Antifungal Plant Defensins as an Alternative Tool to Combat Candidiasis
Abstract
:1. Introduction
2. Plant Defensins
2.1. Structural Features
2.2. Anticandidal Activity
2.2.1. Activity against Planktonic Yeast-like Cells
2.2.2. Mechanisms of Antifungal Action
2.2.3. Effect of Salts on Antifungal Activity
2.2.4. Prevention of Yeast-like Cell Adhesion and Antibiofilm Activity
2.2.5. Synergistic Effect
2.2.6. Fungal Resistance to Plant Defensins
2.3. Immunomodulatory Effects
2.4. Cytotoxic and Allergenic Properties
2.5. In Vivo Experiments and Clinical Trials
3. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- World Health Organization. WHO Fungal Priority Pathogens List to Guide Research, Development and Public Health Action. Available online: https://www.who.int/publications/i/item/9789240060241 (accessed on 3 March 2024).
- Zeng, X.; Zhang, Y.; Zhang, T.; Xue, Y.; Xu, H.; An, R. Risk Factors of Vulvovaginal Candidiasis among Women of Reproductive Age in Xi’an: A Cross-Sectional Study. Biomed. Res. Int. 2018, 2018, 9703754. [Google Scholar] [CrossRef] [PubMed]
- Kullberg, B.J.; Arendrup, M.C. Invasive Candidiasis. N. Engl. J. Med. 2015, 373, 1445–1456. [Google Scholar] [CrossRef] [PubMed]
- Dadar, M.; Tiwari, R.; Karthik, K.; Chakraborty, S.; Shahali, Y.; Dhama, K. Candida albicans—Biology, molecular characterization, pathogenicity, and advances in diagnosis and control—An update. Microb. Pathog. 2018, 117, 128–138. [Google Scholar] [CrossRef] [PubMed]
- Kilpatrick, R.; Scarrow, E.; Hornik, C.; Greenberg, R.G. Neonatal invasive candidiasis: Updates on clinical management and prevention. Lancet Child Adolesc. Health 2022, 6, 60–70. [Google Scholar] [CrossRef] [PubMed]
- Rhodes, J.; Fisher, M.C. Global epidemiology of emerging Candida auris. Curr. Opin. Microbiol. 2019, 52, 84–89. [Google Scholar] [CrossRef] [PubMed]
- Corzo-León, D.E.; Mark, C.; MacCallum, D.M.; Munro, C.A. A Human Ex Vivo Skin Model to Study Candida auris Biofilms. Methods Mol. Biol. 2022, 2517, 259–267. [Google Scholar] [CrossRef] [PubMed]
- Akinbobola, A.B.; Kean, R.; Hanifi, S.M.A.; Quilliam, R.S. Environmental reservoirs of the drug-resistant pathogenic yeast Candida auris. PLoS Pathog. 2023, 19, e1011268. [Google Scholar] [CrossRef] [PubMed]
- Tong, Y.; Tang, J. Candida albicans Infection and Intestinal Immunity. Microbiol. Res. 2017, 198, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Odds, F.C.; Brown, A.J.; Gow, N.A. Antifungal agents: Mechanisms of action. Trends Microbiol. 2003, 11, 272–279. [Google Scholar] [CrossRef]
- Clements, J.S., Jr.; Peacock, J.E., Jr. Amphotericin B revisited: Reassessment of toxicity. Am. J. Med. 1990, 88, 22N–27N. [Google Scholar]
- Zhong, X.; Yang, J.; Liu, H.; Yang, Z.; Luo, P. Potential lipid-based strategies of amphotericin B designed for oral administration in clinical application. Drug Deliv. 2023, 30, 2161671. [Google Scholar] [CrossRef] [PubMed]
- Hof, H. A new, broad-spectrum azole antifungal: Posaconazole-mechanisms of action and resistance, spectrum of activity. Mycoses 2006, 49 (Suppl. S1), 2–6. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.K.; Kubo, K.; Abdelaziz, J.A.; Cunningham, I.; de Silva Dantas, A.; Chen, X.; Okada, H.; Ohya, Y.; Gow, N.A.R. Yeast species-specific, differential inhibition of β-1,3-glucan synthesis by poacic acid and caspofungin. Cell Surf. 2018, 3, 12–25. [Google Scholar] [CrossRef]
- Lockhart, S.R.; Chowdhary, A.; Gold, J.A.W. The rapid emergence of antifungal-resistant human-pathogenic fungi. Nat. Rev. Microbiol. 2023, 21, 818–832. [Google Scholar] [CrossRef] [PubMed]
- Vanden Bossche, H.; Marichal, P.; Gorrens, J.; Bellens, D.; Moereels, H.; Janssen, P.A. Mutation in cytochrome P-450-dependent 14 alpha-demethylase results in decreased affinity for azole antifungals. Biochem. Soc. Trans. 1990, 18, 56–59. [Google Scholar] [CrossRef] [PubMed]
- Cannon, R.D.; Lamping, E.; Holmes, A.R.; Niimi, K.; Baret, P.V.; Keniya, M.V.; Tanabe, K.; Niimi, M.; Goffeau, A.; Monk, B.C. Efflux-mediated antifungal drug resistance. Clin. Microbiol. Rev. 2009, 22, 291–321. [Google Scholar] [CrossRef]
- Carolus, H.; Pierson, S.; Lagrou, K.; van Dijck, P. Amphotericin B and Other Polyenes-Discovery, Clinical Use, Mode of Action and Drug Resistance. J. Fungi 2020, 6, 321. [Google Scholar] [CrossRef] [PubMed]
- Muñoz, J.F.; Gade, L.; Chow, N.A.; Loparev, V.N.; Juieng, P.; Berkow, E.L.; Farrer, R.A.; Litvintseva, A.P.; Cuomo, C.A. Genomic insights into multidrug-resistance, mating and virulence in Candida auris and related emerging species. Nat. Commun. 2018, 9, 5346. [Google Scholar] [CrossRef]
