Field Examinations on the Application of Novel Biochar-Based Microbial Fertilizer on Degraded Soils and Growth Response of Flue-Cured Tobacco (Nicotiana tabacum L.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Biochar-Based Microbial Fertilizer Preparation
2.3. Experimental Design
2.4. Soil Hydraulic Parameters
2.5. Agronomic Traits, SPAD Value, Photosynthetic Characteristics and Yield
2.6. Statistical Analysis
3. Results
3.1. Changes in Soil Water Characteristic Curve
3.2. Changes in Soil Water Characteristic Parameters and Soil Water Availability
3.3. Changes in Plant Height, Stem Girth and Leaf Area
3.4. Changes in SPAD Values
3.5. Changes in Photosynthetic Characteristics
3.6. Changes in Yield
3.7. Pearson Correlations between Biochar-Based Microbial Fertilizer and Agronomic Traits, Photosynthetic Characteristics and Yield of Flue-Cured Tobacco
3.8. Interpretations of Soil Hydraulic Properties and Agronomic Traits, Photosynthetic Characteristics and Yield by RDA Analysis
4. Discussion
4.1. Biochar-Based Microbial Fertilizer Improved the Soil Hydraulic Properties
4.2. Biochar-Based Microbial Fertilizer Improved the Agronomic Traits of Flue-Cured Tobacco
4.3. Biochar-Based Microbial Fertilizer Enhanced the SPAD Value of Flue-Cured Tobacco
4.4. Biochar-Based Microbial Fertilizer Indirectly Improved the Photosynthetic Characteristics of Flue-Cured Tobacco
4.5. Biochar-Based Microbial Fertilizer Increased the Yield of Flue-Cured Tobacco
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yan, T.; Xue, J.; Zhou, Z.; Wu, Y. Biochar-based fertilizer amendments improve the soil microbial community structure in a karst mountainous area. Sci. Total Environ. 2021, 794, 148757. [Google Scholar] [CrossRef]
- Yang, X.; Shao, X.; Mao, X.; Li, M.; Zhao, T.; Wang, F.; Chang, T.; Guang, J. Influences of drought and microbial water-retention fertilizer on leaf area index and photosynthetic characteristics of flue-cured tobacco. Irrig. Drain. 2019, 68, 729–739. [Google Scholar] [CrossRef]
- Dangi, S.; Gao, S.; Duan, Y.; Wang, D. Soil microbial community structure affected by biochar and fertilizer sources. Appl. Soil Ecol. 2020, 150, 103452. [Google Scholar] [CrossRef]
- Chen, C.; Lv, Q.; Tang, Q. Impact of bio-organic fertilizer and reduced chemical fertilizer application on physical and hydraulic properties of cucumber continuous cropping soil. Biomass Convers. Biorefinery 2024, 14, 921–930. [Google Scholar] [CrossRef]
- Gao, L.; Wang, R.; Shen, G.; Zhang, J.; Meng, G.; Zhang, J. Effects of biochar on nutrients and the microbial community structure of tobacco-planting soils. J. Soil Sci. Plant Nut. 2017, 17, 884–896. [Google Scholar] [CrossRef]
- Yan, S.; Zhao, J.; Ren, T.; Liu, G. Correlation between soil microbial communities and tobacco aroma in the presence of different fertilizers. Ind. Crops Prod. 2020, 151, 112454. [Google Scholar] [CrossRef]
- Zhang, C.; Lin, Y.; Tian, X.; Xu, Q.; Chen, Z.; Lin, W. Tobacco bacterial wilt suppression with biochar soil addition associates to improved soil physiochemical properties and increased rhizosphere bacteria abundance. Appl. Soil Ecol. 2017, 112, 90–96. [Google Scholar] [CrossRef]
- Zhang, J.; Huang, Y.; Lin, J.; Chen, X.; Li, C.; Zhang, J. Biochar applied to consolidated land increased the quality of an acid surface soil and tobacco crop in southern china. J. Soil Sediment 2020, 20, 3091–3102. [Google Scholar] [CrossRef]
