R.; Agarwal, S.S.; Bansal, K.C. Plant Regeneration from Alginate-Encapsulated Shoot Tips of Phylianthus amarus Schum and Thonn, a Medicinally Important Plant Species. In Vitro Cell. Dev. Biol.—Plant 2006, 42, 109–113. [Google Scholar] [CrossRef]
- Singh, S.K.; Rai, M.K.; Asthana, P.; Pandey, S.; Jaiswal, V.S.; Jaiswal, U. Plant Regeneration from Alginate-Encapsulated Shoot Tips of Spilanthes acmella (L.) Murr., a Medicinally Important and Herbal Pesticidal Plant Species. Acta Physiol. Plant 2009, 31, 649–653. [Google Scholar] [CrossRef]
- Faisal, M.; Anis, M. Regeneration of Plants from Alginate-Encapsulated Shoots of Tylophora indica (Burm. f.) Merrill, an Endangered Medicinal Plant. J. Hortic. Sci. Biotechnol. 2007, 82, 351–354. [Google Scholar] [CrossRef]
- Chow, Y.N.; Selby, C.; Fraser, T.W.; Harvey, B.M.R. Basal Plate Tissue in Narcissus Bulbs and in Shoot Clump Cultures: Its Structure and Role in Organogenic Potential of Single Leaf Cultures. Ann. Bot. 1993, 71, 437–443. [Google Scholar] [CrossRef]
- Stanisavljevic, M. New Small Fruit Cultivars from Cacak: 1. The New Blackberry (Rubus sp.) Cultivar ‘Cacanska Bestrna’. In Proceedings of the VII International Symposium on Rubus and Ribes 505, Melbourne, Australia, 9–15 January 1998; pp. 291–296. [Google Scholar]
- Himelrick, D.G.; Nesbitt, M. Thornless Blackberry Performance on the Gulf Coast of Alabama. In Proceedings of the VIII International Rubus and Ribes Symposium 585, Dundee, Scotland, 4–11 July 2001; pp. 625–627. [Google Scholar]
- Classic Murashige, T.; Skoog, F. A Revised Medium for Rapid Growth and Bioassays with Tobacco Tissue Cultures. Physiol. Plant 1962, 15, 473–497. [Google Scholar] [CrossRef]
Factors | Viability (%) | Regeneration (%) | Shoot Produced (n) | Shoot Length (mm) | Roots Produced (n) | Roots Length (mm) | Fresh Weight per Explant (mg) | Dry Weight per Explant (mg) |
---|---|---|---|---|---|---|---|---|
Cultivar Thornfree | ||||||||
Type of explant | * | ns | ** | ** | ** | ns | ** | ** |
Explant age | ns | ns | ns | ns | ns | ns | ns | ns |
Interaction | ns | ns | ns | ns | ns | ns | ns | ns |
Cultivar Chester | ||||||||
Type of explant | ns | ns | * | ns | * | ns | ** | ** |
Explant age | ns | ns | ns | ns | * | ns | ns | ns |
Interaction | ns | ns | ns | ns | ns | ns | ns | ns |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Regni, L.; Micheli, M.; Facchin, S.L.; Del Pino, A.M.; Silvestri, C.; Proietti, P. The Influence of the Explant’s Type on the Performance of Synthetic Seeds of Blackberry (Rubus spp.). Plants 2024, 13, 32. https://doi.org/10.3390/plants13010032
Regni L, Micheli M, Facchin SL, Del Pino AM, Silvestri C, Proietti P. The Influence of the Explant’s Type on the Performance of Synthetic Seeds of Blackberry (Rubus spp.). Plants. 2024; 13(1):32. https://doi.org/10.3390/plants13010032
Chicago/Turabian StyleRegni, Luca, Maurizio Micheli, Simona Lucia Facchin, Alberto Marco Del Pino, Cristian Silvestri, and Primo Proietti. 2024. "The Influence of the Explant’s Type on the Performance of Synthetic Seeds of Blackberry (Rubus spp.)" Plants 13, no. 1: 32. https://doi.org/10.3390/plants13010032
APA StyleRegni, L., Micheli, M., Facchin, S. L., Del Pino, A. M., Silvestri, C., & Proietti, P. (2024). The Influence of the Explant’s Type on the Performance of Synthetic Seeds of Blackberry (Rubus spp.). Plants, 13(1), 32. https://doi.org/10.3390/plants13010032