- Silva, L.N.; Oliveira, S.S.C.; Magalhães, L.B.; Andrade Neto, V.V.; Torres-Santos, E.C.; Carvalho, M.D.C.; Pereira, M.D.; Branquinha, M.H.; Santos, A.L.S. Unmasking the Amphotericin B Resistance Mechanisms in Candida haemulonii Species Complex. ACS Infect. Dis. 2020, 6, 1273–1282. [Google Scholar] [CrossRef]
- Beyda, N.D.; Lewis, R.E.; Garey, K.W. Echinocandin resistance in Candida species: Mechanisms of reduced susceptibility and therapeutic approaches. Ann. Pharmacother. 2012, 46, 1086–1096. [Google Scholar] [CrossRef]
- Silva, P.M.; Gonçalves, S.; Santos, N.C. Defensins: Antifungal lessons from eukaryotes. Front. Microbiol. 2014, 5, 97. [Google Scholar] [CrossRef]
- Finkina, E.I.; Shramova, E.I.; Tagaev, A.A.; Ovchinnikova, T.V. A novel defensin from the lentil Lens culinaris seeds. Biochem. Biophys. Res. Commun. 2008, 371, 860–865. [Google Scholar] [CrossRef]
- Payne, J.A.; Bleackley, M.R.; Lee, T.H.; Shafee, T.M.; Poon, I.K.; Hulett, M.D.; Aguilar, M.I.; van der Weerden, N.L.; Anderson, M.A. The plant defensin NaD1 introduces membrane disorder through a specific interaction with the lipid, phosphatidylinositol 4,5 bisphosphate. Biochim. Biophys Acta 2016, 1858, 1099–1109. [Google Scholar] [CrossRef] [PubMed]
- Mammari, N.; Krier, Y.; Albert, Q.; Devocelle, M.; Varbanov, M.; on behalf of the OEMONOM. Plant-Derived Antimicrobial Peptides as Potential Antiviral Agents in Systemic Viral Infections. Pharmaceuticals 2021, 14, 774. [Google Scholar] [CrossRef]
- Ishaq, N.; Bilal, M.; Iqbal, H.M.N. Medicinal Potentialities of Plant Defensins: A Review with Applied Perspectives. Medicines 2019, 6, 29. [Google Scholar] [CrossRef]
- Sher Khan, R.; Iqbal, A.; Malak, R.; Shehryar, K.; Attia, S.; Ahmed, T.; Ali Khan, M.; Arif, M.; Mii, M. Plant defensins: Types, mechanism of action and prospects of genetic engineering for enhanced disease resistance in plants. 3 Biotech 2019, 9, 192. [Google Scholar] [CrossRef] [PubMed]
- Finkina, E.I.; Ovchinnikova, T.V. Plant defensins: Structure, functions, biosynthesis, and the role in the immune response. Russ. J. Bioorg. Chem. 2018, 44, 261–278. [Google Scholar] [CrossRef]
- Thomma, B.P.; Cammue, B.P.; Thevissen, K. Plant defensins. Planta 2002, 216, 193–202. [Google Scholar] [CrossRef]
- Kovaleva, V.; Bukhteeva, I.; Kit, O.Y.; Nesmelova, I.V. Plant Defensins from a Structural Perspective. Int. J. Mol. Sci. 2020, 21, 5307. [Google Scholar] [CrossRef]
- Khairutdinov, B.I.; Ermakova, E.A.; Yusypovych, Y.M.; Bessolicina, E.K.; Tarasova, N.B.; Toporkova, Y.Y.; Kovaleva, V.; Zuev, Y.F.; Nesmelova, I.V. NMR structure, conformational dynamics, and biological activity of PsDef1 defensin from Pinus sylvestris. Biochim. Biophys. Acta Proteins Proteom. 2017, 1865, 1085–1094. [Google Scholar] [CrossRef]
- Fu, J.; Zong, X.; Jin, M.; Min, J.; Wang, F.; Wang, Y. Mechanisms and regulation of defensins in host defense. Signal Transduct. Target Ther. 2023, 8, 300. [Google Scholar] [CrossRef]
- HimLy, M.; Jahn-Schmid, B.; Dedic, A.; Kelemen, P.; Wopfner, N.; Altmann, F.; van Ree, R.; Briza, P.; Richter, K.; Ebner, C.; et al. Art v 1, the major allergen of mugwort pollen, is a modular glycoprotein with a defensin-like and a hydroxyproline-rich domain. FASEB J. 2003, 17, 106–108. [Google Scholar] [CrossRef]
- Cosi, V.; Gadermaier, G. The Role of Defensins as Pollen and Food Allergens. Curr. Allergy Asthma Rep. 2023, 23, 277–285. [Google Scholar] [CrossRef]
- de Oliveira Mello, É.; Taveira, G.B.; de Oliveira Carvalho, A.; Gomes, V.M. Improved smallest peptides based on positive charge increase of the γ-core motif from Pν D1 and their mechanism of action against Candida species. Int. J. Nanomed. 2019, 14, 407–420. [Google Scholar] [CrossRef] [PubMed]
- Cools, T.L.; Struyfs, C.; Drijfhout, J.W.; Kucharíková, S.; Lobo Romero, C.; van Dijck, P.; Ramada, M.H.S.; Bloch, C., Jr.; Cammue, B.P.A.; Thevissen, K. A linear 19-mer plant defensin-derived peptide acts synergistically with caspofungin against Candida albicans biofilms. Front. Microbiol. 2017, 8, 2051. [Google Scholar] [CrossRef]
- Ochiai, A.; Ogawa, K.; Fukuda, M.; Ohori, M.; Kanaoka, T.; Tanaka, T.; Taniguchi, M.; Sagehashi, Y. Rice Defensin OsAFP1 is a New Drug Candidate against Human Pathogenic Fungi. Sci. Rep. 2018, 8, 11434. [Google Scholar] [CrossRef] [PubMed]
