Selection for Phytophthora Root Rot Resistance in Chickpea Crosses Affects Yield Potential of Chickpea × Cicer echinospermum Backcross Derivatives
Abstract
:1. Introduction
- phenology and yield traits of chickpea × C. echinospermum RILs in the absence of PRR disease differed among genotypes with low and high levels of PRR resistance;
- foliage symptoms and yields among chickpea × C. echinospermum RIL differed across P. medicaginis inoculated and natural inoculum experiments;
- foliage symptom and yield parameters under P. medicaginis inoculated and natural inoculum conditions could be used to identify high-resistance RIL with a high yield potential.
2. Results
2.1. Non-Diseased Grain Production Experiments
2.1.1. RB RIL Yield Traits between the High and Low Foliage Symptom Phenotypes
2.1.2. YB RIL Yield Traits between High and Low Foliage Symptom Phenotypes
2.1.3. QTL Analysis of Yield and Agronomic Related Traits
2.2. Phytophthora Inoculated and Natural Phytophthora Inoculum Experiments
2.3. Foliage Symptom and Yield Parameters to Identify PRR High Resistance RIL with High Yield Potential
3. Discussion
4. Materials and Methods
4.1. RIL Development and Seed Sources
4.2. Non-Diseased Grain Production Experiments
4.3. Quantitative Trait Locus (QTL) Analysis
4.4. Phytophthora Inoculated and Natural Phytophthora Inoculum Experiments
Hermitage 2014 and 2015 RIL P. medicaginis Inoculated Experiments
4.5. Selection of RIL Phenotype Groups from Hermitage 2014 and 2015 RIL Experiment Results
4.6. Tamworth 2016 Natural Inoculum Experiment
4.7. Design and Analyses
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Savary, S.; Ficke, A.; Aubertot, J.-N.; Hollier, C. Crop losses due to diseases and their implications for global food production losses and food security. Food Secur. 2012, 4, 519–537. [Google Scholar] [CrossRef]
- Vock, N.T.; Langdon, P.W.; Pegg, K.G. Root Rot of Chickpea Caused by Phytophthora Megasperma Var. Sojae in Queensland. Australas. Plant Pathol. 1980, 9, 117. [Google Scholar] [CrossRef]
- Knights, E.J.; Açıkgöz, N.; Warkentin, T.; Bejiga, G.; Yadav, S.S.; Sandhu, J.S. Area, production and distribution. In Chickpea Breeding & Management; Yadav, S.S., Redden, R.J., Chen, W., Sharma, B., Eds.; CABI: Wallingford, UK, 2007; pp. 167–178. [Google Scholar]
- Salam, M.U.; Davidson, J.A.; Thomas, G.J.; Ford, R.; Jones, R.A.C.; Lindbeck, K.D.; MacLeod, W.J.; Kimber, R.B.E.; Galloway, J.; Mantri, N.; et al. Advances in winter pulse pathology research in Australia. Australas. Plant Pathol. 2011, 40, 549–567. [Google Scholar] [CrossRef]
- Singh, K.B.; Malhotra, R.S.; Halila, M.H.; Knights, E.J.; Verma, M.M. Current status and future strategy in breeding chickpea for resistance to biotic and abiotic stresses. Euphytica 1993, 73, 137–149. [Google Scholar] [CrossRef]
- Dorrance, A.E.; McClure, S.A. Beneficial Effects of Fungicide Seed Treatments for Soybean Cultivars with Partial Resistance to Phytophthora sojae. Plant Dis. 2001, 85, 1063–1068. [Google Scholar] [CrossRef]
- Knights, E.J.; Southwell, R.J.; Schwinghamer, M.W.; Harden, S. Resistance to Phytophthora medicaginis Hansen and Maxwell in wild Cicer species and its use in breeding root rot resistant chickpea (Cicer arietinum L.). Aust. J. Agric. Res. 2008, 59, 383–387. [Google Scholar] [CrossRef]
- Schwinghamer, M.W.; Southwell, R.J.; Moore, K.J.; Knights, E.J. Phytophthora Root Rot of Chickpea. In Compendium of Chickpea and Lentil Diseases and Pests; Chen, W., Sharma, H.C., Muehlbauer, F.J., Eds.; The American Phytopathological Society: St. Paul, MN, USA, 2011; pp. 22–25. [Google Scholar]
- Brinsmead, R.B. Resistance in Chickpea to Phytophthora megasperma f. sp. medicaginis. Plant Dis. 1985, 69. [Google Scholar] [CrossRef]
- Dale, M.; Irwin, J. Glasshouse and field screening of chickpea cultivars for resistance to Phytophthora megasperma f.sp. medicaginis. Aust. J. Exp. Agric. 1991, 31, 663–667. [Google Scholar] [CrossRef]
- Amalraj, A.; Taylor, J.; Bithell, S.; Li, Y.; Moore, K.; Hobson, K.; Sutton, T. Mapping resistance to Phytophthora root rot identifies independent loci from cultivated (Cicer arietinum L.) and wild (Cicer echinospermum P.H. Davis) chickpea. Theor. Appl. Genet. 2018, 132, 1017–1033. [Google Scholar] [CrossRef]
- Knights, T.; Moore, K.; Cummings, G. Yorker Desi Chickpea. Pulse Variety Management Package. Available online: https://www.pulseaus.com.au/storage/app/media/crops/chickpea/2009_VMP-Dchickpea-Yorker.pdf (accessed on 15 April 2024).
