Effects of Delaying the Storage of ‘Hass’ Avocados under a Controlled Atmosphere on Skin Color, Bioactive Compounds and Antioxidant Capacity
Abstract
:1. Introduction
2. Results
2.1. Physiological and Quality Parameters
2.1.1. Ethylene Production and Respiration Rates
2.1.2. Mesocarp Firmness
2.1.3. Physiological and Pathological Disorders
2.1.4. Skin Color Development and Skin Color Quality
2.2. Determination of Pigments: Total Chlorophyll, Carotenoid and Anthocyanin Contents
2.2.1. Total Chlorophyll and Carotenoid Contents
2.2.2. Anthocyanin Content
2.3. Determination of Total Phenolic Compound Content and Antioxidant Capacity
2.3.1. Total Phenolic Content (TPC)
2.3.2. Antioxidant Capacity (AC)
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Dry Matter (DM)
4.3. Postharvest Treatments
4.4. Physiological and Quality Parameters
4.4.1. Respiration and Ethylene Production Rates
4.4.2. Mesocarp Firmness
4.5. Physiological and Pathological Damage
4.6. Skin Color Development and Skin Color Quality
- 1 = 100% of the skin surface was green;
- 2 = 20% of the skin surface was colored purple/black (violet) on the green;
- 3 = 60% of the skin surface was colored purple/black (violet) on the green;
- 4 = 100% of the skin surface was purple (violet);
- 5 = 100% of the exocarp surface was black.
4.7. Preparation of Exocarp Fruit Samples
4.8. Determination of Pigments: Chlorophyll, Carotenoid and Anthocyanin Contents
4.8.1. Total Chlorophyll and Carotenoid Contents
4.8.2. Anthocyanin Content
4.9. Determination of Total Phenolic Content and Antioxidant Capacity
4.9.1. Total Phenolic Content Analysis
4.9.2. Antioxidant Method
DPPH (2,2′-Diphenyl-1-picrylhydrazyl) Assay
ABTS Assay
Ferric Reducing Antioxidant Power (FRAP) Assay
4.10. Experimental Design and Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Arancibia-Guerra, C.; Núñez-Lillo, G.; Cáceres-Mella, A.; Carrera, E.; Meneses, C.; Kuhn, N.; Pedreschi, R. Color Desynchronization with Softening of ‘Hass’ Avocado: Targeted Pigment, Hormone and Gene Expression Analysis. Postharvest Biol. Technol. 2022, 194, 112067. [Google Scholar] [CrossRef]
- Rivera, S.A.; Ferreyra, R.; Robledo, P.; Selles, G.; Lu, M.; Saavedra, J.; Defilippi, B.G. Identification of Preharvest Factors Determining Postharvest Ripening Behaviors in ‘Hass’ Avocado under Long Term Storage. Sci. Hortic. 2017, 216, 29–37. [Google Scholar] [CrossRef]
- Cho, B.H.; Koyama, K.; Koseki, S. Determination of ‘Hass’ Avocado Ripeness during Storage by a Smartphone Camera Using Artificial Neural Network and Support Vector Regression. J. Food Meas. Charact. 2021, 15, 2021–2030. [Google Scholar] [CrossRef]
- Cox, K.A.; McGhie, T.K.; White, A.; Woolf, A.B. Skin Colour and Pigment Changes during Ripening of “Hass” Avocado Fruit. Postharvest Biol. Technol. 2004, 31, 287–294. [Google Scholar] [CrossRef]
- Cho, B.H.; Koyama, K.; Olivares Díaz, E.; Koseki, S. Determination of “Hass” Avocado Ripeness During Storage Based on Smartphone Image and Machine Learning Model. Food Bioprocess Technol. 2020, 13, 1579–1587. [Google Scholar] [CrossRef]
