Influences of Growth Stage and Ensiling Time on Fermentation Characteristics, Nitrite, and Bacterial Communities during Ensiling of Alfalfa
Abstract
:1. Introduction
2. Results
2.1. Chemical Composition and Enzyme Activity of Alfalfa Raw Materials before Silage
2.2. Chemical Composition and Fermentation Characteristics of Alfalfa Silage during Ensiling
2.3. Nitrite Content, Nitrate Content, and Enzyme Activity during Alfalfa Silage
2.4. Composition of Bacterial Community Structure during Alfalfa Silage Process
2.5. Correlation Analysis between Nitrite Content, Nitrate Content, Fermentation Quality, and Microbial Community Structure in Alfalfa Silage
2.6. Predicting the Pathways of Bacterial Communities at Three Levels
3. Discussion
3.1. Chemical Composition of Alfalfa Raw Materials before Silage
3.2. Chemical Composition and Fermentation Characteristics of Alfalfa Silage during Ensiling
3.3. Nitrate and Nitrite Content and Enzyme Activity during Alfalfa Silage
3.4. Composition of Bacterial Community Structure during Alfalfa Silage
3.5. Correlation Analysis between Nitrite Content, Nitrate Content, Fermentation Quality, and Microbial Community Structure in Alfalfa Silage
3.6. Predicting the Pathways of Bacterial Communities at Three Levels
4. Materials and Methods
4.1. Silage Preparation
4.2. Chemical Component and Fermentation Characteristics Analyses
4.3. Composition of Bacterial Community Structure
4.4. Statistical Analyses
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bagavathiannan, M.V.; Gulden, R.H.; Begg, G.S.; Acker, R.C.V. The demography of feral alfalfa (Medicago sativa L.) populations occurring in roadside habitats in Southern Manitoba, Canada: Implications for novel trait confinement. Environ. Sci. Pollut. Res. Int. 2010, 17, 1448–1459. [Google Scholar] [CrossRef] [PubMed]
- Greene, S.L.; Kesoju, S.R.; Martin, R.C.; Kramer, M. Occurrence of Transgenic Feral Alfalfa (Medicago sativa subsp. sativa L.) in Alfalfa Seed Production Areas in the United States. PLoS ONE 2015, 10, e0143296. [Google Scholar] [CrossRef] [PubMed]
- Mielmann, A. The utilisation of lucerne (Medicago sativa): A review. Br. Food J. 2013, 115, 590–600. [Google Scholar] [CrossRef]
- Rotz, C.A.; Abrams, S.; Davis, R. Alfalfa Drying, Loss and Quality as Influenced by Mechanical and Chemical Conditioning. Trans. ASAE 1987, 30, 0630–0635. [Google Scholar] [CrossRef]
- Hlödversson, R.; Kaspersson, A. Nutrient losses during deterioration of hay in relation to changes in biochemical composition and microbial growth. Anim. Feed Sci. Technol. 1986, 15, 149–165. [Google Scholar] [CrossRef]
- Korn, U.; Müller, M.; Behrendt, U.; Gossmann, M.; Ditz, M. Nachweis von Fusarien und deren Mykotoxinen in Futterkonservaten aus Grünlandbeständen mit differenzierter Bewirtschaftungsintensität. Mycotoxin Res. 2005, 21, 36–39. [Google Scholar] [CrossRef]
- Coblentz, W.K.; Muck, R.E. Effects of natural and simulated rainfall on indicators of ensilability and nutritive value for wilting alfalfa forages sampled before preservation as silage. J. Dairy Sci. 2012, 95, 6635–6653. [Google Scholar] [CrossRef]
- Li, F.; Usman, S.; Huang, W.; Jia, M.; Kharazian, Z.A.; Ran, T.; Li, F.; Ding, Z.; Guo, X. Effects of inoculating feruloyl esterase–producing Lactiplantibacillus plantarum A1 on ensiling characteristics, in vitro ruminal fermentation and microbiota of alfalfa silage. J. Anim. Sci. Biotechnol. 2023, 14, 43. [Google Scholar] [CrossRef]
- ZieliDska, K.; Fabiszewska, A.; StefaDska, I. Different aspects of Lactobacillus inoculants on the improvement of quality and safety of alfalfa silage. Chil. J. Agric. Res. 2015, 75, 298–306. [Google Scholar] [CrossRef]
- Amos, A.; Williams, G. Temperature and other factors affecting the quality of silage. J. Agric. Sci. 1922, 12, 323–336. [Google Scholar] [CrossRef]