- Bithell, S.; Moore, K.; Herdina; McKay, A.; Harden, S.; Simpfendorfer, S. Phytophthora root rot of chickpea: Inoculum concentration and seasonally dependent success for qPCR based predictions of disease and yield loss. Australas. Plant Pathol. 2020, 50, 91–103. [Google Scholar] [CrossRef]
- Bithell, S.L.; Drenth, A.; Backhouse, D.; Harden, S.; Hobson, K. Inoculum production of Phytophthora medicaginis can be used to screen for partial resistance in chickpea genotypes. Front. Plant Sci. 2023, 14, 1115417. [Google Scholar] [CrossRef]
- Li, H.; Rodda, M.; Gnanasambandam, A.; Aftab, M.; Redden, R.; Hobson, K.; Rosewarne, G.; Materne, M.; Kaur, S.; Slater, A.T. Breeding for biotic stress resistance in chickpea: Progress and prospects. Euphytica 2015, 204, 257–288. [Google Scholar] [CrossRef]
- Li, Y.; Ruperao, P.; Batley, J.; Edwards, D.; Martin, W.; Hobson, K.; Sutton, T. Genomic prediction of preliminary yield trials in chickpea: Effect of functional annotation of SNPs and environment. Plant Genome 2022, 15, e20166. [Google Scholar] [CrossRef] [PubMed]
- Singh, M.; Rani, S.; Malhotra, N.; Katna, G.; Sarker, A. Transgressive segregations for agronomic improvement using interspecific crosses between C. arietinum L. × C. reticulatum Ladiz. and C. arietinum L. × C. echinospermum Davis species. PLoS ONE 2018, 13, e0203082. [Google Scholar] [CrossRef] [PubMed]
- Singh, M.; Kumar, T.; Sood, S.; Malhotra, N.; Rani, U.; Singh, S.; Singh, I.; Bindra, S.; Kumar, S.; Kumar, S. Identification of promising chickpea interspecific derivatives for agro-morphological and major biotic traits. Front. Plant Sci. 2022, 13, 941372. [Google Scholar] [CrossRef] [PubMed]
- Sari, D.; Sari, H.; Eker, T.; Ikten, C.; Uzun, B.; Toker, C. Intraspecific versus interspecific crosses for superior progeny in Cicer species. Crop. Sci. 2022, 62, 2122–2137. [Google Scholar] [CrossRef]
- Lakmes, A.; Jhar, A.; Penmetsa, R.V.; Wei, W.; Brennan, A.C.; Kahriman, A. Inheritance of seed weight and growth habit in 10 intercross chickpea (Cicer arietinum) nested association mapping populations. Plant Breed. 2022, 142, 86–96. [Google Scholar] [CrossRef]
- Price, J.S.; Bever, J.D.; Clay, K. Genotype, environment, and genotype by environment interactions determine quantitative resistance to leaf rust (Coleosporium asterum) in Euthamia graminifolia (Asteraceae). New Phytol. 2004, 162, 729–743. [Google Scholar] [CrossRef] [PubMed]
- Upadhyaya, H.D.; Dwivedi, S.L.; Sharma, S. Managing and Discovering Agronomically Beneficial Traits in Chickpea Germplasm Collections. In Chickpea Genome; Varshney, R.K., Thudi, M., Muehlbauer, F.J., Eds.; Compendium of Plant Genomes; Springer: Berlin, Germany, 2017; pp. 43–52. [Google Scholar]
- Upadhyaya, H.D.; Bajaj, D.; Das, S.; Saxena, M.S.; Badoni, S.; Kumar, V.; Tripathi, S.; Gowda, C.L.L.; Sharma, S.; Tyagi, A.K.; et al. A genome-scale integrated approach aids in genetic dissection of complex flowering time trait in chickpea. Plant Mol. Biol. 2015, 89, 403–420. [Google Scholar] [CrossRef]