- Cherene, M.B.; Taveira, G.B.; Almeida-Silva, F.; da Silva, M.S.; Cavaco, M.C.; da Silva-Ferreira, A.T.; Perales, J.E.A.; de Oliveira Carvalho, A.; Venâncio, T.M.; da Motta, O.V.; et al. Structural and Biochemical Characterization of Three Antimicrobial Peptides from Capsicum annuum L. var. annuum Leaves for Anti-Candida Use. Probiotics Antimicrob. Proteins 2023. [Google Scholar] [CrossRef] [PubMed]
- Vieira, M.E.B.; Vasconcelos, I.M.; Machado, O.L.T.; Gomes, V.M.; Carvalho, A.D.O. Isolation, characterization and mechanism of action of an antimicrobial peptide from Lecythis pisonis seeds with inhibitory activity against Candida albicans. Acta Biochim. Biophys. Sin. 2015, 47, 716–729. [Google Scholar] [CrossRef]
- Kerenga, B.K.; McKenna, J.A.; Harvey, P.J.; Quimbar, P.; Garcia-Ceron, D.; Lay, F.T.; Shafee, T.M.A.; van der Weerden, N.L.; Hulett, M.D.; Craik, D.J.; et al. Salt-tolerant antifungal and antibacterial activities of the corn defensin ZmD32. Front. Microbiol. 2019, 10, 795. [Google Scholar] [CrossRef]
- Parisi, K.; McKenna, J.A.; Lowe, R.; Harris, K.S.; Shafee, T.; Guarino, R.; Lee, E.; van der Weerden, N.L.; Bleackley, M.R.; Anderson, M.A. Hyperpolarisation of Mitochondrial Membranes Is a Critical Component of the Antifungal Mechanism of the Plant Defensin, Ppdef1. J. Fungi 2024, 10, 54. [Google Scholar] [CrossRef]
- Orrapin, S.; Intorasoot, A.; Roytrakul, S.; Dechsupa, N.; Kantapan, J.; Onphat, Y.; Srimek, C.; Tharinjaroen, C.S.; Anukool, U.; Butr-Indr, B.; et al. A novel recombinant javanicin with dual antifungal and anti-proliferative activities. Sci. Rep. 2019, 9, 18417. [Google Scholar] [CrossRef] [PubMed]
- Toledo, E.B.; Lucas, D.R.; Simão, T.L.B.V.; Calixto, S.D.; Lassounskaia, E.; Muzitano, M.F.; Damica, F.Z.; Gomes, V.M.; de Oliveira Carvalho, A. Design of improved synthetic antifungal peptides with targeted variations in charge, hydrophobicity and chirality based on a correlation study between biological activity and primary structure of plant defensin γ-cores. Amino Acids 2021, 53, 219–237. [Google Scholar] [CrossRef] [PubMed]
- Razzera, G.; Gadermaier, G.; de Paula, V.; Almeida, M.S.; Egger, M.; Jahn-Schmid, B.; Almeida, F.C.; Ferreira, F.; Valente, A.P. Mapping the interactions between a major pollen allergen and human IgE antibodies. Structure 2010, 18, 1011–1021. [Google Scholar] [CrossRef]
- Jahn-Schmid, B.; Kelemen, P.; HimLy, M.; Bohle, B.; Fischer, G.; Ferreira, F.; Ebner, C. The T cell response to Art v 1, the major mugwort pollen allergen, is dominated by one epitope. J. Immunol. 2002, 169, 6005–6011. [Google Scholar] [CrossRef] [PubMed]
- Lay, F.T.; Schirra, H.J.; Scanlon, M.J.; Anderson, M.A.; Craik, D.J. The three-dimensional solution structure of NaD1, a new floral defensin from Nicotiana alata and its application to a homology model of the crop defense protein alfAFP. J. Mol. Biol. 2003, 325, 175–188. [Google Scholar] [CrossRef] [PubMed]
- Hoover, D.M.; Rajashankar, K.R.; Blumenthal, R.; Puri, A.; Oppenheim, J.J.; Chertov, O.; Lubkowski, J. The structure of human beta-defensin-2 shows evidence of higher order oligomerization. J. Biol. Chem. 2000, 275, 32911–32918. [Google Scholar] [CrossRef] [PubMed]
- Chan, Y.S.; Ng, T.B. Northeast red beans produce a thermostable and pH-stable defensin-like peptide with potent antifungal activity. Cell Biochem. Biophys. 2013, 66, 637–648. [Google Scholar] [CrossRef] [PubMed]
- Finkina, E.I.; Bogdanov, I.V.; Ignatova, A.A.; Kanushkina, M.D.; Egorova, E.A.; Voropaev, A.D.; Stukacheva, E.A.; Ovchinnikova, T.V. Antifungal Activity, Structural Stability, and Immunomodulatory Effects on Human Immune Cells of Defensin from the Lentil Lens culinaris. Membranes 2022, 12, 855. [Google Scholar] [CrossRef] [PubMed]
- Parisi, K.; Poon, S.; Renda, R.F.; Sahota, G.; English, J.; Yalpani, N.; Bleackley, M.R.; Anderson, M.A.; van der Weerden, N.L. Improving the digestibility of plant defensins to meet regulatory requirements for transgene products in crop protection. Front. Plant Sci. 2020, 11, 1227. [Google Scholar] [CrossRef]
- Thevissen, K.; Warnecke, D.C.; François, I.E.; Leipelt, M.; Heinz, E.; Ott, C.; Zähringer, U.; Thomma, B.P.H.J.; Ferket, K.K.A.; Cammue, B.P. Defensins from insects and plants interact with fungal glucosylceramides. J. Biol. Chem. 2004, 279, 3900–3905. [Google Scholar] [CrossRef]
- Hayes, B.M.; Bleackley, M.R.; Wiltshire, J.L.; Anderson, M.A.; Traven, A.; van der Weerden, N.L. Identification and mechanism of action of the plant defensin NaD1 as a new member of the antifungal drug arsenal against Candida albicans. Antimicrob. Agents Chemother. 2013, 57, 3667–3675. [Google Scholar] [CrossRef]
