Contributions of γ-Aminobutyric Acid (GABA) Receptors for the Activities of Pectis brevipedunculata Essential Oil against Drosophila suzukii and Pollinator Bees
Abstract
:1. Introduction
2. Results
2.1. Essential Oil Extraction and Composition
2.2. Toxicity to D. suzukii
2.3. Essential Oil Selectivity to Bees
2.4. Interactions between Citral Isomers GABA Receptors of D. suzukii and A. mellifera
3. Discussion
4. Material and Methods
4.1. Essential Oil Extraction and Chemical Characterization
4.2. Essential Oil Toxicity to D. suzukii
4.3. Essential Oil Selectivity to Bees
4.4. Molecular Docking between Citral Isomers and D. suzukii and Pollinator Bees Targets
4.5. Statistical Analyzes
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kamaraj, C.; Ragavendran, C.; Kumar, R.C.S.; Ali, A.; Khan, S.U.; Mashwani, Z.u.-R.; Luna-Arias, J.P.; Pedroza, J.P.R. Antiparasitic potential of Asteraceae plants: A comprehensive review on therapeutic and mechanistic aspects for biocompatible drug discovery. Phytomed. Plus. 2022, 2, 100377. [Google Scholar] [CrossRef]
- Jesus, G.S.; Micheletti, A.C.; Takahashi, K.M.; Matayoshi, T.; Pott, A.; Yoshida, N.C. Antimicrobial potential of Pectis substriata essential oil (Asteraceae) against drug-resistant Staphylococcus strains. Acad. Bras. Cienc. 2020, 92, e20200456. [Google Scholar] [CrossRef] [PubMed]
- Rolnik, A.; Stochmal, A.; Olas, B. The in vitro anti-platelet activities of plant extracts from the Asteraceae family. Biomed. Pharmacother. 2022, 149, 112809. [Google Scholar] [CrossRef]
- Marques, A.M.; Kaplan, M.A.C. Preparative isolation and characterization of monoterpene isomers present in the citral-rich essential oil of Pectis brevipedunculata. J. Essent. Oil Res. 2013, 25, 210–215. [Google Scholar] [CrossRef]
- Camara, M.B.; Lima, A.S.; Jumbo, L.O.V.; Tavares, C.P.; Mendonça, C.d.J.S.; Monteiro, O.S.; Araújo, S.H.C.; Oliveira, E.E.d.; Lima, J.S.; Maia, J.G.S. Seasonal and circadian evaluation of the Pectis brevipedunculata essential oil and Its acaricidal activity against Rhipicephalus microplus (Acari: Ixodidae). J. Braz. Chem. Soc. 2023, 34, 1020–1029. [Google Scholar] [CrossRef]
- Lopes, A.C.C.B.; do Nascimento, J.R.; Camara, M.B.P.; Lima, A.d.S.; Lopes, G.L.N.; do Nascimento, M.O.; Xavier, J.K.A.M.; de Jesus, C.M.; Mendonça, C.d.J.S.; Carvalho, A.L.M.; et al. Chemical characterization, leishmanicidal activity and in vitro cytotoxicity of the essential oil extracted from Pectis brevipedunculata (Gardner) Sch.Bip. and its incorporation into microemulsion systems. Pharmaceutics 2024, 16, 87. [Google Scholar] [CrossRef]
- Marques, A.M.; Lima, C.H.; Alviano, D.S.; Esteves, R.L.; Kaplan, M.A.C. Traditional use, chemical composition and antimicrobial activity of Pectis brevipedunculata essential oil: A correlated lemongrass species in Brazil. Emir. J. Food Agric. 2013, 25, 798–808. [Google Scholar] [CrossRef]
- Pereira, S.; Marques, A.; Sudo, R.T.; Kaplan, M.A.; Zapata-Sudo, G. Vasodilator activity of the essential oil from aerial parts of Pectis brevipedunculata and Its main constituent citral in rat aorta. Molecules 2013, 18, 3072–3085. [Google Scholar] [CrossRef] [PubMed]