- Barmukh, R.; Soren, K.R.; Madugula, P.; Gangwar, P.; Shanmugavadivel, P.S.; Bharadwaj, C.; Konda, A.K.; Chaturvedi, S.K.; Bhandari, A.; Rajain, K.; et al. Construction of a high-density genetic map and QTL analysis for yield, yield components and agronomic traits in chickpea (Cicer arietinum L.). PLoS ONE 2021, 16, e0251669. [Google Scholar] [CrossRef]
- Singh, V.K.; Khan, A.W.; Jaganathan, D.; Thudi, M.; Roorkiwal, M.; Takagi, H.; Garg, V.; Kumar, V.; Chitikineni, A.; Gaur, P.M.; et al. QTL-seq for rapid identification of candidate genes for 100-seed weight and root/total plant dry weight ratio under rainfed conditions in chickpea. Plant Biotechnol. J. 2016, 14, 2110–2119. [Google Scholar] [CrossRef]
- Upadhyaya, H.D.; Bajaj, D.; Srivastava, R.; Daware, A.; Basu, U.; Tripathi, S.; Bharadwaj, C.; Tyagi, A.K.; Parida, S.K. Genetic dissection of plant growth habit in chickpea. Funct. Integr. Genom. 2017, 17, 711–723. [Google Scholar] [CrossRef]
- Dwivedi, S.L.; Reynolds, M.P.; Ortiz, R. Mitigating tradeoffs in plant breeding. iScience 2021, 24, 102965. [Google Scholar] [CrossRef] [PubMed]
- Kulkarni, R.N. Environment as the Cause of Differential Interaction between Host Cultivars and Pathogenic Races. Phytopathology 1982, 72, 1384–1386. [Google Scholar] [CrossRef]
- Pariaud, B.; Ravigné, V.; Halkett, F.; Goyeau, H.; Carlier, J.; Lannou, C. Aggressiveness and its role in the adaptation of plant pathogens. Plant Pathol. 2009, 58, 409–424. [Google Scholar] [CrossRef]
- St. Clair, D.A. Quantitative Disease Resistance and Quantitative Resistance Loci in Breeding. Annu. Rev. Phytopathol. 2010, 48, 247–268. [Google Scholar] [CrossRef]
- Wang, H.; Martin, S.K.S.; Dorrance, A.E. Comparison of Phenotypic Methods and Yield Contributions of Quantitative Trait Loci for Partial Resistance to Phytophthora sojae in Soybean. Crop. Sci. 2012, 52, 609–622. [Google Scholar] [CrossRef]
- Lewis, R.S.; Linger, L.R.; Wolff, M.F.; Wernsman, E.A. The negative influence of N-mediated TMV resistance on yield in tobacco: Linkage drag versus pleiotropy. Theor. Appl. Genet. 2007, 115, 169–178. [Google Scholar] [CrossRef]
- Li, J.; Chitwood, J.; Menda, N.; Mueller, L.; Hutton, S.F. Linkage between the I-3 gene for resistance to Fusarium wilt race 3 and increased sensitivity to bacterial spot in tomato. Theor. Appl. Genet. 2017, 131, 145–155. [Google Scholar] [CrossRef]
- Nagpal, S.; Sirari, A.; Sharma, P.; Singh, S.; Mandahal, K.S.; Singh, H.; Singh, S. Marker trait association for biological nitrogen fixation traits in an interspecific cross of chickpea (Cicer arietinum × Cicer reticulatum). Physiol. Mol. Biol. Plants 2023, 29, 1005–1018. [Google Scholar] [CrossRef]
- Newman, T.E.; Jacques, S.; Grime, C.; Mobegi, F.M.; Kamphuis, F.L.; Khentry, Y.; Lee, R.; Kamphuis, L.G. Genetic dissection of domestication traits in interspecific chickpea populations. Plant Genome 2023, 17, e20408. [Google Scholar] [CrossRef] [PubMed]
- Gorim, L.Y.; Vandenberg, A. Evaluation of Wild Lentil Species as Genetic Resources to Improve Drought Tolerance in Cultivated Lentil. Front. Plant Sci. 2017, 8, 1129. [Google Scholar] [CrossRef] [PubMed]
- Robertson, L.; Ocampo, B.; Singh, K. Morphological variation in wild annual Cicer species in comparison to the cultigen. Euphytica 1997, 95, 309–319. [Google Scholar] [CrossRef]