- Thevissen, K.; Kristensen, H.H.; Thomma, B.P.; Cammue, B.P.; François, I.E. Therapeutic potential of antifungal plant and insect defensins. Drug Discov. Today 2007, 12, 966–971. [Google Scholar] [CrossRef]
- Tavares, P.M.; Thevissen, K.; Cammue, B.P.; François, I.E.; Barreto-Bergter, E.; Taborda, C.P.; Marques, A.F.; Rodrigues, M.L.; Nimrichter, L. In vitro activity of the antifungal plant defensin RsAFP2 against Candida isolates and its in vivo efficacy in prophylactic murine models of candidiasis. Antimicrob. Agents Chemother. 2008, 52, 4522–4525. [Google Scholar] [CrossRef]
- Games, P.D.; Dos Santos, I.S.; Mello, É.O.; Diz, M.S.; Carvalho, A.O.; de Souza-Filho, G.A.; Cunha, M.D.; Vasconcelos, I.M.; Ferreira, B.D.S.; Gomes, V.M. Isolation, characterization and cloning of a cDNA encoding a new antifungal defensin from Phaseolus vulgaris L. seeds. Peptides 2008, 29, 2090–2100. [Google Scholar] [CrossRef]
- Skalska, J.; Andrade, V.M.; Cena, G.L.; Harvey, P.J.; Gaspar, D.; Mello, É.O.; Henriques, S.T.; Valle, J.; Gomes, V.M.; Conceição, K.; et al. Synthesis, Structure, and Activity of the Antifungal Plant Defensin Pv D1. J. Med. Chem. 2020, 63, 9391–9402. [Google Scholar] [CrossRef] [PubMed]
- Mello, E.O.; Ribeiro, S.F.; Carvalho, A.O.; Santos, I.S.; da Cunha, M.; Santa-Catarina, C.; Gomes, V.M. Antifungal activity of Pv D1 defensin involves plasma membrane permeabilization, inhibition of medium acidification, and induction of ROS in fungi cells. Curr. Microbiol. 2011, 62, 1209–1217. [Google Scholar] [CrossRef]
- Vriens, K.; Cools, T.L.; Harvey, P.J.; Craik, D.J.; Spincemaille, P.; Cassiman, D.; Braem, A.; Vleugels, J.; Nibbering, P.H.; Drijfhout, J.W.; et al. Synergistic activity of the plant defensin HsAFP1 and caspofungin against Candida albicans biofilms and planktonic cultures. PLoS ONE 2015, 10, e0132701. [Google Scholar] [CrossRef] [PubMed]
- Bleackley, M.R.; Dawson, C.S.; McKenna, J.A.; Quimbar, P.; Hayes, B.M.; van der Weerden, N.L.; Anderson, M.A. Synergistic activity between two antifungal proteins, the plant Defensin NaD1 and the bovine pancreatic trypsin inhibitor. Msphere 2017, 2, e00390-17. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, S.; Silva, P.M.; Felício, M.R.; de Medeiros, L.N.; Kurtenbach, E.; Santos, N.C. Psd1 Effects on Candida albicans planktonic cells and biofilms. Front. Cell. Infect. Microbiol. 2017, 7, 249. [Google Scholar] [CrossRef]
- Neves de Medeiros, L.; Domitrovic, T.; Cavalcante de Andrade, P.; Faria, J.; Barreto Bergter, E.; Weissmüller, G.; Kurtenbach, E. Psd1 binding affinity toward fungal membrane components as assessed by SPR: The role of glucosylceramide in fungal recognition and entry. Biopolymers 2014, 102, 456–464. [Google Scholar] [CrossRef]
- Amaral, V.S.G.; Fernandes, C.M.; Felicio, M.R.; Valle, A.S.; Quintana, P.G.; Almeida, C.C.; Barreto-Bergter, E.; Goncalves, S.; Santos, N.C.; Kurtenbach, E. Psd2 pea defensin shows a preference for mimetic membrane rafts enriched with glucosylceramide and ergosterol. Biochim. Biophys. Acta Biomembr. 2019, 1861, 713–728. [Google Scholar] [CrossRef] [PubMed]
- Oguro, Y.; Yamazaki, H.; Takagi, M.; Takaku, H. Antifungal activity of plant defensin AFP1 in Brassica juncea involves the recognition of the methyl residue in glucosylceramide of target pathogen Candida albicans. Curr. Genet. 2014, 60, 89–97. [Google Scholar] [CrossRef] [PubMed]
- Shalovylo, Y.I.; Yusypovych, Y.M.; Hrunyk, N.I.; Roman, I.I.; Zaika, V.K.; Krynytskyy, H.T.; Nesmelova, I.V.; Kovaleva, V.A. Seed-derived defensins from Scots pine: Structural and functional features. Planta 2021, 254, 129. [Google Scholar] [CrossRef] [PubMed]
- Gbala, I.D.; Macharia, R.W.; Bargul, J.L.; Magoma, G. Membrane permeabilization and antimicrobial activity of recombinant defensin-d2 and actifensin against multidrug-resistant Pseudomonas aeruginosa and Candida albicans. Molecules 2022, 27, 4325. [Google Scholar] [CrossRef] [PubMed]
- van der Weerden, N.L.; Parisi, K.; McKenna, J.A.; Hayes, B.M.; Harvey, P.J.; Quimbar, P.; Wevrett, S.R.; Veneer, P.K.; McCorkelle, O.; Vasa, S.; et al. The Plant Defensin Ppdef1 Is a Novel Topical Treatment for Onychomycosis. J. Fungi 2023, 9, 1111. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Decuadro, S.; Dans, P.D.; Borba, M.A.; Benko-Iseppon, A.M.; Cecchetto, G. Gene isolation and structural characterization of a legume tree defensin with a broad spectrum of antimicrobial activity. Planta 2019, 250, 1757–1772. [Google Scholar] [CrossRef] [PubMed]