- Ngan, T.; Nguyen, O.; Muoi, N.; Truc, T.; My, V. Chemical composition and antibacterial activity of orange (Citrus sinensis) essential oils obtained by hydrodistillation and solvent free microwave extraction. IOP Conf. Ser. Mater. Sci. Eng. 2020, 991, 012023. [Google Scholar] [CrossRef]
- Yang, J.; Lee, S.-Y.; Jang, S.-K.; Kim, K.-J.; Park, M.-J. Anti-Inflammatory effects of essential oils from the peels of citrus cultivars. Pharmaceutics 2023, 15, 1595. [Google Scholar] [CrossRef]
- Gabarra, R.; Riudavets, J.; Rodríguez, G.A.; Pujade-Villar, J.; Arnó, J. Prospects for the biological control of Drosophila suzukii. BioControl 2015, 60, 331–339. [Google Scholar] [CrossRef]
- Deprá, M.; Poppe, J.L.; Schmitz, H.J.; De Toni, D.C.; Valente, V.L.S. The first records of the invasive pest Drosophila suzukii in the South American continent. J. Pest Sci. 2014, 87, 379–383. [Google Scholar] [CrossRef]
- Hussain, B.; War, A.R.; Pfeiffer, D.G. Jasmonic acid and salicylic acid induced defensive response in wine grapes against Drosophila suzukii (Diptera: Drosophilidae). Heliyon 2023, 9, e16505. [Google Scholar] [CrossRef] [PubMed]
- Deans, C.; Hutchison, W.D. Propensity for resistance development in the invasive berry pest, spotted-wing drosophila (Drosophila suzukii), under laboratory selection. Pest Manag. Sci. 2022, 78, 5203–5212. [Google Scholar] [CrossRef] [PubMed]
- Renkema, J.M.; Wright, D.; Buitenhuis, R.; Hallett, R.H. Plant essential oils and potassium metabisulfite as repellents for Drosophila suzukii (Diptera: Drosophilidae). Sci. Rep. 2016, 6, 21432. [Google Scholar] [CrossRef] [PubMed]
- Keesey, I.W.; Jiang, N.; Weißflog, J.; Winz, R.; Svatoš, A.; Wang, C.-Z.; Hansson, B.S.; Knaden, M. Plant-based natural product chemistry for integrated pest management of Drosophila suzukii. J. Chem. Ecol. 2019, 45, 626–637. [Google Scholar] [CrossRef] [PubMed]
- Chagnon, M.; Gingras, J.; DeOliveira, D. Complementary aspects of strawberry pollination by honey and indigen Qus Bees (Hymenoptera). J. Econ. Entomol. 1993, 86, 416–420. [Google Scholar] [CrossRef]
- MacInnis, G.; Forrest, J.R.K. Pollination by wild bees yields larger strawberries than pollination by honey bees. J. Appl. Ecol. 2019, 56, 824–832. [Google Scholar] [CrossRef]
- Wietzke, A.; Westphal, C.; Gras, P.; Kraft, M.; Pfohl, K.; Karlovsky, P.; Pawelzik, E.; Tscharntke, T.; Smit, I. Insect pollination as a key factor for strawberry physiology and marketable fruit quality. Agric. Ecosyst. Environ. 2018, 258, 197–204. [Google Scholar] [CrossRef]
- Heide, O.M.; Stavang, J.A.; Sønsteby, A. Physiology and genetics of flowering in cultivated and wild strawberries—A review. J. Hortic. Sci. Biotech. 2013, 88, 1–18. [Google Scholar] [CrossRef]
- Toledo, P.F.S.; da Cruz Araujo, S.H.; Mantilla Afanador, J.G.; Silva, A.C.F.; Machado, F.P.; Rocha, L.M.; Oliveira, E.E. Potential of Ocotea indecora essential oil for controlling Drosophila suzukii: Molecular predictions for toxicity and selectivity to beneficial arthropods. Neotrop. Entomol. 2024, 53, 189–199. [Google Scholar] [CrossRef] [PubMed]