- Croser, J.S.; Ahmad, F.; Clarke, H.J.; Siddique, K.H.M. Utilisation of wild Cicer in chickpea improvement—Progress, constraints, and prospects. Aust. J. Agric. Res. 2003, 54, 429. [Google Scholar] [CrossRef]
- Dorrance, A.E.; McClure, S.A.; Martin, S.K.S. Effect of Partial Resistance on Phytophthora Stem Rot Incidence and Yield of Soybean in Ohio. Plant Dis. 2003, 87, 308–312. [Google Scholar] [CrossRef] [PubMed]
- Tooley, P.W. The Relationship between Rate-Reducing Resistance to Phytophthora megasperma f. sp. glycinea and Yield of Soybean. Phytopathology 1984, 74, 1209–1216. [Google Scholar] [CrossRef]
- Hossain, S.; Ford, R.; McNeil, D.; Pittock, C.; Panozzo, J.F. Inheritance of seed size in chickpea (Cicer arietinum L.) and identification of QTL based on 100-seed weight and seed size index. Aust. J. Crop Sci. 2010, 4, 126–135. [Google Scholar]
- Ton, A.; Anlarsal, A.E. Estimation of genetic variability for seed yield and its components in chickpea (Cicer arientinum L.) genotypes. Legum. Res. Int. J. 2017, 40. [Google Scholar] [CrossRef]
- Ali, M.A.; Nawab, N.N.; Abbas, A.; Zulkiffal, M.; Sajjad, M. Evaluation of selection criteria in Cicer arietinum L. using correlation coefficients and path analysis. Aust. J. Crop Sci. 2009, 3, 65–70. [Google Scholar]
- Wang, R.; Gangola, M.P.; Jaiswal, S.; Gaur, P.M.; Båga, M.; Chibbar, R.N. Genotype, environment and their interaction influence seed quality traits in chickpea (Cicer arietinum L.). J. Food Compos. Anal. 2017, 63, 21–27. [Google Scholar] [CrossRef]
- Abe, M.; Kobayashi, Y.; Yamamoto, S.; Daimon, Y.; Yamaguchi, A.; Ikeda, Y.; Ichinoki, H.; Notaguchi, M.; Goto, K.; Araki, T. FD, a bZIP Protein Mediating Signals from the Floral Pathway Integrator FT at the Shoot Apex. Science 2005, 309, 1052–1056. [Google Scholar] [CrossRef] [PubMed]
- Kawamoto, N.; Sasabe, M.; Endo, M.; Machida, Y.; Araki, T. Calcium-dependent protein kinases responsible for the phosphorylation of a bZIP transcription factor FD crucial for the florigen complex formation. Sci. Rep. 2015, 5, 8341. [Google Scholar] [CrossRef] [PubMed]
- Nan, H.; Cao, D.; Zhang, D.; Li, Y.; Lu, S.; Tang, L.; Yuan, X.; Liu, B.; Kong, F. GmFT2a and GmFT5a Redundantly and Differentially Regulate Flowering through Interaction with and Upregulation of the bZIP Transcription Factor GmFDL19 in Soybean. PLOS ONE 2014, 9, e97669. [Google Scholar] [CrossRef] [PubMed]
- Ali, L.; Azam, S.; Rubio, J.; Kudapa, H.; Madrid, E.; Varshney, R.K.; Castro, P.; Chen, W.; Gil, J.; Millan, T. Detection of a new QTL/gene for growth habit in chickpea CaLG1 using wide and narrow crosses. Euphytica 2015, 204, 473–485. [Google Scholar] [CrossRef]
- Waterworth, W.M.; Masnavi, G.; Bhardwaj, R.M.; Jiang, Q.; Bray, C.M.; West, C.E. A plant DNA ligase is an important determinant of seed longevity. Plant J. 2010, 63, 848–860. [Google Scholar] [CrossRef]
- Wang, S.; Basten, C.; Zeng, Z. Windows QTL Cartographer 2.5; Department of Statistics, North Carolina State University: Raleigh, NC, USA, 2012; Available online: http://statgen.ncsu.edu/qtlcart/WQTLCart.htm (accessed on 10 December 2023).
