Enhancing Salt Stress Tolerance in Tomato (Solanum lycopersicum L.) through Silicon Application in Roots
Abstract
:1. Introduction
2. Results
2.1. Effects of Si on Plant Growth, Micro- and Macronutrients and Chlorophyll Parameters in Plant Development under Salt Stress
2.2. Effects of Si on Oxidative Stress in Plant Development under Salt Stress
2.3. Effects of Si on Osmotolerance in Plant Development under Salt Stress
2.4. Effects of Si on Enzymatic Activity in Plant Development under Salt Stress
3. Discussion
4. Materials and Methods
4.1. Plant Material, Cultural Conditions and Treatment
4.2. Determination of Plant Growth, Macro- and Micronutrient Concentrations and Chlorophyll Content
4.3. Membrane Permeability and Malondialdehyde Analysis
4.4. Osmotolerant Parameters Analysis
4.5. Enzymatic Activity
4.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Official Journal of the European Union. REGULATION (EU) 2019/1009 of the European Parliament and of the Council of 5 June 2019; European Union: Luxembourg, 2019. [Google Scholar]
- Tubaña, B.S.; Heckman, J.R. Silicon in Soils and Plants. In Silicon and Plant Diseases; Springer International Publishing: Berlin/Heidelberg, Germany, 2015; pp. 7–51. [Google Scholar] [CrossRef]
- Mandlik, R.; Thakral, V.; Raturi, G.; Shinde, S.; Nikolić, M.; Tripathi, D.K.; Sonah, H.; Deshmukh, R. Significance of Silicon Uptake, Transport, and Deposition in Plants. J. Exp. Bot. 2020, 71, 6703–6718. [Google Scholar] [CrossRef]
- Hernández-Salinas, M.; Valdez-Aguilar, L.A.; Alia-Tejacal, I.; Alvarado-Camarillo, D.; Cartmill, A.D. Silicon Enhances the Tolerance to Moderate NaCl-Salinity in Tomato Grown in a Hydroponic Recirculating System. J. Plant Nutr. 2022, 45, 413–425. [Google Scholar] [CrossRef]
- Liang, Y.; Sun, W.; Zhu, Y.G.; Christie, P. Mechanisms of Silicon-Mediated Alleviation of Abiotic Stresses in Higher Plants: A Review. Environ. Pollut. 2007, 147, 422–428. [Google Scholar] [CrossRef]
- Dhiman, P.; Rajora, N.; Bhardwaj, S.; Sudhakaran, S.S.; Kumar, A.; Raturi, G.; Chakraborty, K.; Gupta, O.P.; Devanna, B.N.; Tripathi, D.K.; et al. Fascinating Role of Silicon to Combat Salinity Stress in Plants: An Updated Overview. Plant Physiol. Biochem. 2021, 162, 110–123. [Google Scholar] [CrossRef]
- Zargar, S.M.; Mahajan, R.; Bhat, J.A.; Nazir, M.; Deshmukh, R. Role of Silicon in Plant Stress Tolerance: Opportunities to Achieve a Sustainable Cropping System. 3 Biotech. 2019, 9, 73. [Google Scholar] [CrossRef]
- Tripathi, D.K.; Singh, V.P.; Lux, A.; Vaculik, M. Silicon in Plant Biology: From Past to Present, and Future Challenges. J. Exp. Bot. 2020, 71, 6699–6702. [Google Scholar] [CrossRef]