- Li, Y.; Cheng, J.; Lee, X.; Chen, Y.; Gao, W.; Pan, W.; Tang, Y. Effects of biochar-based fertilizers on nutrient leaching in a tobacco-planting soil. Acta Geochim. 2018, 38, 1–7. [Google Scholar] [CrossRef]
- Puga, A.P.; Grutzmacher, P.; Cerri, C.E.P.; Ribeirinho, V.S.; Andrade, C.A. Biochar-based nitrogen fertilizers: Greenhouse gas emissions, use efficiency, and maize yield in tropical soils. Sci. Total Environ. 2020, 704, 135375. [Google Scholar] [CrossRef]
- Chew, J.; Zhu, L.; Nielsen, S.; Graber, E.; Mitchell, D.R.G.; Horvat, J.; Mohammed, M.; Liu, M.; Van Zwieten, L.; Donne, S.; et al. Biochar-based fertilizer: Supercharging root membrane potential and biomass yield of rice. Sci. Total Environ. 2020, 713, 136431. [Google Scholar] [CrossRef]
- Wang, K.; Hou, J.; Zhang, S.; Hu, W.; Yi, G.; Chen, W.; Cheng, L.; Zhang, Q. Preparation of a new biochar-based microbial fertilizer: Nutrient release patterns and synergistic mechanisms to improve soil fertility. Sci. Total Environ. 2023, 860, 160478. [Google Scholar] [CrossRef] [PubMed]
- Rasse, D.P.; Weldon, S.; Joner, E.J.; Joseph, S.; Kammann, C.I.; Liu, X.; O’toole, A.; Pan, G.; Kocatürk-Schumacher, N.P. Enhancing plant n uptake with biochar-based fertilizers: Limitation of sorption and prospects. Plant Soil 2022, 475, 213–236. [Google Scholar] [CrossRef]
- Ghorbani, M.; Konvalina, P.; Kopecký, M.; Kolář, L. A meta-analysis on the impacts of different oxidation methods on the surface area properties of biochar. Land Degrad. Dev. 2023, 34, 299–312. [Google Scholar] [CrossRef]
- Yan, T.; Xue, J.; Zhou, Z.; Wu, Y. Effects of biochar-based fertilizer on soil bacterial network structure in a karst mountainous area. Catena 2021, 206, 105535. [Google Scholar] [CrossRef]
- Chen, Y.; Lin, Y.; Huang, H.; Lin, Y.; Gao, W.; Pan, W. Effect of biochar-based fertilizer on properties of tobacco-planting yellow soil, and nutrient accumulation, yield and quality of flue-cured tobacco. Acta Pedol. Sin. 2019, 56, 495–504. [Google Scholar]
- Yang, X.; Zhao, T.; Wang, F.; Shao, X.; Guo, Y.; Li, M.; Chang, T.; Guang, J.; Wu, W. Analysis on soil water characteristic based on gardner model in southwest of guizhou province. J. Irrig. Drain. 2018, 37, 35–42. [Google Scholar]
- Yang, X.; Zhang, K.; Shaghaleh, H.; Qi, Z.; Gao, C.; Chang, T.; Zhang, J.; Zia-Ur-Rehman, M.; Hamoud, Y.A. Continuous cropping alters soil hydraulic and physicochemical properties in the karst region of southwestern china. Agronomy 2023, 13, 1416. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, K.; Chang, T.; Shaghaleh, H.; Qi, Z.; Zhang, J.; Ye, H.; Hamoud, Y.A. Interactive effects of microbial fertilizer and soil salinity on the hydraulic properties of salt-affected soil. Plants 2024, 13, 473. [Google Scholar] [CrossRef]
- Hoover, D.L.; Abendroth, L.J.; Browning, D.M.; Saha, A.; Snyder, K.; Wagle, P.; Witthaus, L.; Baffaut, C.; Biederman, J.A.; Bosch, D.D.; et al. Indicators of water use efficiency across diverse agroecosystems and spatiotemporal scales. Sci. Total Environ. 2023, 864, 160992. [Google Scholar] [CrossRef]
