Deficit Irrigation Effects on Cotton Growth Cycle and Preliminary Optimization of Irrigation Strategies in Arid Environment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site and Plant Material
2.2. Experimental Design
2.3. Determination of Growth and Development Traits of Cotton Plants during Water Treatment Phase
2.4. Measurement of Cotton Boll Formation Characteristics during the Water Treatment Phase
2.5. Determination of Cotton Biomass during the Water Treatment Phase
2.6. Determination of Stress Resistance Indicators in Cotton Functional Leaves during the Water Treatment Phase
2.7. Calculation of Cotton Yield and Yield Components under Water Treatment
2.8. Calculation of Field Irrigation Water Use Efficiency
2.9. Data Processing
2.10. Optimization of Irrigation Strategies during the Flowering and Boll Setting Stage of Cotton
3. Results
3.1. The Effect of Different Irrigation Levels on the Growth and Development of Cotton during the Flowering and Boll Setting Stage
3.1.1. The Plant Height and Stem Diameter of Cotton under Different Irrigation Treatments
3.1.2. The Leaf Area Index of Cotton under Different Irrigation Treatments
3.2. The Effect of Different Irrigation Levels on the Boll-Setting Characteristics of Cotton during the Flowering and Boll Setting Stage
3.2.1. The Ringing Rate of Cotton Plants under Different Irrigation Treatments
3.2.2. The Shedding Rate of Cotton Plants under Different Irrigation Treatments
3.3. The Effect of Different Irrigation Levels on the Biomass Accumulation and Distribution of Cotton during the Flowering and Boll Setting Stage
3.4. The Effect of Different Irrigation Treatments on the Stress Resistance within Functional Leaves of Cotton during the Flowering and Boll Setting Stage
3.4.1. The Changes in the Activity of Endogenous Protective Enzyme Systems within Functional Leaves of Cotton under Different Irrigation Treatments
3.4.2. The Changes in Soluble Protein and Malondialdehyde Content in Functional Leaves of Cotton under Different Irrigation Treatments
3.5. The Effect of Different Irrigation Treatments on the Yield Formation of Cotton
3.5.1. Cotton Yield and Its Constituent Factors under Different Irrigation Treatments
3.5.2. The Relationship between Cotton Yield and Irrigation Water Use Efficiency
3.6. The Correlation Analysis of Yield and Measured Indicators during the Flowering and Boll Setting Stage of Cotton under Different Irrigation Treatments
3.7. Optimizing Irrigation Schemes for Cotton during the Flowering and Boll Setting Stage
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gupta, A.; Rico-Medina, A.; Cano-Delgado, A.I. The Physiology of Plant Responses to Drought. Science 2020, 368, 266–269. [Google Scholar] [CrossRef] [PubMed]
- Eid, M.A.M.; Abd El-hady, M.A.; Abdelkader, M.A.; Abd-Elkrem, Y.M.; El-Gabry, Y.A.; El-temsah, M.E.; El-Areed, S.R.M.; Rady, M.M.; Alamer, K.H.; Alqubaie, A.I.; et al. Response in Physiological Traits and Antioxidant Capacity of Two Cotton Cultivars under Water Limitations. Agronomy 2022, 12, 803. [Google Scholar] [CrossRef]