- Khanum, S.; Tawaha, A.R.M.; Karimirad, R.; Al-Tawaha, A.R. Beneficial Effects of Supplementation Silicon on the Plant Under Abiotic and Biotic Stress. Silicon 2023, 15, 2481–2491. [Google Scholar] [CrossRef]
- Bishnoi, A.; Jangir, P.; Shekhawat, P.K.; Ram, H.; Soni, P. Silicon Supplementation as a Promising Approach to Induce Thermotolerance in Plants: Current Understanding and Future Perspectives. J. Soil. Sci. Plant Nutr. 2023, 23, 34–55. [Google Scholar] [CrossRef]
- Alayafi, A.H.; Al-Solaimani, S.G.M.; Abd El-Wahed, M.H.; Alghabari, F.M.; El Sabagh, A. Silicon Supplementation Enhances Productivity, Water Use Efficiency and Salinity Tolerance in Maize. Front. Plant Sci. 2022, 13, 953451. [Google Scholar] [CrossRef] [PubMed]
- Singhal, R.K.; Fahad, S.; Kumar, P.; Choyal, P.; Javed, T.; Jinger, D.; Singh, P.; Saha, D.; Md, P.; Bose, B.; et al. Beneficial Elements: New Players in Improving Nutrient Use Efficiency and Abiotic Stress Tolerance. Plant Growth Regul. 2023, 100, 237–265. [Google Scholar] [CrossRef]
- Dhakate, P.; Kandhol, N.; Raturi, G.; Ray, P.; Bhardwaj, A.; Srivastava, A.; Kaushal, L.; Singh, A.; Pandey, S.; Chauhan, D.K.; et al. Silicon Nanoforms in Crop Improvement and Stress Management. Chemosphere 2022, 305, 135165. [Google Scholar] [CrossRef]
- Guo, M.; Wang, X.S.; Guo, H.D.; Bai, S.Y.; Khan, A.; Wang, X.M.; Gao, Y.M.; Li, J.S. Tomato Salt Tolerance Mechanisms and Their Potential Applications for Fighting Salinity: A Review. Front. Plant Sci. 2022, 13, 949541. [Google Scholar] [CrossRef]
- Abdel-Farid, I.B.; Marghany, M.R.; Rowezek, M.M.; Sheded, M.G. Effect of Salinity Stress on Growth and Metabolomic Profiling of Cucumis sativus and Solanum lycopersicum. Plants 2020, 9, 1626. [Google Scholar] [CrossRef]
- Liang, Y.; Chen, Q.; Liu, Q.; Zhang, W.; Ding, R. Exogenous Silicon (Si) Increases Antioxidant Enzyme Activity and Reduces Lipid Peroxidation in Roots of Salt-Stressed Barley (Hordeum vulgare L.). J. Plant Physiol. 2003, 160, 11571164. [Google Scholar] [CrossRef]
- Singh, P.; Kumar, V.; Sharma, J.; Saini, S.; Sharma, P.; Kumar, S.; Sinhmar, Y.; Kumar, D.; Sharma, A. Silicon Supplementation Alleviates the Salinity Stress in Wheat Plants by Enhancing the Plant Water Status, Photosynthetic Pigments, Proline Content and Antioxidant Enzyme Activities. Plants 2022, 11, 2525. [Google Scholar] [CrossRef]
- Majumdar, S.; Prakash, N.B. An Overview on the Potential of Silicon in Promoting Defence against Biotic and Abiotic Stresses in Sugarcane. J. Soil. Sci. Plant Nut 2020, 20, 1969–1998. [Google Scholar] [CrossRef]
- Wang, X.S.; Han, J.G. Effects of NaCl and Silicon on Ion Distribution in the Roots, Shoots and Leaves of Two Alfalfa Cultivars with Different Salt Tolerance. Soil. Sci. Plant Nutr. 2007, 53, 278–285. [Google Scholar] [CrossRef]