- Saavedra, J.; Córdova, A.; Navarro, R.; Díaz-Calderón, P.; Fuentealba, C.; Astudillo-Castro, C.; Toledo, L.; Enrione, J.; Galvez, L. Industrial Avocado Waste: Functional Compounds Preservation by Convective Drying Process. J. Food Eng. 2017, 198, 81–90. [Google Scholar] [CrossRef]
- Lyu, X.; Agar, O.T.; Barrow, C.J.; Dunshea, F.R.; Suleria, H.A.R. Phenolic Compounds Profiling and Their Antioxidant Capacity in the Peel, Pulp, and Seed of Australian Grown Avocado. Antioxidants 2023, 12, 185. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Bostic, T.R.; Gu, L. Antioxidant Capacities, Procyanidins and Pigments in Avocados of Different Strains and Cultivars. Food Chem. 2010, 122, 1193–1198. [Google Scholar] [CrossRef]
- Olivares, D.; Alvarez, E.; Veliz, D.; García-Rojas, M.; Díza, C.; Defilippi, B.G. Effects of 1-Methylcyclopropene and Controlled Atmosphere on Ethylene Synthesis and Quality Attributes of Avocado Cvs. Edranol and Fuerte. J. Food Qual. 2020, 20, 14. [Google Scholar] [CrossRef]
- Magwaza, L.S.; Tesfay, S.Z. A Review of Destructive and Non-Destructive Methods for Determining Avocado Fruit Maturity. Food Bioprocess Technol. 2015, 8, 1995–2011. [Google Scholar] [CrossRef]
- Guerrero, E.R.; Benavides, G.M. Based on Image Processing Techniques. In Proceedings of the 2014 IEEE Colombian Conference on Communications and Computing (COLCOM), Bogota, Colombia, 4–6 June 2014; pp. 1–6. [Google Scholar]
- Arzate-Vázquez, I.; Chanona-Pérez, J.J.; de Perea-Flores, M.J.; Calderón-Domínguez, G.; Moreno-Armendáriz, M.A.; Calvo, H.; Godoy-Calderón, S.; Quevedo, R.; Gutiérrez-López, G. Image Processing Applied to Classification of Avocado Variety Hass (Persea Americana Mill.) During the Ripening Process. Food Bioprocess Technol. 2011, 4, 1307–1313. [Google Scholar] [CrossRef]
- Ashton, O.B.O.; Wong, M.; McGhie, T.K.; Vather, R.; Wang, Y.; Requejo-Jackman, C.; Ramankutty, P.; Woolf, A.B. Pigments in Avocado Tissue and Oil. J. Agric. Food Chem. 2006, 54, 10151–10158. [Google Scholar] [CrossRef] [PubMed]
- Stephen, J.; Radhakrishnan, M. Avocado (Persea Americana Mill.) Fruit: Nutritional Value, Handling and Processing Techniques, and Health Benefits. J. Food Process. Preserv. 2022, 46, e17207. [Google Scholar] [CrossRef]
- Shikwambana, K.; Mafeo, T.P.; Mathaba, N. Effect of Postharvest Glucose Infusion on Exocarp Colour of ‘Hass’ Avocado (Persea Americana Mill.) during Ripening. J. Hortic. Postharvest Res. 2021, 4, 439–452. [Google Scholar] [CrossRef]
- Mathe, S.; Tesfay, S.Z.; Mathaba, N.; Blakey, R.J. Ripple Effect of 1-Methylcyclopropene on “Hass” Avocado Colour Development at Different Harvest Times. Acta Hortic. 2018, 1201, 91–97. [Google Scholar] [CrossRef]
- Hernández, I.; Fuentealba, C.; Olaeta, J.A.; Lurie, S.; Defilippi, B.G.; Campos-vargas, R.; Pedreschi, R. Factors Associated with Postharvest Ripening Heterogeneity of ‘Hass’ Avocados (Persea Americana Mill). Fruits 2016, 71, 259–268. [Google Scholar] [CrossRef]
- Olivares, D.; García-Rojas, M.; Ulloa, P.A.; Riveros, A.; Pedreschi, R.; Campos-Vargas, R.; Meneses, C.; Defilippi, B.G. Response Mechanisms of “Hass” Avocado to Sequential 1–Methylcyclopropene Applications at Different Maturity Stages during Cold Storage. Plants 2022, 11, 1781. [Google Scholar] [CrossRef] [PubMed]