- Dos Santos, V.F.; Abeijon, L.M.; da Cruz Araújo, S.H.; Garcia, F.R.M.; de Oliveira, E.E. The potential of plant-based biorational products for the Drosophila suzukii control: Current status, opportunities, and limitations. Neotrop. Entomol. 2024, 53, 236–243. [Google Scholar] [CrossRef] [PubMed]
- Jang, M.; Kim, J.; Yoon, K.A.; Lee, S.H.; Park, C.G. Biological activity of Myrtaceae plant essential oils and their major components against Drosophila suzukii (Diptera: Drosophilidae). Pest Manag. Sci. 2017, 73, 404–409. [Google Scholar] [CrossRef]
- Park, C.G.; Jang, M.; Shin, E.; Kim, J. Myrtaceae plant essential oils and their β-Triketone components as insecticides against Drosophila suzukii. Molecules 2017, 22, 1050. [Google Scholar] [CrossRef]
- Pan, Z.; Liu, S.; Chen, Y.C.; Wang, Y.D.; Gu, Q.; Song, D. As natural phytocide: Biomarker assessment of Litsea cubeba (Lour.) Persoon essential oil against Drosophila suzukii Matsumura (Diptera: Drosophilidae.). Ind. Crops. Prod. 2022, 187, 115421. [Google Scholar] [CrossRef]
- Souza, M.T.d.; Souza, M.T.d.; Morais, M.C.; Oliveira, D.d.C.; Melo, D.J.d.; Figueiredo, L.; Zarbin, P.H.G.; Zawadneak, M.A.C.; Bernardi, D. Essential oils as a source of ecofriendly insecticides for Drosophila suzukii (Diptera: Drosophilidae) and their potential non-target effects. Molecules 2022, 27, 6215. [Google Scholar] [CrossRef] [PubMed]
- Galland, C.D.; Glesner, V.; Verheggen, F. Laboratory and field evaluation of a combination of attractants and repellents to control Drosophila suzukii. Entomol. Gen. 2020, 40, 263–272. [Google Scholar] [CrossRef]
- Oyedele, A.O.; Gbolade, A.A.; Sosan, M.B.; Adewoyin, F.B.; Soyelu, O.L.; Orafidiya, O.O. Formulation of an effective mosquito-repellent topical product from Lemongrass oil. Phytomedicine 2002, 9, 259–262. [Google Scholar] [CrossRef] [PubMed]
- Leal, W.S.; Uchida, K. Application of GC-EAD to the determination of mosquito repellents derived from a plant, Cymbopogon citratus. J. Asia Pac. Entomol. 1998, 1, 217–221. [Google Scholar] [CrossRef]
- Hao, H.; Wei, J.; Dai, J.; Du, J. Host-Seeking and blood-feeding behavior of Aedes albopictus (Diptera: Culicidae) exposed to vapors of Geraniol, Citral, Citronellal, Eugenol, or Anisaldehyde. J. Med. Entomol. 2014, 45, 533–539. [Google Scholar] [CrossRef]
- Zheng, F.; Li, T.; Xu, H.; Hu, P.; Wang, R.; Zhang, Z.; Jia, J. Long-lasting repellent activities of eco-friendly polyurethane system for controlled citral against melon fly. Crop Prot. 2021, 148, 105745. [Google Scholar] [CrossRef]
- Baldacchino, F.; Tramut, C.; Salem, A.; Liénard, E.; Delétré, E.; Franc, M.; Martin, T.; Duvallet, G.; Jay-Robert, P. The repellency of lemongrass oil against stable flies, tested using video tracking. Parasite 2013, 20, 21. [Google Scholar] [CrossRef] [PubMed]
- Dancewicz, K.; Szumny, A.; Wawrzeńczyk, C.; Gabryś, B. Repellent and antifeedant activities of Citral-derived lactones against the peach potato aphid. Int. J. Mol. Sci. 2020, 21, 8029. [Google Scholar] [CrossRef] [PubMed]