- Helaly, M.N.; El-Hoseiny, H.; El-Sheery, N.I.; Rastogi, A.; Kalaji, H.M. Regulation and Physiological Role of Silicon in Alleviating Drought Stress of Mango. Plant Physiol. Biochem. 2017, 118, 31–44. [Google Scholar] [CrossRef]
- Zhu, Z.; Wei, G.; Li, J.; Qian, Q.; Yu, J. Silicon Alleviates Salt Stress and Increases Antioxidant Enzymes Activity in Leaves of Salt-Stressed Cucumber (Cucumis sativus L.). Plant Sci. 2004, 167, 527–533. [Google Scholar] [CrossRef]
- Haghighi, M.; Pessarakli, M. Influence of Silicon and Nano-Silicon on Salinity Tolerance of Cherry Tomatoes (Solanum lycopersicum L.) at Early Growth Stage. Sci. Hortic. 2013, 161, 111–117. [Google Scholar] [CrossRef]
- Muneer, S.; Jeong, B.R. Proteomic Analysis of Salt-Stress Responsive Proteins in Roots of Tomato (Lycopersicon esculentum L.) Plants towards Silicon Efficiency. Plant Growth Regul. 2015, 77, 133–146. [Google Scholar] [CrossRef]
- Al-aghabary, K.; Zhu, Z.; Shi, Q. Influence of Silicon Supply on Chlorophyll Content, Chlorophyll Fluorescence, and Antioxidative Enzyme Activities in Tomato Plants Under Salt Stress. J. Plant Nutr. 2005, 27, 2101–2115. [Google Scholar] [CrossRef]
- Sivanesan, I.; Park, S.W. The Role of Silicon in Plant Tissue Culture. Front. Plant Sci. 2014, 5, 571. [Google Scholar] [CrossRef]
- Liang, Y. Effects of Silicon on Enzyme Activity and Sodium, Potassium and Calcium Concentration in Barley under Salt Stress. Plant Soil. 1999, 209, 217–224. [Google Scholar] [CrossRef]
- Costan, A.; Stamatakis, A.; Chrysargyris, A.; Petropoulos, S.A.; Tzortzakis, N. Interactive Effects of Salinity and Silicon Application on Solanum lycopersicum Growth, Physiology and Shelf-Life of Fruit Produced Hydroponically. J. Sci. Food Agric. 2020, 100, 732–743. [Google Scholar] [CrossRef]
- El-Aidy, F.; Abdalla, M.; El-Sawy, M.; El Kady, S.A.; Bayoumi, Y.; El-Ramady, H. Role of Plant Probiotics, Sucrose and Silicon in the Production of Tomato (Solanum lycopersicum L.) Seedlings under Heat Stress in a Greenhouse. Appl. Ecol. Environ. Res. 2020, 18, 7685–7701. [Google Scholar] [CrossRef]
- El Moukhtari, A.; Ksiaa, M.; Zorrig, W.; Cabassa, C.; Abdelly, C.; Farissi, M.; Savoure, A. How Silicon Alleviates the Effect of Abiotic Stresses During Seed Germination: A Review. J. Plant Growth Regul. 2023, 42, 3323–3341. [Google Scholar] [CrossRef]
- Khan, A.; Bilal, S.; Khan, A.L.; Imran, M.; Shahzad, R.; Al-Harrasi, A.; Al-Rawahi, A.; Al-Azhri, M.; Mohanta, T.K.; Lee, I.J. Silicon and Gibberellins: Synergistic Function in Harnessing Aba Signaling and Heat Stress Tolerance in Date Palm (Phoenix dactylifera L.). Plants 2020, 9, 620. [Google Scholar] [CrossRef]