- Testa, G.; Gresta, F.; Cosentino, S.L. Dry matter and qualitative characteristics of alfalfa as affected by harvest times and soil water content. Eur. J. Agron. 2011, 34, 144–152. [Google Scholar] [CrossRef]
- Wilson, R.; Wilkins, R. An evaluation of laboratory ensiling techniques. J. Sci. Food Agric. 1972, 23, 377–385. [Google Scholar] [CrossRef]
- Raguse, C.A.; Smith, D. Some Nonstructural Carbohydrates in Forage Legume Herbage. J. Agric. Food Chem. 1966, 14, 423–426. [Google Scholar] [CrossRef]
- Nkosi, B.D.; Langa, T.; Motiang, M.D.; Modiba, S.; Mutavhatsindi, T.F.; Malebana, I.M.M.; Meeske, R.; Groenewald, I.B. Effects of bacterial inoculation on the fermentation characteristics and aerobic stability of ensiled whole plant soybeans (Glycine max (L.) Merr.). S. Afr. J. Anim. Sci. 2016, 46, 129–138. [Google Scholar] [CrossRef]
- Twarużek, M.; Dorszewski, P.; Grabowicz, M.; Szterk, P.; Grajewski, J.; Kaszkowiak, J. Effect of additives on the fermentation profile, microbial colonization and oxygen stress of alfalfa silages. J. Elem. 2016, 21, 1161–1172. [Google Scholar] [CrossRef]
- Bai, C.; Pan, G.; Leng, R.; Ni, W.; Yang, J.; Sun, J.; Yu, Z.; Liu, Z.; Xue, Y. Effect of Ensiling Density and Storage Temperature on Fermentation Quality, Bacterial Community, and Nitrate Concentration of Sorghum–Sudangrass Silage. Front. Microbiol. 2022, 13, 828320. [Google Scholar] [CrossRef] [PubMed]
- Nolan, J.V.; Godwin, I.; de Raphélis–Soissan, V.; Hegarty, R. Managing the rumen to limit the incidence and severity of nitrite poisoning in nitrate–supplemented ruminants. Anim. Prod. Sci. 2016, 56, 1317–1329. [Google Scholar] [CrossRef]
- Schrenk, D.; Bignami, M.; Bodin, L.; Chipman, J.K.; Del Mazo, J.; Grasl–Kraupp, B.; Hoogenboom, L.R.; Leblanc, J.C.; Nebbia, C.S.; Nielsen, E.; et al. Risk assessment of nitrate and nitrite in feed. EFSA J. 2020, 18, e06290. [Google Scholar] [CrossRef]
- Lin, K.; Shen, W.; Shen, Z.; Cai, S.; Wu, Y. Estimation of the potential for nitrosation and its inhibition in subjects from high– and low–risk areas for esophageal cancer in southern China. Int. J. Cancer 2003, 107, 891–895. [Google Scholar] [CrossRef]
- Lijinsky, W. Structure–activity relations in carcinogenesis by N–nitroso compounds. Cancer Metastasis Rev. 1987, 6, 301–356. [Google Scholar] [CrossRef]
- Brender, J.D.; Olive, J.M.; Felkner, M.; Suarez, L.; Marckwardt, W.; Hendricks, K.A. Dietary Nitrites and Nitrates, Nitrosatable Drugs, and Neural Tube Defects. Epidemiology 2004, 15, 330–336. [Google Scholar] [CrossRef]
- Bruning-Fann, C.; Kaneene, J. The effects of nitrate, nitrite, and N–nitroso compounds on animal health. Vet. Hum. Toxicol. 1993, 35, 237–253. [Google Scholar] [PubMed]
- Huang, T.-T.; Wu, Z.-Y.; Zhang, W.-X. Effects of garlic addition on bacterial communities and the conversions of nitrate and nitrite in a simulated pickle fermentation system. Food Control 2020, 113, 107215. [Google Scholar] [CrossRef]
- Bulot, S.; Audebert, S.; Pieulle, L.; Seduk, F.; Baudelet, E.; Espinosa, L.; Pizay, M.-C.; Camoin, L.; Magalon, A. Clustering as a Means To Control Nitrate Respiration Efficiency and Toxicity in Escherichia coli. mBio 2019, 10, e01832-19. [Google Scholar] [CrossRef]
- Zhao, M.; Zhang, H.; Pan, G.; Yin, H.; Sun, J.; Yu, Z.; Bai, C.; Xue, Y. Effect of exogenous microorganisms on the fermentation quality, nitrate degradation and bacterial community of sorghum–sudangrass silage. Front. Microbiol. 2022, 13, 1052837. [Google Scholar] [CrossRef] [PubMed]
- Hyeong Sang, K.; Sun Jin, H. Effect of six different starter cultures on the concentration of residual nitrite in fermented sausages during in vitro human digestion. Food Chem. 2018, 239, 556–560. [Google Scholar] [CrossRef]
- Yulong, Z.; Ping, H.; Yaoyao, X.; Xiaoyu, W. Co–fermentation with Lactobacillus curvatus LAB26 and Pediococcus pentosaceus SWU73571 for improving quality and safety of sour meat. Meat Sci. 2020, 170, 108240. [Google Scholar] [CrossRef]