- Churchill, G.A.; Doerge, R.W. Empirical threshold values for quantitative trait mapping. Genetics 1994, 138, 963–971. [Google Scholar] [CrossRef] [PubMed]
- Varshney, R.K.; Song, C.; Saxena, R.K.; Azam, S.; Yu, S.; Sharpe, A.G.; Cannon, S.; Baek, J.; Rosen, B.D.; Tar’An, B.; et al. Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement. Nat. Biotechnol. 2013, 31, 240–246. [Google Scholar] [CrossRef]
- Voorrips, R.E. MapChart: Software for the graphical presentation of linkage maps and QTLs. J. Hered. 2002, 93, 77–78. [Google Scholar] [CrossRef]
- Thomson, S.J.; Cameron, J.A.L.; Dalal, R.C.; Hoult, E. Alternate wet-dry regime during fallow failed to improve nitrogen release from added legume residues in legume-wheat rotations on a Vertisol. Aust. J. Exp. Agric. 2007, 47, 855–861. [Google Scholar] [CrossRef]
- Schwenke, G.D.; Haigh, B.M. Can split or delayed application of N fertiliser to grain sorghum reduce soil N2O emissions from sub-tropical Vertosols and maintain grain yields? Soil Res. 2019, 57, 859–874. [Google Scholar] [CrossRef]
- Coombes, N. DiGGer: DiGGer Design Generator under Correlation and Blocking. R Package Version 1.0.0, 201. Available online: http://nswdpibiom.org/austatgen/software/ (accessed on 15 April 2024).
- Anon GenStat Committee. The Guide to GenStat Release 19.1; VSN International: Oxford, UK, 2018; Available online: https://genstat.kb.vsni.co.uk/knowledge-base/genstat-guides/ (accessed on 15 April 2024).
- Simko, I.; Piepho, H.-P. The Area under the Disease Progress Stairs: Calculation, Advantage, and Application. Phytopathology 2012, 102, 381–389. [Google Scholar] [CrossRef] [PubMed]
(a) RB RIL | ||||||||
Trait | QTL | Chr | Position | Genetic Map Distance | Physical Position Mbp | LOD | Additive Effect | R2 |
Plant Height (mm) | qPHT-C1 | C1 | 74.8 | 72.6–77.0 | 40.49–48.30 | 3.5 | 20.63 | 5.6 |
Plant Height (mm) | qPHT-C3 | C3 | 5.5 | 0.0–9.6 | 0.17–6.42 | 5.4 | 26.79 | 9.0 |
Plant Height (mm) | qPHT-C5 | C5 | 90.9 | 83.0–99.9 | 33.27–47.31 | 6.4 | −36.35 * | 15.8 |
Plant Height (mm) | qPHT-C4 | C4 | 68.3 | 53.8–74.0 | 9.10–12.66 | 7.1 | 28.96 | 10.9 |
100-seed weight (HSW) | qHSW-C3 | C3 | 22.9 | 0.02–42.9 | 0.17–29.59 | 4.6 | −1.25 * | 9.7 |
100-seed weight (HSW) | qHSW-C7 | C7 | 33.6 | 24.2–45.8 | 3.64–8.77 | 7.3 | −1.15 * | 8.1 |
100-seed weight (HSW) | qHSW-C4 | C4 | 72.8 | 68.2–74.0 | 11.86–12.66 | 33.2 | 2.94 | 52.8 |
(b) YB RIL | ||||||||
Trait | QTL | Chr | Position | Genetic map distance | Physical position Mbp | LOD | Additive effect | R2 |