- Alamar, M.C.; Collings, E.; Cools, K.; Terry, L.A. Impact of Controlled Atmosphere Scheduling on Strawberry and Imported Avocado Fruit. Postharvest Biol. Technol. 2017, 134, 76–86. [Google Scholar] [CrossRef]
- Burdon, J.; Lallu, N.; Haynes, G.; McDermott, K.; Billing, D. The Effect of Delays in Establishment of a Static or Dynamic Controlled Atmosphere on the Quality of “Hass” Avocado Fruit. Postharvest Biol. Technol. 2008, 49, 61–68. [Google Scholar] [CrossRef]
- Meir, S.; Naiman, D.; Akerman, M.; Hyman, J.Y.; Zauberman, G.; Fuchs, Y. Prolonged Storage of “Hass” Avocado Fruit Using Modified Atmosphere Packaging. Postharvest Biol. Technol. 1997, 12, 51–60. [Google Scholar] [CrossRef]
- Hertog, M.L.A.T.M.; Nicholson, S.E.; Whitmore, K. The Effect of Modified Atmospheres on the Rate of Quality Change in “Hass” Avocado. Postharvest Biol. Technol. 2003, 29, 41–53. [Google Scholar] [CrossRef]
- Donetti, M.; Terry, L.A. Investigation of Skin Colour Changes as Non-Destructive Parameter of Fruit Ripeness of Imported “hass” Avocado Fruit. Acta Hortic. 2012, 945, 189–196. [Google Scholar] [CrossRef]
- García-Rojas, M.; Gudenschwager, O.; Defilippi, B.G.; González-agüero, M. Technology Identification of Genes Possibly Related to Loss of Quality in Late-Season ‘Hass’ Avocados in Chile. Postharvest Biol. Technol. 2012, 73, 1–7. [Google Scholar] [CrossRef]
- Rothan, C.; Duret, S.; Chevalier, C.; Raymond, P. Suppression of Ripening-Associated Gene Expression in Tomato Fruits Subjected to a High CO2 Concentration. Plant Physiol. 1997, 114, 255–263. [Google Scholar] [CrossRef]
- Rees, D.; Farrell, G.; Orchard, J. Crop Post-Harvest: Science and Technology Perishables; Wiley-Blackwell: Hoboken, NJ, USA, 2012; ISBN 978-0-632-05725-2. [Google Scholar]
- Bower, J.P. Pre- and Postharvest Measures for Long-Term Storage of Avocados. South African Avocado Grow. Assoc. 1988, 11, 68–72. [Google Scholar]
- Defilippi, B.G.; Ejsmentewicz, T.; Covarrubias, M.P.; Gudenschwager, O.; Campos-Vargas, R. Changes in Cell Wall Pectins and Their Relation to Postharvest Mesocarp Softening of “Hass” Avocados (Persea Americana Mill.). Plant Physiol. Biochem. 2018, 128, 142–151. [Google Scholar] [CrossRef]
- Ochoa-Ascencio, S.; Hertog, M.L.A.T.M.; Nicolaï, B.M. Modelling the Transient Effect of 1-MCP on ‘Hass’ Avocado Softening: A Mexican Comparative Study. Postharvest Biol. Technol. 2009, 51, 62–72. [Google Scholar] [CrossRef]
- Gavicho Uarrota, V.; Fuentealba, C.; Hernández, I.; Defilippi-Bruzzone, B.; Meneses, C.; Campos-Vargas, R.; Lurie, S.; Hertog, M.; Carpentier, S.; Poblete-Echeverría, C.; et al. Integration of Proteomics and Metabolomics Data of Early and Middle Season Hass Avocados under Heat Treatment. Food Chem. 2019, 289, 512–521. [Google Scholar] [CrossRef] [PubMed]
- Hernández, I.; Uarrota, V.G.; Paredes, D.; Fuentealba, C.; Defilippi, B.G.; Campos-vargas, R.; Meneses, C.; Hertog, M.; Pedreschi, R. Can Metabolites at Harvest Be Used as Physiological Markers for Modelling the Softening Behaviour of Chilean “Hass” Avocados Destined to Local and Distant Markets ? Postharvest Biol. Technol. 2021, 174, 111457. [Google Scholar] [CrossRef]