- Siran, W.; Jie, Z.; Zhihao, D.; Junfeng, L.; Niaz Ali, K.; Tao, S. Sequencing and microbiota transplantation to determine the role of microbiota on the fermentation type of oat silage. Bioresour. Technol. 2020, 309, 123371. [Google Scholar] [CrossRef]
- Wang, S.; Li, J.; Zhao, J.; Dong, Z.; Dong, D.; Shao, T. Silage fermentation characteristics and microbial diversity of alfalfa (Medicago sativa L.) in response to exogenous microbiota from temperate grasses. World J. Microbiol. Biotechnol. 2021, 37, 204. [Google Scholar] [CrossRef]
- Yuan, N.; Sun, L.; Du, S.; Ge, G.; Wang, Z.; Li, Y.; Bao, J.; Zhao, M.; Si, Q.; Hao, J.; et al. Effects of harvesting period and storage duration on volatile organic compounds and nutritive qualities of alfalfa. Agriculture 2022, 12, 1115. [Google Scholar] [CrossRef]
- Kalu, B.A.; Fick, G.W. Morphological stage of development as a predictor of alfalfa herbage quality1. Crop Sci. 1983, 23, 1167–1172. [Google Scholar] [CrossRef]
- Karayilanli, E.; Ayhan, V. Investigation of feed value of alfalfa (Medicago sativa L.) harvested at different maturity stages. Legume Res. 2016, 39, 237–247. [Google Scholar] [CrossRef]
- Tang, W.; Guo, H.; Baskin, C.C.; Xiong, W.; Yang, C.; Li, Z.; Song, H.; Wang, T.; Yin, J.; Wu, X.; et al. Effect of light intensity on morphology, photosynthesis and carbon metabolism of alfalfa (Medicago sativa) Seedlings. Plants 2022, 11, 1688. [Google Scholar] [CrossRef] [PubMed]
- Atis, I.; Çeliktaş, N.; Can, E.; Yilmaz, Ş. The effects of cutting intervals and seeding rates on forage yield and quality of alfalfa. Turk. J. Field Crops 2019, 24, 12–20. [Google Scholar] [CrossRef]
- Wen, B.; Xiao, W.; Mu, Q.; Li, D.; Chen, X.; Wu, H.; Li, L.; Peng, F. How does nitrate regulate plant senescence? Plant Physiol. Biochem 2020, 157, 60–69. [Google Scholar] [CrossRef]
- Zhang, R.; Sun, Y.; Liu, Z.; Jin, W.; Sun, Y. Effects of melatonin on seedling growth, mineral nutrition, and nitrogen metabolism in cucumber under nitrate stress. J. Pineal Res. 2017, 62, e12403. [Google Scholar] [CrossRef]
- Wang, S.; Wang, Y.; Zhao, J.; Dong, Z.; Li, J.; Nazar, M.; Kaka, N.A.; Shao, T. Influences of growth stage and ensiling time on fermentation profile, bacterial community compositions and their predicted functionality during ensiling of Italian ryegrass. Anim. Feed Sci. Technol. 2023, 298, 115606. [Google Scholar] [CrossRef]
- Sun, L.; Jiang, Y.; Ling, Q.; Na, N.; Xu, H.; Vyas, D.; Adesogan, A.T.; Xue, Y. Effects of Adding Pre–Fermented Fluid Prepared from Red Clover or Lucerne on Fermentation Quality and In Vitro Digestibility of Red Clover and Lucerne Silages. Agriculture 2021, 11, 454. [Google Scholar] [CrossRef]
- Li, Y.; Nishino, N. Changes in the bacterial community and composition of fermentation products during ensiling of wilted I talian ryegrass and wilted guinea grass silages. Anim. Sci. J. 2013, 84, 607–612. [Google Scholar] [CrossRef]
- Scherer, R.; Gerlach, K.; Südekum, K.H. Biogenic amines and gamma–amino butyric acid in silages: Formation, occurrence and influence on dry matter intake and ruminant production. Anim. Feed Sci. Technol. 2015, 210, 1–16. [Google Scholar] [CrossRef]
- Kleerebezem, M.; Hugenholtz, J. Metabolic pathway engineering in lactic acid bacteria. Curr. Opin. Biotechnol. 2003, 14, 232–237. [Google Scholar] [CrossRef] [PubMed]
- Eder, A.S.; Magrini, F.E.; Spengler, A.; da Silva, J.T.; Beal, L.L.; Paesi, S. Comparison of hydrogen and volatile fatty acid production by Bacillus cereus, Enterococcus faecalis and Enterobacter aerogenes singly, in co–cultures or in the bioaugmentation of microbial consortium from sugarcane vinasse. Environ. Technol. Innov. 2020, 18, 100638. [Google Scholar] [CrossRef]