Julian Day 50% flowering | qJulD.F50-C4 | C4 | 94.4 | 92.4–99.0 | 14.7–15.45 | 5.5 | −3.06 | 12.1 |
Julian Day 50% flowering | qJulD.F50-C8 | C8 | 109.2 | 97.2–123.8 | 8.76–14.25 | 5.0 | 1.69 * | 13.8 |
Plant Height (mm) | qPHT-C1 | C1 | 148.3 | 133.0–180.0 | 12.80–16.48 | 4.7 | −31.25 * | 25.8 |
Plant Height (mm) | qPHT-C6 | C6 | 122 | 111.6–128.1 | 12.52–56.17 | 5.5 | 21.36 | 12.0 |
Yield (g) | qYld-C6 | C6 | 101.2 | 96.4–105.7 | 20.56–22.18 | 3.6 | 11.52 | 8.8 |
100-seed weight (HSW) | qHSW-C3 | C3 | 12.7 | 0.0–59.1 | 1.00–16.65 | 3.4 | −0.79 * | 7.3 |
100-seed weight (HSW) | qHSW-C4 | C4 | 88.2 | 82.1–90.8 | 12.32–14.45 | 3.2 | 0.83 | 7.5 |
(a) RB RIL | |||||||||
Dryland | Dead Se. | Dead Pod | No-Sym.Pod | All Pod | AUDPS | Yield | 100SW | Seed No. | Seed/PodP |
Rupali | 0.725 | 0.150 | 0.105 | 0.275 | 0.490 | 54.4 01 | 20.2 | 248 | 61.9 |
04067-81-2-1-1(B) | 0 | 0.016 | 0.254 | 1.0 | 0.004 | 403.9 | 21.6 | 1871 | 116.6 |
LFS group | 0.099 | 0.027 | 0.407 | 0.901 | 0.066 | 277.4 | 19.2 | 1466 | 99.1 |
HFS group | 0.693 | 0.138 | 0.151 | 0.307 | 0.405 | 49.5 02 | 19.3 | 217 | 40.1 |
Wald statistic | 40.8 1 | 12.0 1 | 6.64 2 | 40.8 1 | 68.3 1,2 | 87.6 1,2 | 16.6 ns,ns | 112.5 1,2 | 24.8 1,ns |
Irrigated | Dead Se. | Dead Pod | No-Sym.Pod | All Pod | AUDPS | Yield | 100SW | Seed No. | Seed No./PodP |
Rupali | 0.849 | 0.151 | 0 | 0.151 | 0.577 | 5.1 | 8.5 | 35 | 18.5 |
04067-81-2-1-1(B) | 0 | 0.149 | 0.601 | 1.0 | 0 | 400.1 | 19.2 | 2058 | 137.4 |
LFS group | 0.154 | 0.536 | 0.085 | 0.846 | 0.305 | 170.1 | 15.3 | 1096 | 71.5 |
HFS group | 0.777 | 0.220 | 0.002 | 0.223 | 0.552 | 11.2 03 | 12.0 | 73 | 14.1 |
Wald statistic | 66.5 1 | 17.7 1 | 8.65 2 | 66.5 1 | 152.8 1,1 | 109.2 1,1 | 4.3 2,1 | 151.0 1,1 | 78.5 1,ns |
(b) YB RIL | |||||||||
Dryland | Dead Se. | Dead Pod | No-Sym.Pod | All Pod | AUDPS | Yield | 100SW | Seed No. | Seed No./PodP |
Yorker | 0.328 | 0.246 | 0.213 | 0.639 | 0.370 | 160.9 | 21.7 | 735 | 77.6 |
04067-81-2-1-1(B) | 0 | 0 | 1.0 | 1.0 | 0 | 273.7 | 22.1 | 1240 | 76.9 |
LFS group | 0.028 | 0.015 | 0.897 | 0.973 | 0.033 | 330.4 | 22.7 | 1451 | 91 |
HFS group | 0.439 | 0.166 | 0.259 | 0.563 | 0.340 | 162.1 01 | 22.8 | 693 | 68 |
Wald statistic | 29.5 1 | 16.3 1 | 30.6 1 | 29.1 1 | 22.1 1,ns | 30.1 1,1 | 0.25 ns,2 | 32.3 1,2 | 2.57 ns,2 |
Irrigated | Dead Se. | Dead Pod | No-Sym.Pod | All Pod | AUDPS | Yield | 100SW | Seed No. | Seed No./PodP |
Yorker | 0.448 | 0.463 | 0.090 | 0.552 | 0.533 | 35.4 | 15.7 | 225 | 31.0 |
04067-81-2-1-1(B) | 0.015 | 0 | 0.985 | 0.985 | 0.008 | 376.5 | 19.6 | 1904 | 121.9 |