- Tschoeke, P.H.; Oliveira, E.E.; Dalcin, M.S.; Silveira-Tschoeke, M.C.A.C.; Sarmento, R.A.; Santos, G.R. Botanical and synthetic pesticides alter the flower visitation rates of pollinator bees in Neotropical melon fields. Environ. Pollut. 2019, 251, 591–599. [Google Scholar] [CrossRef] [PubMed]
- Cappa, F.; Baracchi, D.; Cervo, R. Biopesticides and insect pollinators: Detrimental effects, outdated guidelines, and future directions. Sci. Total Environ. 2022, 837, 155714. [Google Scholar] [CrossRef] [PubMed]
- Blacquière, T.; Smagghe, G.; van Gestel, C.A.M.; Mommaerts, V. Neonicotinoids in bees: A review on concentrations, side-effects and risk assessment. Ecotoxicology 2012, 21, 973–992. [Google Scholar] [CrossRef] [PubMed]
- Stanley, J.; Preetha, G. Pesticide toxicity to microorganisms: Exposure, toxicity and risk assessment methodologies. In Pesticide Toxicity to Non-Target Organisms: Exposure, Toxicity and Risk Assessment Methodologies; Stanley, J., Preetha, G., Eds.; Springer: Dordrecht, The Netherlands, 2016; pp. 351–410. [Google Scholar] [CrossRef]
- Almeida, C.H.S.; Haddi, K.; Toledo, P.F.S.; Rezende, S.M.; Santana, W.C.; Guedes, R.N.C.; Newland, P.L.; Oliveira, E.E. Sublethal agrochemical exposures can alter honey bees’ and Neotropical stingless bees’ color preferences, respiration rates, and locomotory responses. Sci. Total Environ. 2021, 779, 146432. [Google Scholar] [CrossRef] [PubMed]
- Tomé, H.V.V.; Ramos, G.S.; Araújo, M.F.; Santana, W.C.; Santos, G.R.; Guedes, R.N.C.; Maciel, C.D.; Newland, P.L.; Oliveira, E.E. Agrochemical synergism imposes higher risk to Neotropical bees than to honeybees. R. Soc. Open Sci. 2017, 4, 160866. [Google Scholar] [CrossRef]
- Labbé, P.; Alout, H.; Djogbénou, L.; Pasteur, N.; Weill, M. 14—Evolution of Resistance to Insecticide in Disease Vectors. In Genetics and Evolution of Infectious Disease; Tibayrenc, M., Ed.; Elsevier: London, UK, 2011; pp. 363–409. [Google Scholar]
- Jankowska, M.; Rogalska, J.; Wyszkowska, J.; Stankiewicz, M. Molecular targets for components of essential oils in the insect nervous system—A Review. Molecules 2018, 23, 34. [Google Scholar] [CrossRef]
- Zaluski, R.; Kadri, S.M.; Alonso, D.P.; Martins Ribolla, P.E.; de Oliveira Orsi, R. Fipronil promotes motor and behavioral changes in honey bees (Apis mellifera) and affects the development of colonies exposed to sublethal doses. Environ. Toxicol. Chem. 2015, 34, 1062–1069. [Google Scholar] [CrossRef]
- de Morais, C.R.; Travençolo, B.A.N.; Carvalho, S.M.; Beletti, M.E.; Vieira Santos, V.S.; Campos, C.F.; de Campos Júnior, E.O.; Pereira, B.B.; Carvalho Naves, M.P.; de Rezende, A.A.A.; et al. Ecotoxicological effects of the insecticide fipronil in Brazilian native stingless bees Melipona scutellaris (Apidae: Meliponini). Chemosphere 2018, 206, 632–642. [Google Scholar] [CrossRef] [PubMed]
- Holder, P.J.; Jones, A.; Tyler, C.R.; Cresswell, J.E. Fipronil pesticide as a suspect in historical mass mortalities of honey bees. Proc. Natl. Acad. Sci. USA 2018, 115, 13033–13038. [Google Scholar] [CrossRef] [PubMed]