- Zhao, J.; Dong, Z.; Chen, L.; Wang, S.; Shao, T. The replacement of whole–plant corn with bamboo shoot shell on the fermentation quality, chemical composition, aerobic stability and in vitro digestibility of total mixed ration silage. Anim. Feed Sci. Technol. 2020, 259, 114348. [Google Scholar] [CrossRef]
- Zi, X.; Li, M.; Yu, D.; Tang, J.; Zhou, H.; Chen, Y. Natural Fermentation Quality and Bacterial Community of 12 Pennisetum sinese Varieties in Southern China. Front. Microbiol. 2021, 12, 627820. [Google Scholar] [CrossRef] [PubMed]
- Su, R.; Ni, K.; Wang, T.; Yang, X.; Zhang, J.; Liu, Y.; Shi, W.; Yan, L.; Jie, C.; Zhong, J. Effects of ferulic acid esterase–producing Lactobacillus fermentum and cellulase additives on the fermentation quality and microbial community of alfalfa silage. PeerJ 2019, 7, e7712. [Google Scholar] [CrossRef] [PubMed]
- Nsereko, V.L.; Rooke, J.A. Effects of peptidase inhibitors and other additives on fermentation and nitrogen distribution in perennial ryegrass silage. J. Sci. Food Agric. 1999, 79, 679–686. [Google Scholar] [CrossRef]
- Marietou, A. Nitrate reduction in sulfate–reducing bacteria. FEMS Microbiol. Lett. 2016, 363, fnw155. [Google Scholar] [CrossRef]
- Hao, D.; Chen, Z.-g.; Figiela, M.; Stepniak, I.; Wei, W.; Ni, B.-J. Emerging alternative for artificial ammonia synthesis through catalytic nitrate reduction. J. Mater. Sci. Technol. 2021, 77, 163–168. [Google Scholar] [CrossRef]
- Wray, J.L.; Fido, R.J. 14—Nitrate Reductase. In Methods in Plant Biochemistry; Lea, P.J., Ed.; Academic Press: Cambridge, MA, USA, 1990; Volume 3, pp. 241–256. [Google Scholar]
- Stewart, V. Regulation of nitrate and nitrite reductase synthesis in enterobacteria. Antonie Leeuwenhoek 1994, 66, 37–45. [Google Scholar] [CrossRef]
- Setlow, B.; Shay, L.K.; Vary, J.C.; Setlow, P. Production of large amounts of acetate during germination of Bacillus megaterium spores in the absence of exogenous carbon sources. J. Bacteriol. 1977, 132, 744–746. [Google Scholar] [CrossRef]
- Guo, X.; Gu, J.; Gao, H.; Qin, Q.; Chen, Z.; Shao, L.; Chen, L.; Li, H.; Zhang, W.; Chen, S.; et al. Effects of Cu on metabolisms and enzyme activities of microbial communities in the process of composting. Bioresour. Technol. 2012, 108, 140–148. [Google Scholar] [CrossRef] [PubMed]
- Liwen, H.; Hongjian, L.; Yaqi, X.; Xiaoyang, C.; Qing, Z. Intrinsic tannins affect ensiling characteristics and proteolysis of Neolamarckia cadamba leaf silage by largely altering bacterial community. Bioresour. Technol. 2020, 311, 123496. [Google Scholar] [CrossRef]
- Yanhong, Y.; Xiaomei, L.; Hao, G.; Linkai, H.; Xiao, M.; Yan, P.; Zhou, L.; Gang, N.; Jiqiong, Z.; Wenyu, Y.; et al. Microbial community and fermentation characteristic of Italian ryegrass silage prepared with corn stover and lactic acid bacteria. Bioresour. Technol. 2019, 279, 166–173. [Google Scholar] [CrossRef]
- Vandenbergh, P.A. Lactic acid bacteria, their metabolic products and interference with microbial growth. FEMS Microbiol. Rev. 1993, 12, 221–237. [Google Scholar] [CrossRef]
- Li, D.X.; Ni, K.K.; Zhang, Y.C.; Lin, Y.L.; Yang, F.Y. Influence of lactic acid bacteria, cellulase, cellulase–producing Bacillus pumilus and their combinations on alfalfa silage quality. J. Integr. Agric. 2018, 17, 2768–2782. [Google Scholar] [CrossRef]
- Ogunade, I.M.; Jiang, Y.; Cervantes, A.A.P.; Kim, D.H.; Oliveira, A.S.; Vyas, D.; Weinberg, Z.G.; Jeong, K.C.; Adesogan, A.T. Bacterial diversity and composition of alfalfa silage as analyzed by Illumina MiSeq sequencing: Effects of Escherichia coli O157:H7 and silage additives. J. Dairy Sci. 2018, 101, 2048–2059. [Google Scholar] [CrossRef] [PubMed]
- Keshri, J.; Chen, Y.; Pinto, R.; Kroupitski, Y.; Weinberg, Z.G.; Sela, S. Microbiome dynamics during ensiling of corn with and without Lactobacillus plantarum inoculant. Appl. Microbiol. Biotechnol. 2018, 102, 4025–4037. [Google Scholar] [CrossRef]