- KamLi, M.R.; Sabir, J.S.M.; Malik, M.A.; Ahmad, A. Characterization of Defensin-like Protein 1 for Its Anti-Biofilm and Anti-Virulence Properties for the Development of Novel Antifungal Drug against Candida auris. J. Fungi 2022, 8, 1298. [Google Scholar] [CrossRef] [PubMed]
- Kodedová, M.; Valachovič, M.; Csáky, Z.; Sychrová, H. Variations in yeast plasma-membrane lipid composition affect killing activity of three families of insect antifungal peptides. Cell. Microbiol. 2019, 21, e13093. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, S.; Teixeira, A.; Abade, J.; de Medeiros, L.N.; Kurtenbach, E.; Santos, N.C. Evaluation of the membrane lipid selectivity of the pea defensin Psd1. Biochim. Biophys. Acta 2012, 1818, 1420–1426. [Google Scholar] [CrossRef]
- Poon, I.K.; Baxter, A.A.; Lay, F.T.; Mills, G.D.; Adda, C.G.; Payne, J.A.; Phan, T.K.; Ryan, G.F.; White, J.A.; Veneer, P.K.; et al. Phosphoinositide-mediated oligomerization of a defensin induces cell lysis. Elife 2014, 3, e01808. [Google Scholar] [CrossRef]
- Ochiai, A.; Ogawa, K.; Fukuda, M.; Suzuki, M.; Ito, K.; Tanaka, T.; Sagehashi, Y.; Taniguchi, M. Crystal structure of rice defensin OsAFP1 and molecular insight into lipid-binding. J. Biosci. Bioeng. 2020, 130, 6–13. [Google Scholar] [CrossRef] [PubMed]
- Thevissen, K.; François, I.E.J.A.; Takemoto, J.Y.; Ferket, K.K.A.; Meert, E.M.K.; Cammue, B.P.A. DmAMP1, an antifungal plant defensin from dahlia (Dahlia merckii), interacts with sphingolipids from Saccharomyces cerevisiae. FEMS Microbiol. Lett. 2003, 226, 169–173. [Google Scholar] [CrossRef] [PubMed]
- Thevissen, K.; Cammue, B.P.; Lemaire, K.; Winderickx, J.; Dickson, R.C.; Lester, R.L.; Ferket, K.K.; van Even, F.; Parret, A.H.; Broekaert, W.F. A gene encoding a sphingolipid biosynthesis enzyme determines the sensitivity of Saccharomyces cerevisiae to an antifungal plant defensin from dahlia (Dahlia merckii). Proc. Natl. Acad. Sci. USA 2000, 97, 9531–9536. [Google Scholar] [CrossRef] [PubMed]
- Aerts, A.M.; François, I.E.; Bammens, L.; Cammue, B.P.; Smets, B.; Winderickx, J.; Accardo, S.; de Vos, D.E.; Thevissen, K. Level of M (IP) 2C sphingolipid affects plant defensin sensitivity, oxidative stress resistance and chronological life-span in yeast. FEBS Lett. 2006, 580, 1903–1907. [Google Scholar] [CrossRef] [PubMed]
- Terras, F.R.; Schoofs, H.M.; de Bolle, M.F.; van Leuven, F.; Rees, S.B.; Vanderleyden, J.; Cammue, B.P.; Broekaert, W.F. Analysis of two novel classes of plant antifungal proteins from radish (Raphanus sativus L.) seeds. J. Biol. Chem. 1992, 267, 15301–15309. [Google Scholar] [CrossRef] [PubMed]
- Vriens, K.; Cools, T.L.; Harvey, P.J.; Craik, D.J.; Braem, A.; Vleugels, J.; de Coninck, B.; Cammue, B.P.; Thevissen, K. The radish defensins RsAFP1 and RsAFP2 act synergistically with caspofungin against Candida albicans biofilms. Peptides 2016, 75, 71–79. [Google Scholar] [CrossRef] [PubMed]
- Cools, T.L.; Vriens, K.; Struyfs, C.; Verbandt, S.; Ramada, M.H.; Brand, G.D.; Bloch, C., Jr.; Koch, B.; Traven, A.; Drijfhout, J.W.; et al. The antifungal plant defensin HsAFP1 is a phosphatidic acid-interacting peptide inducing membrane permeabilization. Front. Microbiol. 2017, 8, 2295. [Google Scholar] [CrossRef] [PubMed]
- Bogdanov, I.V.; Fateeva, S.I.; Voropaev, A.D.; Ovchinnikova, T.V.; Finkina, E.I. Immunomodulatory Effects of the Pea Defensin Psd1 in the Caco-2/Immune Cells Co-Culture upon Candida albicans Infection. Int. J. Mol. Sci. 2023, 24, 7712. [Google Scholar] [CrossRef] [PubMed]
- Amaral, V.S.G.D.; Santos, S.A.C.S.; de Andrade, P.C.; Nowatzki, J.; Júnior, N.S.; de Medeiros, L.N.; Gitirana, L.B.; Pascutti, P.G.; Almeida, V.H.; Monteiro, R.Q.; et al. Pisum sativum defensin 1 eradicates mouse metastatic lung nodules from B16F10 melanoma cells. Int. J. Mol. Sci. 2020, 21, 2662. [Google Scholar] [CrossRef]
- Skalska, J.; Oliveira, F.D.; Figueira, T.N.; Mello, É.O.; Gomes, V.M.; McNaughton-Smith, G.; Castanho, M.A.R.B.; Gaspar, D. Plant defensin PvD1 modulates the membrane composition of breast tumour-derived exosomes. Nanoscale 2019, 11, 23366–23381. [Google Scholar] [CrossRef]
- de O Mello, E.; dos Santos, I.S.; de O Carvalho, A.; de Souza, L.S.; de Souza-Filho, G.A.; do Nascimento, V.V.; Machado, O.L.T.; Zottich, U.; Gomes, V.M. Functional expression and activity of the recombinant antifungal defensin PvD1r from Phaseolus vulgaris L. (common bean) seeds. BMC Biochem. 2014, 15, 7. [Google Scholar] [CrossRef]