- Farder-Gomes, C.F.; Fernandes, K.M.; Bernardes, R.C.; Bastos, D.S.S.; Martins, G.F.; Serrão, J.E. Acute exposure to fipronil induces oxidative stress, apoptosis and impairs epithelial homeostasis in the midgut of the stingless bee Partamona helleri Friese (Hymenoptera: Apidae). Sci. Total Environ. 2021, 774, 145679. [Google Scholar] [CrossRef] [PubMed]
- Le Goff, G.; Hamon, A.; Bergé, J.-B.; Amichot, M. Resistance to fipronil in Drosophila simulans: Influence of two point mutations in the RDL GABA receptor subunit. J. Neurochem. 2005, 92, 1295–1305. [Google Scholar] [CrossRef]
- Hosie, A.; Sattelle, D.; Aronstein, K.; ffrench-Constant, R. Molecular biology of insect neuronal GABA receptors. Trends Neurosci. 1997, 20, 578–583. [Google Scholar] [CrossRef] [PubMed]
- Rattan, R.S. Mechanism of action of insecticidal secondary metabolites of plant origin. Crop Prot. 2010, 29, 913–920. [Google Scholar] [CrossRef]
- Guo, L.; Qiao, X.; Haji, D.; Zhou, T.; Liu, Z.; Whiteman, N.K.; Huang, J. Convergent resistance to GABA receptor neurotoxins through plant–insect coevolution. Nat. Ecol. Evol. 2023, 7, 1444–1456. [Google Scholar] [CrossRef] [PubMed]
- McGonigle, I.; Lummis, S.C. Molecular characterization of agonists that bind to an insect GABA receptor. Biochemistry 2010, 49, 2897–2902. [Google Scholar] [CrossRef] [PubMed]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 5th ed.; Texensis Publishing: Gruver, TX, USA, 2007. [Google Scholar]
- Van Den Dool, H.; Kratz, P.D. A generalization of the retention index system including linear temperature programmed gas-liquid partition chromatography. J. Chromatogr. 1963, 11, 463–471. [Google Scholar] [CrossRef]
- Lima, A.S.; Costa Junior, H.N.P.; Costa-Junior, L.M.; Monteiro, O.S.; Maia, J.G.S.; da Rocha, C.Q. Anthelmintic effect of essential rhizome oil from Hedychium coronarium Koenig (Zingiberaceae) introduced in Northeastern Brazil. Acta Tropica 2021, 218, 105912. [Google Scholar] [CrossRef]
- Andreazza, F.; Bernardi, D.; Marangon, R.; Schenemann, T.; Botton, M.; Nava, D. Técnica de Criação de Drosophila suzukii (Matsumura, 1931) (Diptera: Drosophilidae) em Dieta Artificial; EMBRAPA: Pelotas, Brazil, 2016; p. 23. [Google Scholar]
- Andreazza, F.; Vacacela Ajila, H.E.; Haddi, K.; Colares, F.; Pallini, A.; Oliveira, E.E. Toxicity to and egg-laying avoidance of Drosophila suzukii (Diptera: Drosophilidae) caused by an old alternative inorganic insecticide preparation. Pest Manag. Sci. 2018, 74, 861–867. [Google Scholar] [CrossRef] [PubMed]
- Britto, I.O.; Araújo, S.H.C.; Toledo, P.F.S.; Lima, G.D.A.; Salustiano, I.V.; Alves, J.R.; Mantilla-Afanador, J.G.; Kohlhoff, M.; Oliveira, E.E.; Leite, J.P.V. Potential of Ficus carica extracts against Euschistus heros: Toxicity of major active compounds and selectivity against beneficial insects. Pest Manag. Sci. 2021, 77, 4638–4647. [Google Scholar] [CrossRef] [PubMed]
- Kelley, L.A.; Mezulis, S.; Yates, C.M.; Wass, M.N.; Sternberg, M.J.E. The Phyre2 web portal for protein modeling, prediction and analysis. Nat. Protoc. 2015, 10, 845–858. [Google Scholar] [CrossRef]