- Macarisin, D.; Patel, J.; Bauchan, G.; Giron, J.A.; Ravishankar, S. Effect of spinach cultivar and bacterial adherence factors on survival of Escherichia coli O157:H7 on spinach leaves. J. Food Prot. 2013, 76, 1829–1837. [Google Scholar] [CrossRef]
- Thompson, I.P.; Bailey, M.J.; Fenlon, J.S.; Fermor, T.R.; Lilley, A.K.; Lynch, J.M.; McCormack, P.J.; McQuilken, M.P.; Purdy, K.J.; Rainey, P.B.; et al. Quantitative and qualitative seasonal changes in the microbial community from the phyllosphere of sugar beet (Beta vulgaris). Plant Soil 1993, 150, 177–191. [Google Scholar] [CrossRef]
- Magdalena, M.; Agnieszka, K.-K.; Adam, W.; Magdalena, P.-B. Starter culture for curly kale juice fermentation selected using principal component analysis. Food Biosci. 2020, 35, 100602. [Google Scholar] [CrossRef]
- Muck, R.E.; Nadeau, E.M.G.; McAllister, T.A.; Contreras–Govea, F.E.; Santos, M.C.; Kung, L. Silage review: Recent advances and future uses of silage additives. J. Dairy Sci. 2018, 101, 3980–4000. [Google Scholar] [CrossRef] [PubMed]
- Ren, H.; Feng, Y.; Liu, T.; Li, J.; Wang, Z.; Fu, S.; Zheng, Y.; Peng, Z. Effects of different simulated seasonal temperatures on the fermentation characteristics and microbial community diversities of the maize straw and cabbage waste co–ensiling system. Sci. Total Environ. 2020, 708, 135113. [Google Scholar] [CrossRef]
- Dunière, L.; Sindou, J.; Chaucheyras–Durand, F.; Chevallier, I.; Thévenot–Sergentet, D. Silage processing and strategies to prevent persistence of undesirable microorganisms. Anim. Feed Sci. Technol. 2013, 182, 1–15. [Google Scholar] [CrossRef]
- Lynch, S.A.; Helbig, K.J. The Complex Diseases of Staphylococcus pseudintermedius in Canines: Where to Next? Vet. Sci. 2021, 8, 11. [Google Scholar] [CrossRef] [PubMed]
- Cheung, G.Y.C.; Bae, J.S.; Otto, M. Pathogenicity and virulence of Staphylococcus aureus. Virulence 2021, 12, 547–569. [Google Scholar] [CrossRef] [PubMed]
- Kuikui, N.; Fangfang, W.; Baoge, Z.; Junxiang, Y.; Guoan, Z.; Yi, P.; Yong, T.; Jin, Z. Effects of lactic acid bacteria and molasses additives on the microbial community and fermentation quality of soybean silage. Bioresour. Technol. 2017, 238, 706–715. [Google Scholar] [CrossRef]
- Beiyi, L.; Hailin, H.; Hongru, G.; Nengxiang, X.; Qin, S.; Chenlong, D. Dynamics of a microbial community during ensiling and upon aerobic exposure in lactic acid bacteria inoculation–treated and untreated barley silages. Bioresour. Technol. 2019, 273, 212–219. [Google Scholar] [CrossRef]
- Yang, S.-Y.; Liu, S.-M.; Jiang, M.; Wang, B.-S.; Peng, L.-H.; Zeng, C. Enhancing effect of macroporous adsorption resin on gamma–aminobutyric acid production by Enterococcus faecium in whole–cell biotransformation system. Amino Acids 2020, 52, 771–780. [Google Scholar] [CrossRef]
- Khanlari, Z.; Moayedi, A.; Ebrahimi, P.; Khomeiri, M.; Sadeghi, A. Enhancement of γ–aminobutyric acid (GABA) content in fermented milk by using Enterococcus faecium and Weissella confusa isolated from sourdough. J. Food Process. Preserv. 2021, 45, e15869. [Google Scholar] [CrossRef]
- Muyan, X.; Tao, H.; Yazhou, X.; Zhen, P.; Zhanggen, L.; Qianqian, G.; Mingyong, X.; Tao, X. Metatranscriptomics reveals the gene functions and metabolic properties of the major microbial community during Chinese Sichuan Paocai fermentation. Food Microbiol. 2021, 98, 103573. [Google Scholar] [CrossRef]
- Yang, H.; Zou, H.; Qu, C.; Zhang, L.; Liu, T.; Wu, H.; Li, Y. Dominant Microorganisms during the Spontaneous Fermentation of Suan Cai, a Chinese Fermented Vegetable. Food Sci. Technol. Res. 2014, 20, 915–926. [Google Scholar] [CrossRef]
- Masuko, T.; Waragaya, S.; Sayano, T.; Awaya, K. Studies on the Disappearance of Nitrate in Forage Crops during Ensilage: I. Relationship between quality in silage and disappearance of nitrate. Jpn. J. Grassl. Sci. 1979, 25, 241–245. [Google Scholar] [CrossRef]