- Figueira, T.N.; Oliveira, F.D.; Almeida, I.; Mello, É.O.; Gomes, V.M.; Castanho, M.A.R.B.; Gaspar, D. Challenging metastatic breast cancer with the natural defensin PvD1. Nanoscale 2017, 9, 16887–16899. [Google Scholar] [CrossRef] [PubMed]
- Shwaiki, L.N.; Sahin, A.W.; Arendt, E.K. Study on the Inhibitory Activity of a Synthetic Defensin Derived from Barley Endosperm against Common Food Spoilage Yeast. Molecules 2020, 26, 165. [Google Scholar] [CrossRef] [PubMed]
- Bleackley, M.R.; Payne, J.A.; Hayes, B.M.; Durek, T.; Craik, D.J.; Shafee, T.M.; Poon, I.K.H.; Hulett, M.D.; van der Weerden, N.L.; Anderson, M.A. Nicotiana alata defensin chimeras reveal differences in the mechanism of fungal and tumor cell killing and an enhanced antifungal variant. Antimicrob. Agents Chemother. 2016, 60, 6302–6312. [Google Scholar] [CrossRef] [PubMed]
- Bleackley, M.R.; Dawson, C.S.; Payne, J.A.; Harvey, P.J.; Rosengren, K.J.; Quimbar, P.; Garcia-Ceron, D.; Lowe, R.; Bulone, V.; van der Weerden, N.L.; et al. The interaction with fungal cell wall polysaccharides determines the salt tolerance of antifungal plant defensins. Cell Surf. 2019, 5, 100026. [Google Scholar] [CrossRef] [PubMed]
- Aerts, A.M.; François, I.E.; Meert, E.M.; Li, Q.T.; Cammue, B.P.; Thevissen, K. The antifungal activity of RsAFP2, a plant defensin from Raphanus sativus, involves the induction of reactive oxygen species in Candida albicans. J. Mol. Microbiol. Biotechnol. 2007, 13, 243–247. [Google Scholar] [CrossRef] [PubMed]
- Thevissen, K.; de Mello Tavares, P.; Xu, D.; Blankenship, J.; Vandenbosch, D.; Idkowiak-Baldys, J.; Govaert, G.; Bink, A.; Rozental, S.; de Groot, P.W.J.; et al. The plant defensin RsAFP2 induces cell wall stress, septin mislocalization and accumulation of ceramides in Candida albicans. Mol. Microbiol. 2012, 84, 166–180. [Google Scholar] [CrossRef]
- Hayes, B.M.; Bleackley, M.R.; Anderson, M.A.; van der Weerden, N.L. The plant defensin NaD1 enters the cytoplasm of Candida albicans via endocytosis. J. Fungi 2018, 4, 20. [Google Scholar] [CrossRef] [PubMed]
- Baxter, A.A.; Poon, I.K.; Hulett, M.D. The plant defensin NaD1 induces tumor cell death via a non-apoptotic, membranolytic process. Cell Death Discov. 2017, 3, 16102. [Google Scholar] [CrossRef]
- da Silva Gebara, R.; Taveira, G.B.; de Azevedo dos Santos, L.; Calixto, S.D.; Simão, T.L.B.V.; Lassounskaia, E.; Muzitano, M.F.; Teixeira-Ferreira, A.; Perales, J.; Rodrigues, R.; et al. Identification and characterization of two defensins from Capsicum annuum fruits that exhibit antimicrobial activity. Probiotics Antimicrob. Proteins 2020, 12, 1253–1265. [Google Scholar] [CrossRef]
- Aerts, A.M.; Bammens, L.; Govaert, G.; Carmona-Gutierrez, D.; Madeo, F.; Cammue, B.P.; Thevissen, K. The antifungal plant defensin HsAFP1 from Heuchera sanguinea induces apoptosis in Candida albicans. Front. Microbiol. 2011, 2, 47. [Google Scholar] [CrossRef]
- Struyfs, C.; Cools, T.L.; de Cremer, K.; Sampaio-Marques, B.; Ludovico, P.; Wasko, B.M.; Kaeberlein, M.; Cammue, B.P.A.; Thevissen, K. The antifungal plant defensin HsAFP1 induces autophagy, vacuolar dysfunction and cell cycle impairment in yeast. Biochim. Biophys. Acta Biomembr. 2020, 1862, 183255. [Google Scholar] [CrossRef] [PubMed]
- Slezina, M.P.; Istomina, E.A.; Korostyleva, T.V.; Odintsova, T.I. The γ-Core Motif Peptides of Plant AMPs as Novel Antimicrobials for Medicine and Agriculture. Int. J. Mol. Sci. 2022, 24, 483. [Google Scholar] [CrossRef]
- Friedrich, C.; Scott, M.G.; Karunaratne, N.; Yan, H.; Hancock, R.E. Salt-resistant alpha-helical cationic antimicrobial peptides. Antimicrob. Agents Chemother. 1999, 43, 1542–1548. [Google Scholar] [CrossRef]
- Kandasamy, S.K.; Larson, R.G. Effect of salt on the interactions of antimicrobial peptides with zwitterionic lipid bilayers. Biochim. Biophys. Acta 2006, 1758, 1274–1284. [Google Scholar] [CrossRef] [PubMed]
- Shenkarev, Z.O.; Gizatullina, A.K.; Finkina, E.I.; Alekseeva, E.A.; Balandin, S.V.; Mineev, K.S.; Arseniev, A.S.; Ovchinnikova, T.V. Heterologous expression and solution structure of defensin from lentil Lens culinaris. Biochem. Biophys. Res. Commun. 2014, 451, 252–257. [Google Scholar] [CrossRef] [PubMed]
- Assoni, L.; Milani, B.; Carvalho, M.R.; Nepomuceno, L.N.; Waz, N.T.; Guerra, M.E.S.; Converso, T.R.; Darrieux, M. Resistance Mechanisms to Antimicrobial Peptides in Gram-Positive Bacteria. Front. Microbiol. 2020, 11, 593215. [Google Scholar] [CrossRef] [PubMed]