- Gunes, A.; Inal, A.; Bagci, E.G.; Pilbeam, D.J. Silicon-Mediated Changes of Some Physiological and Enzymatic Parameters Symptomatic for Oxidative Stress in Spinach and Tomato Grown in Sodic-B Toxic Soil. Plant Soil. 2007, 290, 103–114. [Google Scholar] [CrossRef]
- Gou, T.; Su, Y.; Han, R.; Jia, J.; Zhu, Y.; Huo, H.; Liu, H.; Gong, H. Silicon Delays Salt Stress-Induced Senescence by Increasing Cytokinin Synthesis in Tomato. Sci. Hortic. 2022, 293, 110750. [Google Scholar] [CrossRef]
- Korkmaz, A.; Karagöl, A.; Akınoğlu, G.; Korkmaz, H. The Effects of Silicon on Nutrient Levels and Yields of Tomatoes under Saline Stress in Artificial Medium Culture. J. Plant Nutr. 2018, 41, 123–135. [Google Scholar] [CrossRef]
- Toresano-Sánchez, F.; Valverde-García, A.; Camacho-Ferre, F. Effect of the Application of Silicon Hydroxide on Yield and Quality of Cherry Tomato. J. Plant Nutr. 2012, 35, 567–590. [Google Scholar] [CrossRef]
- Yin, L.; Wang, S.; Tanaka, K.; Fujihara, S.; Itai, A.; Den, X.; Zhang, S. Silicon-Mediated Changes in Polyamines Participate in Silicon-Induced Salt Tolerance in Sorghum bicolor L. Plant Cell Environ. 2016, 39, 245–258. [Google Scholar] [CrossRef]
- Cheraghi, M.; Motesharezadeh, B.; Mousavi, S.M.; Ma, Q.; Ahmadabadi, Z. Silicon (Si): A Regulator Nutrient for Optimum Growth of Wheat Under Salinity and Drought Stresses—A Review. J. Plant Growth Regul. 2023, 42, 5354–5378. [Google Scholar] [CrossRef]
- Romero-Aranda, M.R.; Jurado, O.; Cuartero, J. Silicon Alleviates the Deleterious Salt Effect on Tomato Plant Growth by Improving Plant Water Status. J. Plant Physiol. 2006, 163, 847–855. [Google Scholar] [CrossRef]
- Liang, Y.; Zhang, W.; Chen, Q.; Liu, Y.; Ding, R. Effect of Exogenous Silicon (Si) on H+-ATPase Activity, Phospholipids and Fluidity of Plasma Membrane in Leaves of Salt-Stressed Barley (Hordeum vulgare L.). Environ. Exp. Bot. 2006, 57, 212–219. [Google Scholar] [CrossRef]
- Coskun, D.; Deshmukh, R.; Sonah, H.; Menzies, J.G.; Reynolds, O.; Ma, J.F.; Kronzucker, H.J.; Bélanger, R.R. The Controversies of Silicon’s Role in Plant Biology. New Phytol. 2019, 221, 67–85. [Google Scholar] [CrossRef]
- Fauteux, F.; Rémus-Borel, W.; Menzies, J.G.; Bélanger, R.R. Silicon and Plant Disease Resistance against Pathogenic Fungi. FEMS Microbiol. Lett. 2005, 249, 1–6. [Google Scholar] [CrossRef]
- Van Bockhaven, J.; De Vleesschauwer, D.; Höfte, M. Towards Establishing Broad-Spectrum Disease Resistance in Plants: Silicon Leads the Way. J. Exp. Bot. 2013, 64, 1281–1293. [Google Scholar] [CrossRef]
- Tripathi, D.K.; Vishwakarma, K.; Singh, V.P.; Prakash, V.; Sharma, S.; Muneer, S.; Nikolic, M.; Deshmukh, R.; Vaculík, M.; Corpas, F.J. Silicon Crosstalk with Reactive Oxygen Species, Phytohormones and Other Signaling Molecules. J. Hazard. Mater. 2021, 408, 124820. [Google Scholar] [CrossRef]