- EL Sabagh, A.; Hossain, A.; Islam, M.S.; Barutcular, C.; Ratnasekera, D.; Gormus, O.; Amanet, K.; Mubeen, M.; Nasim, W.; Fahad, S.; et al. Drought and Heat Stress in Cotton (Gossypium hirsutum L.): Consequences and Their Possible Mitigation Strategies. In Agronomic Crops: Volume 3: Stress Responses and Tolerance; Hasanuzzaman, M., Ed.; Springer: Singapore, 2020; pp. 613–634. ISBN 978-981-15-0025-1. [Google Scholar]
- Drisya, J.; Kumar, S.D. Evaluation of the Drought Management Measures in a Semi-Arid Agricultural Watershed. Environ. Dev. Sustain. 2023, 25, 811–833. [Google Scholar] [CrossRef]
- Wheaton, E.; Kulshreshtha, S. Environmental Sustainability of Agriculture Stressed by Changing Extremes of Drought and Excess Moisture: A Conceptual Review. Sustainability 2017, 9, 970. [Google Scholar] [CrossRef]
- Zahid, K.R.; Ali, F.; Shah, F.; Younas, M.; Shah, T.; Shahwar, D.; Hassan, W.; Ahmad, Z.; Qi, C.; Lu, Y.; et al. Response and Tolerance Mechanism of Cotton Gossypium hirsutum L. to Elevated Temperature Stress: A Review. Front. Plant Sci. 2016, 7, 937. [Google Scholar] [CrossRef] [PubMed]
- Stocker, R.F.; Qin, D.; Plattner, G.-K.; Tignor, M.M.B.; Allen, S.D.; Boschung, J.; Stocker, T.F.; Plattner, G.-K.; Allen, S.K.; Nauels, A.; et al. Climate Change 2013: The Physical Science Basis; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Ul-Allah, S.; Rehman, A.; Hussain, M.; Farooq, M. Fiber Yield and Quality in Cotton under Drought: Effects and Management. Agric. Water Manag. 2021, 255, 106994. [Google Scholar] [CrossRef]
- Zonta, J.H.; Brandao, Z.N.; da Silva Rodrigues, J.I.; Sofiatti, V. Cotton response to water deficits at different growth stages. Rev. Caatinga 2017, 30, 980–990. [Google Scholar] [CrossRef]
- Li, N.; Lin, H.; Wang, T.; Li, Y.; Liu, Y.; Chen, X.; Hu, X. Impact of Climate Change on Cotton Growth and Yields in Xinjiang, China. Field Crops Res. 2020, 247, 107590. [Google Scholar] [CrossRef]
- Yang, Z.; Tang, J.; Yu, M.; Zhang, Y.; Abbas, A.; Wang, S.; Bagadeem, S. Sustainable Cotton Production through Increased Competitiveness: Analysis of Comparative Advantage and Influencing Factors of Cotton Production in Xinjiang, China. Agronomy 2022, 12, 2239. [Google Scholar] [CrossRef]
- Wang, R.; Kang, Y.; Wan, S.; Hu, W.; Liu, S.; Liu, S. Salt Distribution and the Growth of Cotton under Different Drip Irrigation Regimes in a Saline Area. Agric. Water Manag. 2011, 100, 58–69. [Google Scholar] [CrossRef]
- Hongchang, H.; Zhi, Z.; Fuqiang, T.; Pengju, Y.; Guangheng, N.; Xinhua, Y. Response of Soil Salinity and Crop Growth to Irrigation Methods in Xinjiang. J. Tsinghua Univ. 2016, 56, 373–380. [Google Scholar] [CrossRef]
- Yang, G.; Xue, L.; He, X.; Wang, C.; Long, A. Change in Land Use and Evapotranspiration in the Manas River Basin, China with Long-Term Water-Saving Measures. Sci. Rep. 2017, 7, 17874. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Hu, H.; Tian, F.; Yao, X.; Sivapalan, M. Groundwater Dynamics under Water-Saving Irrigation and Implications for Sustainable Water Management in an Oasis: Tarim River Basin of Western China. Hydrol. Earth Syst. Sci. 2014, 18, 3951–3967. [Google Scholar] [CrossRef]