- McColl, A.I.; Bleackley, M.R.; Anderson, M.A.; Lowe, R.G.T. Resistance to the Plant Defensin NaD1 Features Modifications to the Cell Wall and Osmo-Regulation Pathways of Yeast. Front. Microbiol. 2018, 9, 1648. [Google Scholar] [CrossRef]
- Cifaldi, C.; Ursu, G.M.; D’Alba, I.; Paccoud, O.; Danion, F.; Lanternier, F.; Chiriaco, M. Main human inborn errors of immunity leading to fungal infections. Clin. Microbiol. Infect. 2022, 28, 1435–1440. [Google Scholar] [CrossRef]
- Yong, X.; Liu, Z.; Jiang, L.; Tao, R.; Liu, W.; Zhang, L.; Peng, Y.; Lin, X.; Huang, Y. Dynamic changes of Th1/Th2/Th17 cytokines and human beta defensin 2 in HIV-infected patients with oral candidiasis during the first year of highly active anti-retroviral therapy. Arch. Oral Biol. 2018, 92, 62–67. [Google Scholar] [CrossRef]
- Wu, D.; Fu, L.; Wen, W.; Dong, N. The Dual Antimicrobial and Immunomodulatory Roles of Host Defense Peptides and Their Applications in Animal Production. J. Anim. Sci. Biotechnol. 2022, 13, 141. [Google Scholar] [CrossRef]
- Nicola, A.M.; Albuquerque, P.; Paes, H.C.; Fernandes, L.; Costa, F.F.; Kioshima, E.S.; Abadio, A.K.R.; Bocca, A.L.; Felipe, M.S. Antifungal drugs: New insights in research & development. Pharmacol. Ther. 2019, 195, 21–38. [Google Scholar] [CrossRef]
- Fruitwala, S.; El-Naccache, D.W.; Chang, T.L. Multifaceted immune functions of human defensins and underlying mechanisms. Semin. Cell. Dev. Biol. 2019, 88, 163–172. [Google Scholar] [CrossRef]
- Mercer, D.K.; O’Neil, D.A. Innate Inspiration: Antifungal Peptides and Other Immunotherapeutics from the Host Immune Response. Front. Immunol. 2020, 11, 2177. [Google Scholar] [CrossRef]
- Ong, S.T.; Bajaj, S.; Tanner, M.R.; Chang, S.C.; Krishnarjuna, B.; Ng, X.R.; Morales, R.A.V.; Chen, M.W.; Luo, D.; Patel, D.; et al. Modulation of Lymphocyte Potassium Channel KV1.3 by Membrane Penetrating, Joint-Targeting Immunomodulatory Plant Defensin. ACS Pharmacol. Transl. Sci. 2020, 3, 720–736. [Google Scholar] [CrossRef] [PubMed]
- Díaz-Murillo, V.; Medina-Estrada, I.; López-Meza, J.E.; Ochoa-Zarzosa, A. Defensin γ-thionin from Capsicum chinense has immunomodulatory effects on bovine mammary epithelial cells during Staphylococcus aureus internalization. Peptides 2016, 78, 109–118. [Google Scholar] [CrossRef] [PubMed]
- Báez-Magaña, M.; Alva-Murillo, N.; Medina-Estrada, I.; Arceo-Martínez, M.T.; López-Meza, J.E.; Ochoa-Zarzosa, A. Plant Defensin γ-Thionin Induces MAPKs and Activates Histone Deacetylases in Bovine Mammary Epithelial Cells Infected with Staphylococcus aureus. Front. Vet. Sci. 2020, 7, 390. [Google Scholar] [CrossRef]
- Falcón-Ruiz, E.A.; López-Meza, J.E.; Ochoa-Zarzosa, A. The plant defensins PaDef and γ-thionin inhibit the endothelial cell response to VEGF. Peptides 2023, 165, 171008. [Google Scholar] [CrossRef] [PubMed]
- Rigano, M.M.; Romanelli, A.; Fulgione, A.; Nocerino, N.; D’Agostino, N.; Avitabile, C.; Frusciante, L.; Barone, A.; Capuano, F.; Capparelli, R. A novel synthetic peptide from a tomato defensin exhibits antibacterial activities against Helicobacter pylori. J. Pept. Sci. 2012, 18, 755–762. [Google Scholar] [CrossRef]
- Zabel, M.; Weber, M.; Kratzer, B.; Köhler, C.; Jahn-Schmid, B.; Gadermaier, G.; Gattinger, P.; Bidovec-Stojkovič, U.; Korošec, P.; Smole, U.; et al. Art v 1 IgE epitopes of patients and humanized mice are conformational. J. Allergy Clin. Immunol. 2022, 150, 920–930. [Google Scholar] [CrossRef]
- Finkina, E.I.; Melnikova, D.N.; Bogdanov, I.V.; Ovchinnikova, T.V. Plant Pathogenesis-Related Proteins PR-10 and PR-14 as Components of Innate Immunity System and Ubiquitous Allergens. Curr. Med. Chem. 2017, 24, 1772–1787. [Google Scholar] [CrossRef] [PubMed]
Defensin | Source | C. albicans | C. auris | Other Candida Species | References | ||
---|---|---|---|---|---|---|---|
MIC50 | MIC100 | MFC | |||||
DmAMP1 | Dahlia merckii, seeds | 0.8 a µM | 5 b µM | 1.2% survival at a concentration of 10 µM | - | C. glabrata | [51,52,53] |
RsAFP2 | Raphanus sativus, seeds | - | 2.5 b µM | 10 µM | - | C. krusei C. dubliniensis C. tropicalis C. parapsilosis | [51,53,54] |
PvD1 | Phaseolus vulgaris, seeds | 25–50 c µg/mL | MIC89 18.4 d µM | - | - | C. tropicalis C. buinensis C. parapsilosis C. guilliermondii | [55,56,57] |
γ33–41 PvD1++ | Synthetic peptides based on the γ-core motif from PvD1 | 146.8–293.6 e µM | >293.6 e µM | - | - | C. buinensis MIC100 36.7 e µM, MFC 73.4 µM | [35] |