- Nakanishi, K.; Fujiki, H.; Ozaki, K.; Yanahara, S.; Takeuchi, N.; Suzuki, Y.; Sugiyama, T.; Makino, A.; Ookawa, T.; Hirasawa, T. Decrease of cytokinin flux from roots enhances degradation of ribulose-1,5-bisphosphate carboxylase/oxygenase: A mechanism of the accelerated decrease of leaf photosynthesis with senescence under soil moisture stress in rice (Oryza sativa L.). Plant Soil 2024, 496, 391–411. [Google Scholar] [CrossRef]
- Edeh, I.G.; Mašek, O. The role of biochar particle size and hydrophobicity in improving soil hydraulic properties. Eur. J. Soil Sci. 2021, 73, e13138. [Google Scholar] [CrossRef]
- O’keeffe, A.; Shrestha, D.; Dunkel, C.; Brooks, E.; Heinse, R. Modeling moisture redistribution from selective non-uniform application of biochar on palouse hills. Agric. Water Manag. 2023, 277, 108026. [Google Scholar] [CrossRef]
- Kang, M.W.; Yibeltal, M.; Kim, Y.H.; Oh, S.J.; Lee, J.C.; Kwon, E.E.; Lee, S.S. Enhancement of soil physical properties and soil water retention with biochar-based soil amendments. Sci. Total Environ. 2022, 836, 155746. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, H.P.; Kammann, C.; Hagemann, N.; Leifeld, J.; Bucheli, T.D.; Sánchez Monedero, M.A.; Cayuela, M.L. Biochar in agriculture—A systematic review of 26 global meta-analyses. GCB Bioenergy 2021, 13, 1708–1730. [Google Scholar] [CrossRef]
- Ibrahimi, K.; Alghamdi, A.G. Available water capacity of sandy soils as affected by biochar application: A meta-analysis. CATENA 2022, 214, 106281. [Google Scholar] [CrossRef]
- Li, X.; Shao, X.; Li, R.; Gao, C.; Yang, X.; Ding, F.; Yuan, Y. Optimization of tobacco water-fertilizer coupling scheme under effective microorganisms biochar-based fertilizer application condition. Agron. J. 2021, 113, 1653–1663. [Google Scholar] [CrossRef]
- Zheng, J.; Wang, S.; Wang, R.; Chen, Y.; Siddique, K.H.M.; Xia, G.; Chi, D. Ameliorative roles of biochar-based fertilizer on morpho-physiological traits, nutrient uptake and yield in peanut (Arachis hypogaea L.) under water stress. Agric. Water Manag. 2021, 257, 107129. [Google Scholar] [CrossRef]
- Zhang, L.; Li, C.; Liu, Y.; Sun, Z.; He, Y.; Wen, D.; Wang, Y.; Chen, X.; Cai, H.; Li, G. Participation of urea-n absorbed on biochar granules among soil and tobacco plant (Nicotiana tabacum L.) and its potential environmental impact. Agric. Ecosyst. Environ. 2021, 313, 107371. [Google Scholar] [CrossRef]
- Li, X.; Shao, X.; Ding, F.; Yuan, Y.; Li, R.; Yang, X.; Gao, C.; Miao, Q. Effects of effective microorganisms biochar-based fertilizer on photosynthetic characteristics and chlorophyll content of flue-cured tobacco under water-saving irrigation strategies. Chil. J. Agric. Res. 2020, 80, 422–432. [Google Scholar] [CrossRef]
- Zhang, M.; Sun, D.; Niu, Z.; Yan, J.; Zhou, X.; Kang, X. Effects of combined organic/inorganic fertilizer application on growth, photosynthetic characteristics, yield and fruit quality of actinidia chinesis cv ‘hongyang’. Glob. Ecol. Conserv. 2020, 22, e00997. [Google Scholar] [CrossRef]
- Gavili, E.; Moosavi, A.A.; Kamgar Haghighi, A.A. Does biochar mitigate the adverse effects of drought on the agronomic traits and yield components of soybean? Ind. Crops Prod. 2019, 128, 445–454. [Google Scholar] [CrossRef]