- Spoelstra, S.F. Nitrate in silage. Grass Forage Sci. 1985, 40, 1–11. [Google Scholar] [CrossRef]
- CK, O.; MC, O.; SH, K. The depletion of sodium nitrite by lactic acid bacteria isolated from kimchi. J. Med. Food 2004, 7, 38–44. [Google Scholar] [CrossRef]
- Yuanyuan, L.; Die, X.; Lanyu, Y.; Pengfei, F.; Yao, X.; Jiaping, C.; Wu, F. Transcriptome and protein networks to elucidate the mechanism underlying nitrite degradation by Lactiplantibacillus plantarum. Food Res. Int. 2022, 156, 111319. [Google Scholar] [CrossRef]
- Ahmed, S.; Ashraf, F.; Tariq, M.; Zaidi, A. Aggrandizement of fermented cucumber through the action of autochthonous probiotic cum starter strains of Lactiplantibacillus plantarum and Pediococcus pentosaceus. Ann. Microbiol. 2021, 71, 33. [Google Scholar] [CrossRef]
- Bunyoo, C.; Roongsattham, P.; Khumwan, S.; Phonmakham, J.; Wonnapinij, P.; Thamchaipenet, A. Dynamic Alteration of Microbial Communities of Duckweeds from Nature to Nutrient–Deficient Condition. Plants 2022, 11, 2915. [Google Scholar] [CrossRef]
- Vishnivetskaya, T.A.; Kathariou, S.; Tiedje, J.M. The Exiguobacterium genus: Biodiversity and biogeography. Extremophiles 2009, 13, 541–555. [Google Scholar] [CrossRef]
- Cui, Y.-W.; Huang, J.-L. A novel halophilic Exiguobacterium mexicanum strain removes nitrogen from saline wastewater via heterotrophic nitrification and aerobic denitrification. Bioresour. Technol. 2021, 333, 125189. [Google Scholar] [CrossRef]
- Komagata, K.; Iizuka, H.; Takahashi, M. Taxonomic evaluation of nitrate respiration and carbohydrate fermentation in aerobic bacteria. J. Gen. Appl. Microbiol. 1965, 11, 191–201. [Google Scholar] [CrossRef]
- Komagata, K.; Tamagawa, Y.; Kocur, M. Differentiation of Erwinia amylovora, Erwinia carotovora, and Erwinia herbicola. J. Gen. Appl. Microbiol. 1968, 14, 39–45. [Google Scholar] [CrossRef]
- Li, L.; Yuan, Z.; Sun, Y.; Kong, X.; Dong, P.; Zhang, J. A reused method for molasses–processed wastewater: Effect on silage quality and anaerobic digestion performance of Pennisetum purpereum. Bioresour. Technol. 2017, 241, 1003–1011. [Google Scholar] [CrossRef]
- Lv, H.; Pian, R.; Xing, Y.; Zhou, W.; Yang, F.; Chen, X.; Zhang, Q. Effects of citric acid on fermentation characteristics and bacterial diversity of Amomum villosum silage. Bioresour. Technol. 2020, 307, 123290. [Google Scholar] [CrossRef]
- Paik, H.-D.; Lee, J.-Y. Investigation of reduction and tolerance capability of lactic acid bacteria isolated from kimchi against nitrate and nitrite in fermented sausage condition. Meat Sci. 2014, 97, 609–614. [Google Scholar] [CrossRef]
- Palumbo, R.; Manna, R.; Douglas, A. Toward a socially–distributed mode of knowledge production: Framing the contribution of lay people to scientific research. Int. J. Transit. Innov. Syst. 2021, 6, 381–402. [Google Scholar] [CrossRef]
- Kilstrup, M.; Hammer, K.; Ruhdal Jensen, P.; Martinussen, J. Nucleotide metabolism and its control in lactic acid bacteria. FEMS Microbiol. Rev. 2005, 29, 555–590. [Google Scholar] [CrossRef]
- Martinussen, J.; Andersen, P.S.; Hammer, K. Nucleotide metabolism in Lactococcus lactis: Salvage pathways of exogenous pyrimidines. J. Bacteriol. 1994, 176, 1514–1516. [Google Scholar] [CrossRef]
- Xiang, Q.; Zhang, J.; Huang, X.; Ma, M.; Zhao, K.; Yu, X.; Chen, Q.; Zhang, X.; Penttinen, P.; Gu, Y. Changes in the taxonomic and functional structures of microbial communities during vegetable waste mixed silage fermentation. Can. J. Microbiol. 2022, 68, 281–293. [Google Scholar] [CrossRef]
- Kanehisa, M. Toward understanding the origin and evolution of cellular organisms. Protein Sci. 2019, 28, 1947–1951. [Google Scholar] [CrossRef]
- Hisham, M.B.; Hashim, A.M.; Mohd Hanafi, N.; Abdul Rahman, N.; Abdul Mutalib, N.E.; Tan, C.K.; Nazli, M.H.; Mohd Yusoff, N.F. Bacterial communities associated with silage of different forage crops in Malaysian climate analysed using 16S amplicon metagenomics. Sci. Rep. 2022, 12, 7107. [Google Scholar] [CrossRef]