- George, E.; Horst, W.J.; Neumann, E. Adaptation of Plants to Adverse Chemical Soil Conditions. In Marschner’s Mineral Nutrition of Higher Plants; Marschner, P., Ed.; Elsevier: New York, NY, USA, 2012; pp. 409–472. [Google Scholar]
- Alpaslan, M.; Gunes, A. Interactive Effects of Boron and Salinity Stress on the Growth, Membrane Permeability and Mineral Composition of Tomato and Cucumber Plants. Plant Soil. 2001, 236, 123–128. [Google Scholar] [CrossRef]
- Moles, T.M.; Pompeiano, A.; Huarancca Reyes, T.; Scartazza, A.; Guglielminetti, L. The Efficient Physiological Strategy of a Tomato Landrace in Response to Short-Term Salinity Stress. Plant Physiol. Biochem. 2016, 109, 262–272. [Google Scholar] [CrossRef]
- Ferrández-Gómez, B.; Jordá, J.D.; Cerdán, M.; Sánchez, A. Valorization of Posidonia oceanica Biomass: Role on Germination of Cucumber and Tomato Seeds. Waste Manag. 2023, 171, 634–641. [Google Scholar] [CrossRef] [PubMed]
- Cerdán, M.; Sánchez-Sánchez, A.; Jordá, J.D.; Juárez, M.; Sánchez-Andreu, J. Effect of Commercial Amino Acids on Iron Nutrition of Tomato Plants Grown under Lime-induced Iron Deficiency. J. Plant Nutr. Soil. Sci. 2013, 176, 859–866. [Google Scholar] [CrossRef]
- Abadía, J.; Monge, E.; Montañés, L.; Heras, L. Extraction of Iron from Plant Leaves by Fe (II) Chelators. J. Plant Nutr. 1984, 7, 777–784. [Google Scholar] [CrossRef]
- Shu, X.; Yin, L.; Zhang, Q.; Wang, W. Effect of Pb Toxicity on Leaf Growth, Antioxidant Enzyme Activities, and Photosynthesis in Cuttings and Seedlings of Jatropha curcas L. Environ. Sci. Pollut. Res. 2012, 19, 893–902. [Google Scholar] [CrossRef] [PubMed]
- Magné, C.; Larher, F. High Sugar Content of Extracts Interferes with Colorimetric Determination of Amino Acids and Free Proline. Anal. Biochem. 1992, 200, 115–118. [Google Scholar] [CrossRef] [PubMed]
Factor | (D) | (S) | (D) × (S) |
---|---|---|---|
FW (g) | <0.001 | <0.001 | 0.287 |
DW (g) | 0.189 | <0.001 | 0.298 |
PL (cm) | <0.001 | <0.001 | 0.065 |
Ca (%) | <0.001 | <0.001 | <0.001 |
K (%) | <0.001 | <0.001 | <0.001 |
Mg (%) | <0.001 | <0.001 | <0.001 |
Na (%) | 0.396 | <0.001 | 0.494 |
Fe (mg kg−1) | 0.720 | 0.608 | 0.002 |
Cu (mg kg−1) | <0.001 | <0.001 | <0.001 |
Mn (mg kg−1) | <0.001 | <0.001 | 0.175 |
Zn (mg kg−1) | 0.286 | <0.001 | 0.007 |
Chl total (mg g−1) | 0.383 | <0.001 | 0.003 |
Chl a (mg g−1) | 0.211 | <0.001 | 0.008 |
Chl b (mg g−1) | 0.217 | <0.001 | 0.008 |
EC1/EC2 (%) | <0.001 | <0.001 | <0.001 |
MDA (mmol mL−1) | <0.001 | <0.001 | <0.001 |
Proline (mg g DW−1) | <0.001 | <0.001 | <0.001 |
SSC (mg g DW−1) | <0.001 | <0.001 | <0.001 |
Catalase activity (mmol min−1 mg protein−1) | <0.001 | <0.001 | <0.001 |
Parameter | FW (g) | DW (g) | PL (cm) | Na (%) | Mn (mg kg−1) |
---|---|---|---|---|---|
NaCl (mM) | |||||