- Ndoung, O.C.N.; Figueiredo, C.C.; Ramos, M.L.G. A scoping review on biochar-based fertilizers: Enrichment techniques and agro-environmental application. Heliyon 2021, 7, e08473. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Guan, H.; Wang, R.; Wang, H.; Li, Z.; Li, W.; Xiang, P.; Xu, W. Effects of tobacco stem-derived biochar on soil properties and bacterial community structure under continuous cropping of bletilla striata. J. Soil Sci. Plant Nut. 2021, 21, 1318–1328. [Google Scholar] [CrossRef]
- Ren, T.; Fan, P.; Zuo, W.; Liao, Z.; Wang, F.; Wei, Y.; Cai, X.; Liu, G. Biochar-based fertilizer under drip irrigation: More conducive to improving soil carbon pool and promoting nitrogen utilization. Ecol. Indic. 2023, 154, 110583. [Google Scholar] [CrossRef]
- Ren, T.; Chen, N.; Wan Mahari, W.A.; Xu, C.; Feng, H.; Ji, X.; Yin, Q.; Chen, P.; Zhu, S.; Liu, H.; et al. Biochar for cadmium pollution mitigation and stress resistance in tobacco growth. Environ. Res. 2021, 192, 110273. [Google Scholar] [CrossRef]
- Sun, Q.; Wang, Y.; Chen, G.; Yang, H.; Du, T. Water use efficiency was improved at leaf and yield levels of tomato plants by continuous irrigation using semipermeable membrane. Agric. Water Manag. 2018, 203, 430–437. [Google Scholar] [CrossRef]
- Saha, A.; Basak, B.B.; Gajbhiye, N.A.; Kalariya, K.A.; Manivel, P. Sustainable fertilization through co-application of biochar and chemical fertilizers improves yield, quality of andrographis paniculata and soil health. Ind. Crops Prod. 2019, 140, 111607. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, L.; Guo, Q.; Zhu, Z.; Zhang, L. Effects of different water management options and fertilizer supply on photosynthesis, fluorescence parameters and water use efficiency of prunella vulgaris seedlings. Biol. Res. 2016, 49, 12. [Google Scholar] [CrossRef]
- Li, Z.; Fontanier, C.; Dunn, B.L. Physiological response of potted sunflower (Helianthus annuus L.) to precision irrigation and fertilizer. Sci. Hortic. 2020, 270, 109417. [Google Scholar] [CrossRef]
- De Souza, A.P.; Burgess, S.J.; Doran, L.; Hansen, J.; Manukyan, L.; Maryn, N.; Gotarkar, D.; Leonelli, L.; Niyogi, K.K.; Long, S.P. Soybean photosynthesis and crop yield are improved by accelerating recovery from photoprotection. Science 2022, 377, 851–854. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Zheng, J.; Wang, Y.; Yang, Q.; Chen, T.; Chen, Y.; Chi, D.; Xia, G.; Siddique, K.H.M.; Wang, T. Photosynthesis, chlorophyll fluorescence, and yield of peanut in response to biochar application. Front. Plant Sci. 2021, 12, 650432. [Google Scholar] [CrossRef] [PubMed]
- Begum, N.; Akhtar, K.; Ahanger, M.A.; Iqbal, M.; Wang, P.; Mustafa, N.S.; Zhang, L. Arbuscular mycorrhizal fungi improve growth, essential oil, secondary metabolism, and yield of tobacco (Nicotiana tabacum L.) under drought stress conditions. Environ. Sci. Pollut. Res. 2021, 28, 45276–45295. [Google Scholar] [CrossRef]
- Sinclair, T.R.; Rufty, T.W.; Lewis, R.S. Increasing photosynthesis: Unlikely solution for world food problem. Trends Plant Sci. 2019, 24, 1032–1039. [Google Scholar] [CrossRef] [PubMed]
Treatment | A | B | R2 | Fitting Equation |
---|---|---|---|---|
BF0 | 0.1761 | 0.1752 | 0.9759 | θ = 0.1761·ψm−0.1752 |
BF1.5 | 0.2001 | 0.1696 | 0.9969 | θ = 0.2001·ψm−0.1696 |
BF2.5 | 0.2262 | 0.1397 | 0.9763 | θ = 0.2262·ψm−0.1397 |
BF5.0 | 0.2170 | 0.1456 | 0.9830 | θ = 0.1975·ψm−0.1734 |
Treatment | θsat (cm3 cm−3) | θfc (cm3 cm−3) | θcf (cm3 cm−3) | θpwp (cm3 cm−3) | θhyg (cm3 cm−3) | θgw (cm3 cm−3) | θaw (cm3 cm−3) | θuaw (cm3 cm−3) |