- Wang, J.; Du, G.; Tian, J.; Jiang, C.; Zhang, Y.; Zhang, W. Mulched Drip Irrigation Increases Cotton Yield and Water Use Efficiency via Improving Fine Root Plasticity. Agric. Water Manag. 2021, 255, 106992. [Google Scholar] [CrossRef]
- Chai, Q.; Gan, Y.; Turner, N.C.; Zhang, R.-Z.; Yang, C.; Niu, Y.; Siddique, K.H.M. Chapter Two—Water-Saving Innovations in Chinese Agriculture. In Advances in Agronomy; Sparks, D.L., Ed.; Academic Press: Cambridge, MA, USA, 2014; Volume 126, pp. 149–201. ISBN 0065-2113. [Google Scholar]
- Chai, Q.; Gan, Y.; Zhao, C.; Xu, H.-L.; Waskom, R.M.; Niu, Y.; Siddique, K.H.M. Regulated Deficit Irrigation for Crop Production under Drought Stress. A Review. Agron. Sustain. Dev. 2016, 36, 3. [Google Scholar] [CrossRef]
- Yang, B.; Fu, P.; Lu, J.; Ma, F.; Sun, X.; Fang, Y. Regulated Deficit Irrigation: An Effective Way to Solve the Shortage of Agricultural Water for Horticulture. Stress Biol. 2022, 2, 28. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.; Pu, S.; Li, P.; Niu, X.; Wu, X.; Yang, Z.; Zhu, J.; Yang, T.-Y.; Hou, Z.; Ma, X. Towards to Understanding the Preliminary Loss and Absorption of Nitrogen and Phosphorus under Different Treatments in Cotton Drip—Irrigation in Northwest Xinjiang. PLoS ONE 2021, 16, e0249730. [Google Scholar] [CrossRef] [PubMed]
- Waqas, M.S.; Cheema, M.J.M.; Hussain, S.; Ullah, M.K.; Iqbal, M.M. Delayed Irrigation: An Approach to Enhance Crop Water Productivity and to Investigate Its Effects on Potato Yield and Growth Parameters. Agric. Water Manag. 2021, 245, 106576. [Google Scholar] [CrossRef]
- Basal, H.; Dagdelen, N.; Unay, A.; Yilmaz, E. Effects of Deficit Drip Irrigation Ratios on Cotton (Gossypium hirsutum L.) Yield and Fibre Quality. J. Agron. Crop Sci. 2009, 195, 19–29. [Google Scholar] [CrossRef]
- Hou, X.; Fan, J.; Hu, W.; Zhang, F.; Yan, F.; Xiao, C.; Li, Y.; Cheng, H. Optimal Irrigation Amount and Nitrogen Rate Improved Seed Cotton Yield While Maintaining Fiber Quality of Drip-Fertigated Cotton in Northwest China. Ind. Crops Prod. 2021, 170, 113710. [Google Scholar] [CrossRef]
- Koudahe, K.; Sheshukov, A.Y.; Aguilar, J.; Djaman, K. Irrigation-Water Management and Productivity of Cotton: A Review. Sustainability 2021, 13, 70. [Google Scholar] [CrossRef]
- Yu, Y.; Wei, J. IOP Effects of Water-Saving Technology Application, Disaster Type and Occurrence Stage on Disaster Area of Cotton Field; IOP Publishing: Bristol, UK, 2020; Volume 601. [Google Scholar]
- Hoogenboom, G. Contribution of Agrometeorology to the Simulation of Crop Production and Its Applications. Agric. For. Meteorol. 2000, 103, 137–157. [Google Scholar] [CrossRef]
- Attia, A.; Rajan, N.; Xue, Q.; Nair, S.; Ibrahim, A.; Hays, D. Application of DSSAT-CERES-Wheat Model to Simulate Winter Wheat Response to Irrigation Management in the Texas High Plains. Agric. Water Manag. 2016, 165, 50–60. [Google Scholar] [CrossRef]
- Boote, K.J.; Jones, J.W.; Hoogenboom, G.; White, J.W. The Role of Crop Systems Simulation in Agriculture and Environment. Int J Agric Env. Inf Syst 2010, 1, 41–54. [Google Scholar] [CrossRef]