- Bao, X.; Feng, H.; Guo, G.; Huo, W.; Li, Q.; Xu, Q.; Liu, Q.; Wang, C.; Chen, L. Effects of laccase and lactic acid bacteria on the fermentation quality, nutrient composition, enzymatic hydrolysis, and bacterial community of alfalfa silage. Front. Microbiol. 2022, 13, 1035942. [Google Scholar] [CrossRef] [PubMed]
- Bai, J.; Franco, M.; Ding, Z.; Hao, L.; Ke, W.; Wang, M.; Xie, D.; Li, Z.; Zhang, Y.; Ai, L.; et al. Effect of Bacillus amyloliquefaciens and Bacillus subtilis on fermentation, dynamics of bacterial community and their functional shifts of whole–plant corn silage. J. Anim. Sci. Biotechnol. 2022, 13, 7. [Google Scholar] [CrossRef] [PubMed]
- Bai, J.; Ding, Z.; Ke, W.; Xu, D.; Wang, M.; Huang, W.; Zhang, Y.; Liu, F.; Guo, X. Different lactic acid bacteria and their combinations regulated the fermentation process of ensiled alfalfa: Ensiling characteristics, dynamics of bacterial community and their functional shifts. Microb. Biotechnol. 2021, 14, 1171–1182. [Google Scholar] [CrossRef] [PubMed]
- Kleinschmit, D.H.; Schmidt, R.J.; Kung, L., Jr. The effects of various antifungal additives on the fermentation and aerobic stability of corn silage. J. Dairy Sci. 2005, 88, 2130–2139. [Google Scholar] [CrossRef] [PubMed]
- Xia, Z.; Zitong, D.; Samaila, U.; Jiayao, Z.; Mengyan, C.; Xusheng, G. Metagenomics insights into the effects of lactic acid bacteria inoculation on the biological reduction of antibiotic resistance genes in alfalfa silage. J. Hazard. Mater. 2023, 443, 130329. [Google Scholar] [CrossRef]
- Ni, K.; Zhao, J.; Zhu, B.; Su, R.; Pan, Y.; Ma, J.; Zhou, G.; Tao, Y.; Liu, X.; Zhong, J. Assessing the fermentation quality and microbial community of the mixed silage of forage soybean with crop corn or sorghum. Bioresour. Technol. 2018, 265, 563–567. [Google Scholar] [CrossRef] [PubMed]
- Krishnamoorthy, U.; Muscato, T.V.; Sniffen, C.J.; Van Soest, P.J. Nitrogen Fractions in Selected Feedstuffs. J. Dairy Sci. 1982, 65, 217–225. [Google Scholar] [CrossRef]
- Van Soest, P.V.; Robertson, J.B.; Lewis, B.A. Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Murphy, R.P. A method for the extraction of plant samples and the determination of total soluble carbohydrates. J. Sci. Food Agric. 1958, 9, 714–717. [Google Scholar] [CrossRef]
- Liu, C.; Zhao, D.; Ma, W.; Guo, Y.; Wang, A.; Wang, Q.; Lee, D.-J. Denitrifying sulfide removal process on high–salinity wastewaters in the presence of Halomonas sp. Appl. Microbiol. Biotechnol. 2016, 100, 1421–1426. [Google Scholar] [CrossRef]
Items | Growth Stages | SEM | p Value | |
---|---|---|---|---|
VG | LB | |||
DM (g/kg FM) | 358.51 A | 353.89 A | 2.774 | 0.672 |
CP (g/kg DM) | 29.70 A | 22.06 B | 0.42 | 0.007 |
WSC (g/kg DM) | 24.93 B | 31.32 A | 0.522 | 0.004 |
NDF (g/kg DM) | 264.27 B | 418.79 A | 8.503 | 0.011 |
ADF (g/kg DM) | 244.92 B | 360.73 A | 10.325 | 0.017 |
Nitrite (mg/kg DM) | 18.70 A | 15.45 B | 0.651 | 0.045 |
Nitrate (mg/kg DM) | 830.29 A | 508.90 B | 15.343 | 0.008 |
Nitrite Reductase (U/g FM) | 16.91 A | 12.53 B | 0.456 | 0.037 |
Nitrate Reductase (U/g FM) | 15.40 A | 11.81 B | 0.526 | 0.021 |
Items | Growth | Ensiling Days | SEM | p Value | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Stages | 1 | 3 | 5 | 7 | 10 | 15 | 30 | 60 | G | D | G × D | ||
pH | VG | 6.03 Aa | 5.87 Ba | 5.96 ABa | 5.89 Ba | 5.72 Ca | 5.84 Ba | 5.62 Ca | 5.06 Da | 0.032 | <0.0001 | <0.0001 | <0.0001 |
LB | 5.53 Ab | 4.51 Eb | 4.60 DEb | 4.55 DEb | 4.62 Db | 4.73 Cb | 4.92 Bb | 4.56 DEb | |||||
LA | VG | 13.89 Fb | 24.38 Db | 18.82 Eb | 24.88 Db | 26.51 Db | 31.42 Cb | 43.56 Ab | 38.62 Bb | 1.071 | <0.0001 | <0.0001 | <0.0001 |
(g/kg DM) | LB | 19.48 Ea | 29.76 Da | 35.02 Ca | 35.28 Ca | 35.95 BCa | 40.01 Ba | 57.75 Aa | 57.36 Aa | ||||