- Sippl, M.J. Recognition of errors in three-dimensional structures of proteins. Proteins Struct. Funct. Bioinf. 1993, 17, 355–362. [Google Scholar] [CrossRef] [PubMed]
- Wiederstein, M.; Sippl, M.J. ProSA-web: Interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids. Res. 2007, 35, W407–W410. [Google Scholar] [CrossRef]
- Laskowski, R.A.; MacArthur, M.W.; Moss, D.S.; Thornton, J.M. PROCHECK: A program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 1993, 26, 283–291. [Google Scholar] [CrossRef]
- Laskowski, R.A.; Rullmann, J.A.C.; MacArthur, M.W.; Kaptein, R.; Thornton, J.M. AQUA and PROCHECK-NMR: Programs for checking the quality of protein structures solved by NMR. J. Biomol. NMR 1996, 8, 477–486. [Google Scholar] [CrossRef]
- Waterhouse, A.; Bertoni, M.; Bienert, S.; Studer, G.; Tauriello, G.; Gumienny, R.; Heer, F.T.; de Beer, T.A.P.; Rempfer, C.; Bordoli, L.; et al. SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids. Res. 2018, 46, W296–W303. [Google Scholar] [CrossRef]
- Haas, B.J.; Papanicolaou, A.; Yassour, M.; Grabherr, M.; Blood, P.D.; Bowden, J.; Couger, M.B.; Eccles, D.; Li, B.; Lieber, M.; et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat. Protoc. 2013, 8, 1494–1512. [Google Scholar] [CrossRef]
- Benkert, P.; Biasini, M.; Schwede, T. Toward the estimation of the absolute quality of individual protein structure models. Bioinformatics 2010, 27, 343–350. [Google Scholar] [CrossRef]
- Krieger, E.; Joo, K.; Lee, J.; Lee, J.; Raman, S.; Thompson, J.; Tyka, M.; Baker, D.; Karplus, K. Improving physical realism, stereochemistry, and side-chain accuracy in homology modeling: Four approaches that performed well in CASP8. Proteins Struct. Funct. Bioinf. 2009, 77, 114–122. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Chen, J.; Cheng, T.; Gindulyte, A.; He, J.; He, S.; Li, Q.; Shoemaker, B.A.; Thiessen, P.A.; Yu, B.; et al. PubChem 2019 update: Improved access to chemical data. Nucleic Acids. Res. 2018, 47, D1102–D1109. [Google Scholar] [CrossRef] [PubMed]
- Sanner, M.F. A component-based software environment for visualizing large macromolecular assemblies. Structure 2005, 13, 447–462. [Google Scholar] [CrossRef] [PubMed]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef] [PubMed]
- Biovia, D.S. Discovery Studio; Dassault Systèmes BIOVIA: San Diego, CA, USA, 2016. [Google Scholar]
Yield = 1.8% | |||||||
---|---|---|---|---|---|---|---|
Constituents | RIC1 | RIL2 | % | Constituents | RIC1 | RIL2 | % |
α-Thujene | 928 | 924 | Geraniol | 1253 | 1249 | 3.4 | |
α-Pinene | 935 | 932 | 16.2 | Carvenone | 1261 | 1255 | 0.1 |
Sabinene | 975 | 969 | 0.6 | Geranial (=α-Citral) | 1273 | 1264 | 33.9 |
β-Pinene | 979 | 974 | 0.3 | 1-Tridecene | 1295 | 1290 | 0.2 |
6-methyl-5-Hepten-2-one | 988 | 986 | 1 | 2,4-Octanediol | 1339 | 1339 | 0.2 |
Myrcene | 992 | 988 | 0.3 | trans-p-Menth-6-en-2,8-diol | 1369 | 1371 | 0.1 |
Limonene | 1032 | 1024 | 8.1 | 2-Undecen-1-ol | 1374 | 1370 | 0.3 |
(E)-β-Ocimene | 1050 | 1046 | 0.4 | Geranyl acetate | 1379 | 1379 | 0.2 |
3-methyl-1,2-Cyclohexanedione | 1094 | 1089 | 0.3 | β-Elemene | 1396 | 1389 | 0.3 |