- Kumar, R.; Mishra, S.K.; Singh, K.; Al-Ashkar, I.; Iqbal, M.A.; Muzamil, M.N.; ur Rahman, M.H.; El Sabagh, A. Impact Analysis of Moisture Stress on Growth and Yield of Cotton Using DSSAT-CROPGRO-Cotton Model under Semi-Arid Climate. PeerJ 2023, 11, e16329. [Google Scholar] [CrossRef] [PubMed]
- Garibay, V.M.; Kothari, K.; Ale, S.; Gitz, D.C., III; Morgan, G.D.; Munster, C.L. Determining Water-Use-Efficient Irrigation Strategies for Cotton Using the DSSAT CSM CROPGRO-Cotton Model Evaluated with in-Season Data. Agric. WATER Manag. 2019, 223, 105695. [Google Scholar] [CrossRef]
- Rahman, M.H.U.; Ahmad, A.; Wajid, A.; Hussain, M.; Rasul, F.; Ishaque, W.; Islam, M.A.; Shelia, V.; Awais, M.; Ullah, A.; et al. Application of CSM-CROPGRO-Cotton Model for Cultivars and Optimum Planting Dates: Evaluation in Changing Semi-Arid Climate. Field Crops Res. 2019, 238, 139–152. [Google Scholar] [CrossRef]
- Du, J.; Zhang, N.; Gong, K.; Du, M.; Yang, Y.; Wang, X. Optimization of Cotton Irrigation Schedule under Mulch Drip Irrigation in Southern Xinjiang Based on DSSAT Model. Chin. J. Ecol. 2021, 40, 3760–3768. [Google Scholar]
- Zhou, B.-P.; Gao, J.; Wang, Y.; Tang, Z.-Y.; Wang, J.; Yu, H. Optimization of Cotton Irrigation Management for Different Climatic Conditions Using the CROPGRO-Cotton Model. Emir. J. Food Agric. 2023, 35, 287–296. [Google Scholar] [CrossRef]
- Modala, N.R.; Ale, S.; Rajan, N.; Munster, C.L.; DeLaune, P.B.; Thorp, K.R.; Nair, S.S.; Barnes, E.M. Evaluation of the CSM-CROPGRO-cotton model for the texas rolling plains region and simulation of deficit irrigation strategies for increasing water use efficiency. Trans. ASABE 2015, 58, 685–696. [Google Scholar] [CrossRef]
- Zhang, S.Y.; Zhang, S.; Zhang, Q. Plant Physiology Experimental Techniques Tutorial; Science Press: Beijing, China, 2011. [Google Scholar]
- Wang, L.; Lin, M.; Han, Z.; Han, L.; He, L.; Sun, W. Simulating the Effects of Drought Stress Timing and the Amount Irrigation on Cotton Yield Using the CSM-CROPGRO-Cotton Model. Agronomy 2024, 14, 14. [Google Scholar] [CrossRef]
- Guedes, W.A.; Nobre, R.G.; Soares, L.A.D.A.; de Lima, G.S.; Gheyi, H.R.; Fernandes, P.D.; Ferreira, A.P.N.; da Silva, A.A.R.; de Azevedo, C.A.V.; Silva, D.V.; et al. Irrigation Strategies with Controlled Water Deficit in Two Production Cycles of Cotton. Plants 2023, 12, 2892. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Yang, G.; Feng, L.; Han, Y.; Lei, Y.; Fan, Z.; Wang, Z.; Li, Y. Effects of Deficit Irrigation on Cotton Growth and Water Use Efficiency: A Review. Chin. J. Appl. Ecol. 2021, 32, 1112–1118. [Google Scholar] [CrossRef] [PubMed]
- Vennam, R.R.; Ramamoorthy, P.; Poudel, S.; Reddy, K.R.; Henry, W.B.; Bheemanahalli, R. Developing Functional Relationships between Soil Moisture Content and Corn Early-Season Physiology, Growth, and Development. Plants 2023, 12, 2471. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Xiao, J.; Bai, Y.; Du, Y.; Zhang, F.; Cheng, H.; Wang, H. Response Mechanism of Cotton Growth to Water and Nutrients under Drip Irrigation with Plastic Mulch in Southern Xinjiang. J. Sens. 2020, 2020, 2575162. [Google Scholar] [CrossRef]