- Dixon, J.; Pak, H.A.; Smith, D.B.; Elmsly, T.A.; Cutting, J.G.M. New Zealand Avocado Fruit Quality: The impact of storage temperature and maturity ¿. In Proceedings of the Vth World Avocado Congress, Granada-Malaga, Spain, 19–24 October 2003; pp. 48–53. [Google Scholar]
- Awad, M.A.; De Jager, A. Formation of Flavonoids, Especially Anthocyanin and Chlorogenic Acid in “Jonagold” Apple Skin: Influences of Growth Regulators and Fruit Maturity. Sci. Hortic. 2002, 93, 257–266. [Google Scholar] [CrossRef]
- Rodríguez-Carpena, J.G.; Morcuende, D.; Andrade, M.J.; Kylli, P.; Estevez, M. Avocado (Persea Americana Mill.) Phenolics, in Vitro Antioxidant and Antimicrobial Activities, and Inhibition of Lipid and Protein Oxidation in Porcine Patties. J. Agric. Food Chem. 2011, 59, 5625–5635. [Google Scholar] [CrossRef]
- Jimenez, P.; Garcia, P.; Quitral, V.; Vasquez, K.; Parra-Ruiz, C.; Reyes-Farias, M.; Garcia-Diaz, D.F.; Robert, P.; Encina, C.; Soto-Covasich, J. Pulp, Leaf, Peel and Seed of Avocado Fruit: A Review of Bioactive Compounds and Healthy Benefits. Food Rev. Int. 2021, 37, 619–655. [Google Scholar] [CrossRef]
- Calderón-Oliver, M.; Escalona-Buendía, H.B.; Medina-Campos, O.N.; Pedraza-Chaverri, J.; Pedroza-Islas, R.; Ponce-Alquicira, E. Optimization of the Antioxidant and Antimicrobial Response of the Combined Effect of Nisin and Avocado Byproducts. Lwt 2016, 65, 46–52. [Google Scholar] [CrossRef]
- Fuentealba, C.; Vidal, J.; Zulueta, C.; Ponce, E.; Uarrota, V.; Defilippi, B.G.; Pedreschi, R. Controlled Atmosphere Storage Alleviates Hass Avocado Black Spot Disorder. Horticulturae 2022, 8, 369. [Google Scholar] [CrossRef]
- Saxena, A.; Saxena, T.M.; Raju, P.S.; Bawa, A.S. Effect of Controlled Atmosphere Storage and Chitosan Coating on Quality of Fresh-Cut Jackfruit Bulbs. Food Bioprocess Technol. 2013, 6, 2182–2189. [Google Scholar] [CrossRef]
- Wang, M.; Zheng, Y.; Khuong, T.; Lovatt, C.J. Effect of Harvest Date on the Nutritional Quality and Antioxidant Capacity in “Hass” Avocado during Storage. Food Chem. 2012, 135, 694–698. [Google Scholar] [CrossRef]
- Gomez-Caravaca, A.M.; Lopez-Cobo, A.; Verardo, V.; Pasini, F.; Caboni, M.F.; Segura-Carretero, A.; Fernandez-Guiterrez, A. Evaluation of Phenolic Content in Avocado Fruit and Its By-Products Ana. J. Food Process. Technol. 2015, 6, 7110. [Google Scholar]
- Daiuto, E.R.; Fumes, J.G.F.; Vieites, R.L.; Cabia, N.C.; Castro, R.S.D. Antioxidant Capacity and Total Phenolic Content of Hydrothermally-Treated “Fuerte” Avocado. Adv. Hortic. Sci. 2011, 25, 75–80. [Google Scholar]
- Melgar, B.; Dias, M.I.; Ciric, A.; Sokovic, M.; Garcia-Castello, E.M.; Rodriguez-Lopez, A.D.; Barros, L.; Ferreira, I.C.R.F. Bioactive Characterization of Persea Americana Mill. by-Products: A Rich Source of Inherent Antioxidants. Ind. Crops Prod. 2018, 111, 212–218. [Google Scholar] [CrossRef]
- Rojas-García, A.; Fuentes, E.; Cádiz-Gurrea, M.d.l.L.; Rodriguez, L.; Villegas-Aguilar, M.D.C.; Palomo, I.; Arráez-Román, D.; Segura-Carretero, A. Biological Evaluation of Avocado Residues as a Potential Source of Bioactive Compounds. Antioxidants 2022, 11, 1049. [Google Scholar] [CrossRef]