LFS group | 0.113 | 0.198 | 0.682 | 0.880 | 0.157 | 233.9 | 17.8 | 1261.4 | 80.8 |
HFS group | 0.749 | 0.191 | 0.055 | 0.246 | 0.535 | 19.5 05 | 14.0 | 115.0 | 27.8 |
Wald statistic | 77.6 1 | 0.01 ns | 41.2 1 | 79.6 1 | 43.5 1,2 | 54.8 1,1 | 6.11 2,2 | 68.6 1,2 | 7.56 2,ns |
(a) parents | |||||
Dead Se. | Dead Pod | No-Sym.Pod | All Pod | Yield | |
Rupali (A) | 1.0 | 0 | 0 | 0 | 0 06 |
Yorker (A) | 0.366 | 0.063 | 0.553 | 0.620 | 254.1 |
04067-81-2-1-1(B) | 0.053 | 0 | 0.948 | 0.947 | 469.7 |
(b) RIL groups | |||||
RB RIL | Dead Se. | Dead Pod | No-Sym.Pod | All Pod | Yield |
LFS | 0.249 | 0.149 | 0.580 | 0.732 | 200.3 |
HFS | 0.868 | 0.031 | 0.091 | 0.121 | 56.6 016 |
Wald statistic | 176.4 1 | 64.5 1 | 101.0 1 | 184.8 1 | 86.7 1 |
YB RIL | Dead Se. | Dead Pod | No-Sym.Pod | All Pod | Yield |
LFS | 0.089 | 0.004 | 0.888 | 0.892 | 432.5 |
HFS | 0.574 | 0.083 | 0.327 | 0.404 | 163.9 05 |
Wald statistic | 128.0 1 | 16.4 ns | 133.2 1 | 122.1 1 | 94.9 1 |
Populations | Dead Se. | Dead Pod | No-Sym.Pod | All Pod | Yield |
---|---|---|---|---|---|
RB RIL | |||||
Dryland | 88.4 | 5.5 | 43.3 | 86.6 | 55.3 |
Irrigated | 88.1 | nf | 53.4 | 85.1 | 24.5 |
YB RIL | |||||
Dryland | 46.4 | 64.1 | 63.0 | 48.4 | 48.3 |
Irrigated | 52.5 | nf | 63.0 | 52.6 | 34.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bithell, S.L.; Asif, M.A.; Backhouse, D.; Drenth, A.; Harden, S.; Hobson, K. Selection for Phytophthora Root Rot Resistance in Chickpea Crosses Affects Yield Potential of Chickpea × Cicer echinospermum Backcross Derivatives. Plants 2024, 13, 1432. https://doi.org/10.3390/plants13111432
Bithell SL, Asif MA, Backhouse D, Drenth A, Harden S, Hobson K. Selection for Phytophthora Root Rot Resistance in Chickpea Crosses Affects Yield Potential of Chickpea × Cicer echinospermum Backcross Derivatives. Plants. 2024; 13(11):1432. https://doi.org/10.3390/plants13111432
Chicago/Turabian StyleBithell, Sean L., Muhammd A. Asif, David Backhouse, Andre Drenth, Steve Harden, and Kristy Hobson. 2024. "Selection for Phytophthora Root Rot Resistance in Chickpea Crosses Affects Yield Potential of Chickpea × Cicer echinospermum Backcross Derivatives" Plants 13, no. 11: 1432. https://doi.org/10.3390/plants13111432
APA StyleBithell, S. L., Asif, M. A., Backhouse, D., Drenth, A., Harden, S., & Hobson, K. (2024). Selection for Phytophthora Root Rot Resistance in Chickpea Crosses Affects Yield Potential of Chickpea × Cicer echinospermum Backcross Derivatives. Plants, 13(11), 1432. https://doi.org/10.3390/plants13111432