- Anjum, S.A.; Ashraf, U.; Zohaib, A.; Tanveer, M.; Naeem, M.; Ali, I.; Tabassum, T.M.; Nazir, U. Growth and Development Responses of Crop Plants under Drought Stress: A Review. Zemdirb.-Agric. 2017, 104, 267–276. [Google Scholar] [CrossRef]
- Jain, M.; Kataria, S.; Hirve, M.; Prajapati, R. Water Deficit Stress Effects and Responses in Maize. In Plant Abiotic Stress Tolerance; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar] [CrossRef]
- Schaefer, C.R.; Ritchie, G.L.; Bordovsky, J.P.; Lewis, K.; Kelly, B. Irrigation Timing and Rate Affect Cotton Boll Distribution and Fiber Quality. Agron. J. 2018, 110, 922–931. [Google Scholar] [CrossRef]
- Chattha, W.S.; Shakeel, A.; Iqbal, M.; Yaseen, M.; Amin, M.; Mahmood, N. Quantifying the Effect of Water Deficit on Cotton Genotypes Using Agro-Physiological and Biochemical Parameters. J. Nat. Fibers 2021, 18, 1995–2005. [Google Scholar] [CrossRef]
- Bray, E.A. Plant Responses to Water Deficit. Trends Plant Sci. 1997, 2, 48–54. [Google Scholar] [CrossRef]
- Jurkonienė, S.; Mockevičiūtė, R.; Gavelienė, V.; Šveikauskas, V.; Zareyan, M.; Jankovska-Bortkevič, E.; Jankauskienė, J.; Žalnierius, T.; Kozeko, L. Proline Enhances Resistance and Recovery of Oilseed Rape after a Simulated Prolonged Drought. Plants 2023, 12, 2718. [Google Scholar] [CrossRef] [PubMed]
- GE, T.; SUI, F.; BAI, L.; LU, Y.; ZHOU, G. Effects of Water Stress on the Protective Enzyme Activities and Lipid Peroxidation in Roots and Leaves of Summer Maize. Agric. Sci. China 2006, 5, 291–298. [Google Scholar] [CrossRef]
- Zhang, H.; Mao, L.; Xin, M.; Xing, H.; Zhang, Y.; Wu, J.; Xu, D.; Wang, Y.; Shang, Y.; Wei, L.; et al. Overexpression of GhABF3 Increases Cotton (Gossypium hirsutum L.) Tolerance to Salt and Drought. BMC Plant Biol. 2022, 22, 313. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Gao, M.; Ji, S.; Wang, S.; Meng, Y.; Zhou, Z. Carbon Allocation, Osmotic Adjustment, Antioxidant Capacity and Growth in Cotton under Long-Term Soil Drought during Flowering and Boll-Forming Period. Plant Physiol. Biochem. 2016, 107, 137–146. [Google Scholar] [CrossRef]
- Alomari-Mheidat, M.; Corell, M.; Martín-Palomo, M.J.; Castro-Valdecantos, P.; Medina-Zurita, N.; de Sosa, L.L.; Moriana, A. Moderate Water Stress Impact on Yield Components of Greenhouse Tomatoes in Relation to Plant Water Status. Plants 2024, 13, 128. [Google Scholar] [CrossRef] [PubMed]
- Sharma, B.; Mills, C.I.; Snowden, C.; Ritchie, G.L. Contribution of Boll Mass and Boll Number to Irrigated Cotton Yield. Agron. J. 2015, 107, 1845–1853. [Google Scholar] [CrossRef]
- Kumar, P.; Khapte, P.S.; Singh, A.; Saxena, A. Optimization of Low-Tech Protected Structure and Irrigation Regime for Cucumber Production under Hot Arid Regions of India. Plants 2024, 13, 146. [Google Scholar] [CrossRef] [PubMed]
Soil Layer (cm) | Clay (%) | Silt (%) | Sand (%) | Bulk Density (g/cm3) | Field Moisture (%) | Soil Porosity | EC (ms/cm) |
---|---|---|---|---|---|---|---|