- Rojas-García, A.; Villegas-Aguilar, M.d.C.; García-Villegas, A.; Cádiz-Gurrea, M. de la L.; Fernández-Ochoa, Á.; Fernández-Moreno, P.; Arráez-Román, D.; Segura-Carretero, A. Characterization and Biological Analysis of Avocado Seed and Peel Extracts for the Development of New Therapeutical Strategies. Biol. life Sci. Forum 2022, 18, 9. [Google Scholar] [CrossRef]
- Yousef, A.; Hassaneine, M. Influence of Different Harvest Dates and Ripening Periods on Fruit Quality and Oil Characteristics of Fuerte Avocados. Agric. Biol. J. N. Am. 2010, 1, 1223–1230. [Google Scholar] [CrossRef]
- Olivares, D.; Contreras, C.; Muñoz, V.; Rivera, S.; González-Agüero, M.; Retamales, J.; Defilippi, B.G. Relationship among Color Development, Anthocyanin and Pigment-Related Gene Expression in ‘Crimson Seedless’ Grapes Treated with Abscisic Acid and Sucrose. Plant Physiol. Biochem. 2017, 115, 286–297. [Google Scholar] [CrossRef] [PubMed]
- Miazek, K.; Ledakowicz, S. Chlorophyll Extraction from Leaves, Needles and Microalgae: A Kinetic Approach. Int. J. Agric. Biol. Eng. 2013, 6, 107–115. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K. Chlorophylls and Carotenoids: Pigments of Photosynthetic Biomembranes. Methods Enzymol. 1987, 148, 350–382. [Google Scholar] [CrossRef]
- Vergara, C.; Zamora, O.; Parada, J.; Ricardo, P.; Uribe, M.; Kalazich, J. Microencapsulation of Anthocyanin Extracted from Purple Flesh Cultivated Potatoes by Spray Drying and Its Effects on In Vitro Gastrointestinal Digestion. Molecules 2020, 25, 722. [Google Scholar] [CrossRef]
Harvest | ND | ||
---|---|---|---|
Treatment | 30 d at 5 °C | 50 d at 5 °C | RTE |
RA | 0.01 ± 0.0 | 0.49 ± 0.01 a | 0.44 ± 0.03 c |
CA | ND | ND | 2.22 ± 1.13 b |
10 d RA + 40 d CA | ND | ND | 2.67 ± 0.56 b |
20 d RA + 30 d CA | ND | 0.03 ± 0.0 b | 5.92 ± 0.33 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olivares, D.; Ulloa, P.A.; Vergara, C.; Hernández, I.; García-Rojas, M.Á.; Campos-Vargas, R.; Pedreschi, R.; Defilippi, B.G. Effects of Delaying the Storage of ‘Hass’ Avocados under a Controlled Atmosphere on Skin Color, Bioactive Compounds and Antioxidant Capacity. Plants 2024, 13, 1455. https://doi.org/10.3390/plants13111455
Olivares D, Ulloa PA, Vergara C, Hernández I, García-Rojas MÁ, Campos-Vargas R, Pedreschi R, Defilippi BG. Effects of Delaying the Storage of ‘Hass’ Avocados under a Controlled Atmosphere on Skin Color, Bioactive Compounds and Antioxidant Capacity. Plants. 2024; 13(11):1455. https://doi.org/10.3390/plants13111455
Chicago/Turabian StyleOlivares, Daniela, Pablo A. Ulloa, Cristina Vergara, Ignacia Hernández, Miguel Ángel García-Rojas, Reinaldo Campos-Vargas, Romina Pedreschi, and Bruno G. Defilippi. 2024. "Effects of Delaying the Storage of ‘Hass’ Avocados under a Controlled Atmosphere on Skin Color, Bioactive Compounds and Antioxidant Capacity" Plants 13, no. 11: 1455. https://doi.org/10.3390/plants13111455
APA StyleOlivares, D., Ulloa, P. A., Vergara, C., Hernández, I., García-Rojas, M. Á., Campos-Vargas, R., Pedreschi, R., & Defilippi, B. G. (2024). Effects of Delaying the Storage of ‘Hass’ Avocados under a Controlled Atmosphere on Skin Color, Bioactive Compounds and Antioxidant Capacity. Plants, 13(11), 1455. https://doi.org/10.3390/plants13111455