Linalool | 1102 | 1095 | 1.2 | (E)-Caryophyllene | 1430 | 1424 | 0.4 |
exo-Isocitral | 1147 | 1140 | 0.2 | trans-Prenyl limonene | 1467 | 1357 | 0.5 |
(Z)-Isocitral | 1165 | 1160 | 1 | Germacrene D | 1492 | 1484 | 0.1 |
(E)-Isocitral | 1183 | 1177 | 1.7 | α-Alaskene | 1520 | 1515 | 0.1 |
Terpinen-4-ol | 1186 | 1180 | 0.2 | δ-Cadinene | 1526 | 1522 | - |
α-Terpineol | 1200 | 1195 | 0.3 | α-Muurolol (=Torreyol) | 1649 | 1644 | 0.1 |
Nerol | 1228 | 1227 | 1.1 | Valerianol | 1663 | 1657 | - |
Neral (=β-Citral) | 1244 | 1235 | 26.7 | Linoleic acid | 2133 | 2132 | - |
Monoterpene hydrocarbons (%) | 25.9 | ||||||
Oxygenated monoterpenes (%) | 70.1 | ||||||
Sesquiterpene hydrocarbons (%) | 1.4 | ||||||
Oxygenated sesquiterpenes (%) | 0.1 | ||||||
Fatty acids and derivatives (%) | 2 | ||||||
Total (%) | 99.5 |
Sources of Variation | df | F | p | |
---|---|---|---|---|
Between samples | ||||
Essential Oil (EO) | 1 | 3.86 | 0.067 | |
Species (S) | 1 | 76.6 | <0.0001 * | |
EO × S | 1 | 3.27 | 0.089 | |
Error | 16 | - | - | |
dfden/dfnum | Wilks’ lambda | F | p | |
Within samples | ||||
Time (T) | 14/3 | 0.012 | 380.2 | <0.0001 * |
T × EOs | 14/3 | 0.859 | 0.76 | 0.5327 |
T × S | 14/3 | 0.071 | 61.0 | <0.0001 * |
T × EOs × S | 14/3 | 0.890 | 0.57 | 0.6414 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
da Cruz Araujo, S.H.; Mantilla-Afanador, J.G.; Svacina, T.; Nascimento, T.F.; da Silva Lima, A.; Camara, M.B.P.; Viteri Jumbo, L.O.; dos Santos, G.R.; da Rocha, C.Q.; de Oliveira, E.E. Contributions of γ-Aminobutyric Acid (GABA) Receptors for the Activities of Pectis brevipedunculata Essential Oil against Drosophila suzukii and Pollinator Bees. Plants 2024, 13, 1392. https://doi.org/10.3390/plants13101392
da Cruz Araujo SH, Mantilla-Afanador JG, Svacina T, Nascimento TF, da Silva Lima A, Camara MBP, Viteri Jumbo LO, dos Santos GR, da Rocha CQ, de Oliveira EE. Contributions of γ-Aminobutyric Acid (GABA) Receptors for the Activities of Pectis brevipedunculata Essential Oil against Drosophila suzukii and Pollinator Bees. Plants. 2024; 13(10):1392. https://doi.org/10.3390/plants13101392
Chicago/Turabian Styleda Cruz Araujo, Sabrina Helena, Javier Guillermo Mantilla-Afanador, Thiago Svacina, Tarciza Fernandes Nascimento, Aldilene da Silva Lima, Marcos Bispo Pinheiro Camara, Luis Oswaldo Viteri Jumbo, Gil Rodrigues dos Santos, Cláudia Quintino da Rocha, and Eugênio Eduardo de Oliveira. 2024. "Contributions of γ-Aminobutyric Acid (GABA) Receptors for the Activities of Pectis brevipedunculata Essential Oil against Drosophila suzukii and Pollinator Bees" Plants 13, no. 10: 1392. https://doi.org/10.3390/plants13101392
APA Styleda Cruz Araujo, S. H., Mantilla-Afanador, J. G., Svacina, T., Nascimento, T. F., da Silva Lima, A., Camara, M. B. P., Viteri Jumbo, L. O., dos Santos, G. R., da Rocha, C. Q., & de Oliveira, E. E. (2024). Contributions of γ-Aminobutyric Acid (GABA) Receptors for the Activities of Pectis brevipedunculata Essential Oil against Drosophila suzukii and Pollinator Bees. Plants, 13(10), 1392. https://doi.org/10.3390/plants13101392