AA | VG | 12.00 Ea | 14.54 Da | 16.48 Da | 16.72 Da | 19.72 Cb | 20.65 Ca | 32.35 Aa | 28.65 Ba | 0.692 | <0.0001 | <0.0001 | <0.0001 |
(g/kg DM) | LB | 9.66 Ea | 11.51 Ea | 15.54 Db | 20.04 Ca | 21.14 Ca | 21.86 BCb | 24.02 ABb | 25.32 Aa | ||||
PA | VG | 1.22 Ea | 1.64 Ea | 2.41 Ea | 4.59 Da | 7.92 Ca | 8.56 BCa | 10.33 Ba | 6.89 Aa | 0.368 | <0.0001 | <0.0001 | <0.0001 |
(g/kg DM) | LB | ND Db | 1.49 Ca | 1.69 Ca | 2.55 BCa | 3.58 Bb | 3.73 Bb | 5.90 Ab | 6.35 Aa | ||||
BA | VG | 0.26 C | 0.33 C | 0.38 C | 0.84 B | 1.35 A | 1.41 A | 0.92 B | 1.05 B | 0.073 | <0.0001 | <0.0001 | <0.0001 |
(g/kg DM) | LB | ND | ND | ND | ND | ND | ND | ND | ND | ||||
NH3–N | VG | 9.53 Aa | 8.23 Ba | 7.55 BCa | 7.74 BCb | 6.55 Db | 7.06 CDb | 6.44 Db | 6.49 Db | 0.322 | <0.0001 | <0.0001 | <0.0001 |
(% TN) | LB | 8.59 BCa | 8.66 BCa | 8.23 Ca | 11.10 Aa | 9.07 BCa | 9.01 BCa | 9.79 Ba | 9.36 BCa |
Items | Growth Stages | SEM | p Value | |
---|---|---|---|---|
VG | LB | |||
DM (g/kg FM) | 324.03 A | 310.67 B | 1.950 | 0.045 |
CP (g/kg DM) | 29.93 A | 16.88 B | 0.553 | 0.007 |
WSC (g/kg DM) | 15.12 A | 9.79 B | 0.628 | 0.004 |
NDF (g/kg DM) | 318.44 B | 447.39 A | 4.463 | 0.005 |
ADF (g/kg DM) | 282.08 B | 401.54 A | 3.051 | 0.001 |
Items | Growth Stages | Ensiling Days | SEM | p Value | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 3 | 5 | 7 | 10 | 15 | 30 | 60 | G | D | G × D | |||
Ace | VG | 537.12 ABb | 626.79 Aa | 217.20 CDa | 365.66 BCa | 223.24 CDa | 213.57 CDa | 262.62 CDa | 137.42 Da | 369.04 BCa | 34.243 | 0.018 | <0.0001 | 0.003 |
LB | 759.91 Aa | 407.25 Ba | 208.23 CDa | 248.00 Ca | 177.85 CDa | 173.57 CDa | 173.34 CDa | 132.58 Da | 175.73 CDb | |||||
Chao | VG | 498.95 ABb | 564.49 Aa | 209.40 CDa | 355.95 BCa | 196.89 CDa | 199.09 CDa | 208.51 CDa | 122.66 Da | 271.64 CDa | 32.63 | 0.075 | <0.0001 | 0.014 |
LB | 722.26 Aa | 389.51 Ba | 197.79 Ca | 204.84 Ca | 150.07 CDa | 139.26 CDa | 177.26 CDa | 117.78 Da | 152.75 CDb | |||||
Coverage | VG | 0.9966 CDa | 0.9962 Da | 0.9987 ABa | 0.9977 BCa | 0.9987 ABa | 0.9988 ABa | 0.9987 ABa | 0.9992 Aa | 0.9979 ABb | 0.0003 | 0.006 | <0.0001 | 0.219 |
LB | 0.9962 Ca | 0.9975 Ba | 0.9988 Aa | 0.9987 Aa | 0.9991 Aa | 0.9992 Aa | 0.9990 Aa | 0.9994 Aa | 0.9991 Aa | |||||
Shannon | VG | 2.475 Aa | 2.442 Aa | 1.583 ABa | 1.572 ABa | 1.303 Ba | 1.116 Bb | 1.586 ABa | 1.333 Ba | 1.965 ABa | 0.213 | 0.006 | 0.001 | 0.098 |
LB | 3.19 Aa | 1.766 Ba | 1.886 Ba | 1.878 Ba | 1.880 Ba | 2.183 Ba | 2.027 Ba | 1.896 Ba | 1.896 Ba | |||||
Simpson | VG | 0.195 Aa | 0.205 Ab | 0.414 Aa | 0.513 Aa | 0.485 Aa | 0.533 Aa | 0.393 Aa | 0.462 Aa | 0.210 Aa | 0.0716 | 0.006 | 0.268 | 0.070 |
LB | 0.165 Ba | 0.385 Aa | 0.308 ABa | 0.303 ABa | 0.206 ABa | 0.192 ABa | 0.240 ABa | 0.261 ABa | 0.306 ABa |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
An, J.; Sun, L.; Liu, M.; Dai, R.; Ge, G.; Wang, Z.; Jia, Y. Influences of Growth Stage and Ensiling Time on Fermentation Characteristics, Nitrite, and Bacterial Communities during Ensiling of Alfalfa. Plants 2024, 13, 84. https://doi.org/10.3390/plants13010084
An J, Sun L, Liu M, Dai R, Ge G, Wang Z, Jia Y. Influences of Growth Stage and Ensiling Time on Fermentation Characteristics, Nitrite, and Bacterial Communities during Ensiling of Alfalfa. Plants. 2024; 13(1):84. https://doi.org/10.3390/plants13010084
Chicago/Turabian StyleAn, Jiangbo, Lin Sun, Mingjian Liu, Rui Dai, Gentu Ge, Zhijun Wang, and Yushan Jia. 2024. "Influences of Growth Stage and Ensiling Time on Fermentation Characteristics, Nitrite, and Bacterial Communities during Ensiling of Alfalfa" Plants 13, no. 1: 84. https://doi.org/10.3390/plants13010084
APA StyleAn, J., Sun, L., Liu, M., Dai, R., Ge, G., Wang, Z., & Jia, Y. (2024). Influences of Growth Stage and Ensiling Time on Fermentation Characteristics, Nitrite, and Bacterial Communities during Ensiling of Alfalfa. Plants, 13(1), 84. https://doi.org/10.3390/plants13010084