---|---|---|---|---|---|---|---|---|
BF0 | 0.4105 | 0.3500 | 0.2275 | 0.1716 | 0.1072 | 0.0605 | 0.1784 | 0.1716 |
BF1.5 | 0.4521 | 0.3869 | 0.2515 | 0.1916 | 0.1197 | 0.0652 | 0.1953 | 0.1916 |
BF2.5 | 0.4569 | 0.3989 | 0.2537 | 0.2184 | 0.1365 | 0.0580 | 0.1805 | 0.2184 |
BF5.0 | 0.4543 | 0.3923 | 0.2550 | 0.2100 | 0.1313 | 0.0620 | 0.1823 | 0.2100 |
Treatment | Pn (μmol m−2 s−1) | Gs (mol m−2 s−1) | Ci (μmol mol−1) | Tr (mmol m−2 s−1) | WUEins (μmol mmol−1) | WUEin (μmol mol−1) |
---|---|---|---|---|---|---|
BF0 | 9.93 ± 1.40 c | 0.36 ± 0.06 a | 390 ± 3.51 a | 6.91 ± 0.79 a | 1.48 ± 0.28 b | 30.28 ± 8.43 a |
BF1.5 | 15.93 ± 2.01 a | 0.52 ± 0.10 a | 375 ± 1.00 ab | 6.89 ± 0.75 a | 2.30 ± 0.05 a | 36.31 ± 13.96 a |
BF2.5 | 14.97 ± 1.02 ab | 0.40 ± 0.04 a | 367.67 ± 3.76 b | 5.96 ± 0.30 a | 2.51 ± 0.05 a | 37.58 ± 2.43 a |
BF5.0 | 10.47 ± 1.89 bc | 0.39 ± 0.07 a | 363.33 ± 8.29 b | 3.65 ± 0.09 b | 2.86 ± 0.24 a | 30.31 ± 9.12 a |
Traits | BF | Plant Height | Stem Girth | Leaf Area | SPAD | Pn | Gs | Ci | Tr | WUEins | WUEin | Yield |
---|---|---|---|---|---|---|---|---|---|---|---|---|
BF | 1 | |||||||||||
Plant height | 0.221 | 1 | ||||||||||
Stem girth | 0.045 | 0.794 | 1 | |||||||||
Leaf area | 0.044 | 0.983 * | 0.836 | 1 | ||||||||
SPAD | 0.122 | 0.982 * | 0.889 | 0.991 ** | 1 | |||||||
Pn | −0.091 | 0.926 | 0.909 | 0.976 * | 0.975 * | 1 | ||||||
Gs | −0.062 | 0.871 | 0.479 | 0.879 | 0.813 | 0.791 | 1 | |||||
Ci | −0.917 | −0.535 | −0.438 | −0.392 | −0.479 | −0.294 | −0.167 | 1 | ||||
Tr | −0.950 * | 0.092 | 0.231 | 0.269 | 0.194 | 0.396 | 0.322 | 0.757 | 1 | |||
WUEins | 0.931 | 0.551 | 0.380 | 0.400 | 0.475 | 0.280 | 0.227 | −0.993 ** | −0.771 | 1 | ||
WUEin | −0.107 | 0.827 | 0.979 * | 0.891 | 0.918 | 0.963 * | 0.598 | −0.298 | 0.391 | 0.252 | 1 | |
Yield | 0.101 | 0.984 * | 0.877 | 0.995 ** | 0.999 ** | 0.977 * | 0.831 | −0.457 | 0.214 | 0.456 | 0.913 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, X.; Zhang, K.; Qi, Z.; Shaghaleh, H.; Gao, C.; Chang, T.; Zhang, J.; Hamoud, Y.A. Field Examinations on the Application of Novel Biochar-Based Microbial Fertilizer on Degraded Soils and Growth Response of Flue-Cured Tobacco (Nicotiana tabacum L.). Plants 2024, 13, 1328. https://doi.org/10.3390/plants13101328
Yang X, Zhang K, Qi Z, Shaghaleh H, Gao C, Chang T, Zhang J, Hamoud YA. Field Examinations on the Application of Novel Biochar-Based Microbial Fertilizer on Degraded Soils and Growth Response of Flue-Cured Tobacco (Nicotiana tabacum L.). Plants. 2024; 13(10):1328. https://doi.org/10.3390/plants13101328
Chicago/Turabian StyleYang, Xu, Ke Zhang, Zhiming Qi, Hiba Shaghaleh, Chao Gao, Tingting Chang, Jie Zhang, and Yousef Alhaj Hamoud. 2024. "Field Examinations on the Application of Novel Biochar-Based Microbial Fertilizer on Degraded Soils and Growth Response of Flue-Cured Tobacco (Nicotiana tabacum L.)" Plants 13, no. 10: 1328. https://doi.org/10.3390/plants13101328
APA StyleYang, X., Zhang, K., Qi, Z., Shaghaleh, H., Gao, C., Chang, T., Zhang, J., & Hamoud, Y. A. (2024). Field Examinations on the Application of Novel Biochar-Based Microbial Fertilizer on Degraded Soils and Growth Response of Flue-Cured Tobacco (Nicotiana tabacum L.). Plants, 13(10), 1328. https://doi.org/10.3390/plants13101328