0–10 | 2.91 | 16.89 | 80.20 | 1.062 | 0.186 | 0.599 | 1.53 |
10–20 | 3.08 | 17.86 | 79.06 | 1.251 | 0.223 | 0.528 | 1.38 |
20–30 | 2.73 | 16.99 | 80.28 | 1.300 | 0.216 | 0.509 | 1.12 |
30–40 | 3.07 | 19.44 | 77.49 | 1.252 | 0.219 | 0.527 | 1.72 |
40–60 | 3.02 | 18.91 | 78.07 | 1.252 | 0.206 | 0.528 | 1.40 |
60–80 | 2.66 | 17.22 | 80.12 | 1.266 | 0.236 | 0.522 | 1.51 |
80–100 | 2.68 | 17.78 | 79.54 | 1.245 | 0.221 | 0.530 | 1.30 |
Treatments | Irrigation Amount/(m3·ha−1) | Total Irrigation Amount | ||||
---|---|---|---|---|---|---|
Sprouting | Seedling | Bud Emergence | Flowering and Boll Setting | Boll Opening | ||
W100 | 450 | 525 | 1575 | 2550 | 300 | 5400 |
W90 | 450 | 465 | 1410 | 2265 | 270 | 4860 |
W85 | 450 | 435 | 1320 | 2130 | 255 | 4590 |
W80 | 450 | 405 | 1245 | 1980 | 240 | 4320 |
Indicators | Treatments | Fitting Equation | R2 |
---|---|---|---|
Plant height | W100 | y = 86.67 − 0.1283x + 0.0092x2 − 0.0001x3 | 0.9825 |
W90 | y = 74.24 + 0.1918x − 0.0003x2 + 0.00001x3 | 0.999 | |
W85 | y = 71.29 + 0.1744x − 0.0052x2 + 0.00011x3 | 0.9804 | |
W80 | y = 72.04 + 0.4513x − 0.0160x2 + 0.00026x3 | 0.9997 | |
Stem diameter | W100 | y = 9.59 + 0.0578x − 0.0007x2 − 0.0000009x3 | 0.9991 |
W90 | y = 9.47 + 0.0123x + 0.0012x2 − 0.00002x3 | 0.999 | |
W85 | y = 9.29 − 0.0351x + 0.0029x2 − 0.00005x3 | 0.9997 | |
W80 | y = 9.74 − 0.0841x + 0.0057x2 − 0.00009x3 | 0.9738 | |
LAI | W100 | y = 1.94 + 0.056x − 0.00036x2 − 0.00001x3 | 0.9433 |
W90 | y = 1.81 + 0.014x − 0.0025x2 − 0.00005x3 | 0.9841 | |
W85 | y = 1.37 + 0.1167x − 0.0014x2 − 0.00004x3 | 0.9222 | |
W80 | y = 1.68 + 0.0369x − 0.0008x2 − 0.00004x3 | 0.9341 | |
Ringing rate | W100 | y = 0.20 + 0.0434x − 0.0017x2 + 0.00002x3 | 0.9873 |
W90 | y = 0.26 + 0.0243x − 0.0004x2 − 0.000001x3 | 0.9665 | |
W85 | y = 0.31 + 0.0331x − 0.0010x2 + 0.00001x3 | 0.9572 | |
W80 | y = 0.27 + 0.0503x − 0.0018x2 + 0.00002x3 | 0.9341 |
Treatments | Dates after Flowering | Fruiting Branches | Buds | Flowers | Young Bolls | Bolls |
---|---|---|---|---|---|---|
W100 | 2 | 9.3 | 6.6 | 3.1 | 2.2 | 2.1 |
10 | 10.5 | 2.3 | 3.4 | 1.4 | 5.4 | |
17 | 10.7 | 0.9 | 0.8 | 0.5 | 6.5 | |
24 | 10.9 | 0.3 | 0.6 | 0.2 | 6.3 | |
31 | 11.0 | 0.1 | 0.2 | 0.1 | 6.2 | |
37 | 11.6 | 0.2 | 0.0 | 0.2 | 6.4 | |
W90 | 2 | 10.4 | 6.3 | 4.0 | 1.1 | 3.8 |
10 | 10.8 | 1.8 | 5.1 | 0.8 | 5.7 | |
17 | 10.9 | 0.4 | 1.4 | 0.2 | 7.4 | |
24 | 11.1 | 0.0 | 0.2 | 0.0 | 7.4 | |
31 | 11.3 | 0.0 | 0.0 | 0.2 | 7.2 | |
W85 | 2 | 11.0 | 5.1 | 6.9 | 2.0 | 5.9 |
10 | 11.3 | 1.0 | 4.1 | 0.7 | 7.1 | |
17 | 11.9 | 0.0 | 0.4 | 0.4 | 9.6 | |
24 | 12.1 | 0.0 | 0.0 | 0.1 | 9.3 | |
31 | 13.1 | 0.0 | 0.0 | 0.1 | 8.8 | |
W80 | 2 | 10.7 | 6.8 | 6.7 | 2.3 | 5.2 |
10 | 11.2 | 0.6 | 4.6 | 1.4 | 8.3 | |
17 | 12.0 | 0.1 | 0.4 | 1.0 | 9.8 | |
24 | 12.0 | 0.0 | 0.1 | 0.3 | 9.6 | |
31 | 13.0 | 0.0 | 0.0 | 0.4 | 9.7 |
Treatments | Number of Bolls (×104·hm−2) | Single Boll Weight (g) | Lint Percentage (%) | Cotton Yield (kg·hm−2) |
---|---|---|---|---|
W100 | 143.03 a | 4.27 c | 46.27 c | 6111 a |
W90 | 132.98 a | 4.66 a | 47.03 abc | 6196 a |
W85 | 134.33 a | 4.07 d | 47.97 ab | 5469 b |