0 | 31.8 ± 0.5 a | 2.92 ± 0.06 a | 29.1 ± 0.4 a | 2.3 ± 1.9 b | 107.8 ± 1.7 a |
50 | 9.6 ± 0.5 b | 0.72 ± 0.06 b | 18.3 ± 0.4 b | 52.6 ± 1.9 a | 40.7 ± 1.7 b |
Sig. 1 | *** | *** | *** | *** | *** |
Na2SiO3 (mM) | |||||
0 | 18.7 ± 0.5 b | 1.73 ± 0.07 | 20.0 ± 0.5 b | 25 ± 2 | 84 ± 2 a |
1 | 22.8 ± 0.5 a | 1.81 ± 0.07 | 25.9 ± 0.5 a | 29 ± 2 | 70 ± 2 b |
4 | 20.5 ± 0.5 b | 1.93 ± 0.07 | 25.3 ± 0.5 a | 29 ± 2 | 68 ± 2 b |
Sig. 1 | *** | ns | *** | ns | *** |
Treatment | 0 mM NaCl | 50 mM NaCl | Sig. 1 | ||||
---|---|---|---|---|---|---|---|
Control | Si_1mM | Si_4mM | Salt Control | Si_1mM | Si_4mM | ||
Ca (%) | 30.9 ± 0.5 a | 30.8 ± 0.9 a | 22.6 ± 0.9 b | 13.3 ± 0.5 d | 13.8 ± 1.1 cd | 15.4 ± 0.1 c | *** |
K (%) | 51.0 ± 1.3 a | 47.2 ± 1.9 a | 39.7 ± 1.7 b | 23.9 ± 0.1 c | 49 ± 4 a | 34 ± 3 b | *** |
Mg (%) | 5.0 ± 0.1 c | 5.3 ± 0.2 b | 6.3 ± 0.1 a | 2.2 ± 0.1 f | 2.9 ± 0.1 d | 2.5 ± 0.1 e | *** |
Fe (mg kg−1) | 121 ± 3 a | 104 ± 2 ab | 94 ± 4 b | 91 ± 4 b | 123 ± 6 ab | 114 ± 4 ab | ** |
Cu (mg kg−1) | 6.0 ± 0.1 b | 5.8 ± 0.2 b | 6.7 ± 0.1 a | 3.6 ± 0.1 d | 4.9 ± 0.1 c | 3.9 ± 0.4 d | *** |
Zn (mg kg−1) | 29 ± 1 ab | 27.5 ± 0.4 b | 29.8 ± 1.3 a | 22.4 ± 0.9 c | 26.3 ± 1.0 b | 23.3 ± 0.6 c | ** |
Chl total (mg g−1) | 1.9 ± 0.2 a | 1.7 ± 0.1 a | 1.7 ± 0.1 a | 0.6 ± 0.1 c | 0.9 ± 0.1 b | 0.9 ± 0.1 b | ** |
Chl a (mg g−1) | 1.1 ± 0.2 a | 1.0 ± 0.1 a | 0.9 ± 0.1 a | 0.3 ± 0.1 c | 0.6 ± 0.1 b | 0.5 ± 0.1 b | ** |
Chl b (mg g−1) | 0.8 ± 0.1 a | 0.7 ± 0.1 a | 0.7 ± 0.1 a | 0.3 ± 0.1 c | 0.5 ± 0.1 b | 0.6 ± 0.1 b | ** |
Treatment | NaCl (mM) | Na2SiO3 (mM) |
---|---|---|
Normal control | 0 | 0 |
Si_1mM | 0 | 1 |
Si_4mM | 0 | 4 |
Salt control | 50 | 0 |
Si_1mM | 50 | 1 |
Si_4mM | 50 | 4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferrández-Gómez, B.; Jordá, J.D.; Cerdán, M.; Sánchez-Sánchez, A. Enhancing Salt Stress Tolerance in Tomato (Solanum lycopersicum L.) through Silicon Application in Roots. Plants 2024, 13, 1415. https://doi.org/10.3390/plants13101415
Ferrández-Gómez B, Jordá JD, Cerdán M, Sánchez-Sánchez A. Enhancing Salt Stress Tolerance in Tomato (Solanum lycopersicum L.) through Silicon Application in Roots. Plants. 2024; 13(10):1415. https://doi.org/10.3390/plants13101415
Chicago/Turabian StyleFerrández-Gómez, Borja, Juana D. Jordá, Mar Cerdán, and Antonio Sánchez-Sánchez. 2024. "Enhancing Salt Stress Tolerance in Tomato (Solanum lycopersicum L.) through Silicon Application in Roots" Plants 13, no. 10: 1415. https://doi.org/10.3390/plants13101415
APA StyleFerrández-Gómez, B., Jordá, J. D., Cerdán, M., & Sánchez-Sánchez, A. (2024). Enhancing Salt Stress Tolerance in Tomato (Solanum lycopersicum L.) through Silicon Application in Roots. Plants, 13(10), 1415. https://doi.org/10.3390/plants13101415