W80 | 108.25 b | 4.05 b | 46.63 bc | 4875 c |
Indicators Types | Indicators | Yield-Related Analysis |
---|---|---|
Growth and Development | LAI | −0.997 ** |
Stem diameter | 0.688 | |
Plant height | 0.568 | |
Boll Formation Characteristics | Ringing rate | −0.946 |
Shedding rate | 0.879 | |
Biomass | Aboveground biomass | −0.742 |
Flower, bud and boll density | −0.369 | |
Stress Resistance | MDA | −0.956 * |
POD | −0.952 * | |
SOD | 0.921 | |
SP | 0.220 | |
Yield Components | Number of bolls | 0.857 |
Single boll weight | 0.137 | |
Lint percentage | −0.153 |
Treatments | Irrigation Number | Growth Periods | Dates | Irrigation Volume (m3/ha) |
---|---|---|---|---|
Control group (W90) | Five times in the flowering and boll setting stage of cotton | Sprouting | 2023/4/23 | 450 |
Seedling | 2023/6/9 | 468 | ||
Bud emergence | 2023/6/19 | 334 | ||
2023/6/29 | 334 | |||
2023/7/9 | 401 | |||
2023/7/14 | 334 | |||
Flowering and boll setting | 2023/7/21 | 535 | ||
2023/7/28 | 468 | |||
2023/8/4 | 468 | |||
2023/8/11 | 401 | |||
2023/8/18 | 401 | |||
Boll opening | 2023/8/25 | 267 | ||
Experimental group | Four times in the flowering and boll setting stage of cotton | Sprouting | 2023/4/23 | 450 |
Seedling | 2023/6/9 | 468 | ||
Bud emergence | 2023/6/19 | 334 | ||
2023/6/29 | 334 | |||
2023/7/9 | 401 | |||
2023/7/14 | 334 | |||
Flowering and boll setting | 2023/7/21 | 225/300//375/450/525/600/675 | ||
2023/7/30 | 225/300//375/450/525/600/675 | |||
2023/8/8 | 225/300//375/450/525/600/675 | |||
2023/8/17 | 225/300//375/450/525/600/675 | |||
Boll opening | 2023/8/25 | 267 | ||
Experimental group | Three times in the flowering and boll setting stage of cotton | Sprouting | 2023/4/23 | 450 |
Seedling | 2023/6/9 | 468 | ||
Bud emergence | 2023/6/19 | 334 | ||
2023/6/29 | 334 | |||
2023/7/9 | 401 | |||
2023/7/14 | 334 | |||
Flowering and boll setting | 2023/7/21 | 600/750 | ||
2023/8/2 | 600/750 | |||
2023/8/14 | 600/750 | |||
Boll opening | 2023/8/25 | 267 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, M.; Wang, L.; Lv, G.; Gao, C.; Zhao, Y.; Li, X.; He, L.; Sun, W. Deficit Irrigation Effects on Cotton Growth Cycle and Preliminary Optimization of Irrigation Strategies in Arid Environment. Plants 2024, 13, 1403. https://doi.org/10.3390/plants13101403
Lin M, Wang L, Lv G, Gao C, Zhao Y, Li X, He L, Sun W. Deficit Irrigation Effects on Cotton Growth Cycle and Preliminary Optimization of Irrigation Strategies in Arid Environment. Plants. 2024; 13(10):1403. https://doi.org/10.3390/plants13101403
Chicago/Turabian StyleLin, Meiwei, Lei Wang, Gaoqiang Lv, Chen Gao, Yuhao Zhao, Xin Li, Liang He, and Weihong Sun. 2024. "Deficit Irrigation Effects on Cotton Growth Cycle and Preliminary Optimization of Irrigation Strategies in Arid Environment" Plants 13, no. 10: 1403. https://doi.org/10.3390/plants13101403
APA StyleLin, M., Wang, L., Lv, G., Gao, C., Zhao, Y., Li, X., He, L., & Sun, W. (2024). Deficit Irrigation Effects on Cotton Growth Cycle and Preliminary Optimization of Irrigation Strategies in Arid Environment. Plants, 13(10), 1403. https://doi.org/10.3390/plants13101403