γ31–45 PvD1++ | 0–18.35 e µM | 73.4 e µM | - | - | C. buinensis MIC100 18.35 e µM | [35] | |
HsAFP1 | Heuchera sanguinea, seeds | 18 f µM | - | 10 µM | - | C. krusei | [53,58] |
NaD1 | Nicotiana alata, flowers | 1.6 g µM >10 h µM 3.6 i µM | 2.5 g µM >10 a µM | MFC50 15 µM | MIC50 2.9 g or >10 h µM | C. glabrata C. krusei C. parapsilosis C. tropicalis | [40,52,59] |
NaD2 | Nicotiana alata, flowers | 2.5–5 g µM >10 h µM | 5 g µM >10 h µM | - | - | - | [40] |
OsAFP1 | Oryza sativa japonica (genome) | 2 j µM | 4 j µM | 16 µM | - | - | [37] |
Psd1 | Pisum sativum, seeds | 5–10 k µM | 20 k µM | MFC70,6 20 µM, but only MFC48,7 at a concentration of 200 µM | - | - | [60,61] |
Psd2 | Pisum sativum, seeds | 6.9 l µM | MIC90 20 l µM | - | - | - | [62] |
Lc-def | Lens culinaris, germinated seeds | 25–50 m µM | MIC90 50 m µM | Fungistatic | - | C. glabrata C. krusei | [49] |
AFP1 | Brassica juncea, seeds | 3–5 n µg/mL | 10 n µg/mL | Cell viability decreased as the peptide concentration increased | - | - | [63] |
PsDef5.1 | Pinus sylvestris, seeds | 6 o µM | 15 o µM | - | - | - | [64] |
CaCDef-like | Capsicum annuum, leaves | MIC44 50 p µg/mL (there was no significant difference between 50, 100, and 200 µg/mL) | - | Fungistatic | - | - | [38] |
Lp-Def1 | Lecythis pisonis, seeds | MIC38,5 10 q µg/mL | - | MFC69,3 10 µg/mL | - | - | [39] |
Defensin-d2 (So-D2) | Spinacia oleracea, leaves | - | 7.5 r µg/mL | 63 µg/mL | - | - | [65] |
NbD6 | Nicotiana benthamiana | 1–2.5 g,h µM | 2.5 g µM 5 h µM | - | - | - | [40] |
Ppdef1 | Picramnia pentandra (genome) | 3.4 w µg/mL | 30 x µg/mL | 30 µg/mL | MIC50 1.3 w µg/mL | C. glabrata C. krusei C. tropicalis | [41,66] |
EcgDf1 | Erythrina crista-galli, seedlings | 0.1–0.2 s µM | 1.5 s µM | 1.5 µM | - | - | [67] |
Javanicin | Sesbania javanica, seeds | 50 t µg/mL | MIC90 100 t µg/mL | 100 µg/mL | - | - | [42] |
Fluconazole-resistant C. albicans | |||||||
50 t µg/mL | MIC90 100 t µg/mL | 100 µg/mL | |||||
ZmD32 | Zea mays, endosperm | 1.1 g µM 3.0 h µM | - | 10 µM | MIC50 3.4 g or 1.6 h µM | C. glabrata C. krusei C. parapsilosis C. tropicalis | [40] |
A42,44R37,38 W36,39 γ32–46VuDef (WR) | Synthetic peptides based on the region corresponding to the γ-core VuDef1 from Vigna unguiculata seeds | - | 18.5 u µM | 27.5 µM | - | C. buinensis C. tropicalis | [43] |
D-lp1 | Hordeum vulgare, seeds | - | 47 v µg/mL | 188 µg/mL | MIC100 47 v µg/mL MFC 95 v µg/mL | C. parapsilosis | [68] |
Amphotericin B-resistant C. auris | |||||||
MIC100 78 v µg/mL MFC 156 v µg/mL |
Defensin | Possible Membrane Targets of Antifungal Action | Synergistic Activity against C. albicans | Activity against C. albicans Biofilms | Hemolytic and Cytotoxic Activity | References | |
---|---|---|---|---|---|---|
Inhibition of Biofilm Formation | Eradication of Mature Biofilms | |||||
DmAMP1 | Ergosterol M(IP)2C | Bovine pancreatic trypsin inhibitor (against planktonic cells) | - | - | - | [59,73,74,75] |
RsAFP1 | - | With caspofungin against biofilm formation and biofilm eradication, but not against planktonic cells | Not observed a up to 2 mg/mL | Not observed b up to 2 mg/mL | No hemolysis up to 500 µg/mL; not toxic to human HUVEC and human-skin-muscle fibroblasts up to 500 µg/mL | [76,77] |
RsAFP2 | GlcCer | With caspofungin against biofilm formation and biofilm eradication, but not against planktonic cells, with AmB against biofilm formation | + a BIC50 1.65 mg/mL | Not observed b up to 2 mg/mL | ||
HsAFP1 | PA PI(3,4,5)P3 PI(3,4)P2 PI(3,5)P2 PI(4,5)P2 PI(3)P PI(4)P PI(5)P | With caspofungin against planktonic cells, biofilm formation and biofilm eradication, with AmB against biofilm formation | + c BIC50 11 μM | Not observed c up to 109 μM | Not toxic to HepG2 up to 40 μM | [58,78] |
HsLin06_ 18 (linear 19-mer analog of HsAFP1) | PI(4,5)P2 | With caspofungin against biofilm formation in the case of sensitive and caspofungin-resistant strains, increase activity in combination with anidulafungin | + c BIC50 >2 μM | - | Not toxic to HepG2 cells up to 50 μM | [36] |
NaD1 | PI(3,4,5)P3 PA PI(3)P PI(4)P PI(5)P PI(3,4)P2 PI(3,5)P2 PI(4,5)P2 PS sulfatide cardiolipin | Caspofungin, bovine pancreatic trypsin inhibitor (against planktonic cells) | - | Not observed d up to 50 μM | At 50 µM, the percentage of hemolysis was 1.5%; at 12.5 µM, the percentage of AHDF cell viability was about 40% | [40,59,71] |
ZmD32 | PI(4)P PI(4,5)P PA PI(3,4,5)P3 PS cardiolipin | - | - | + d BEC50 10–15 μM | At 50 µM, the percentage of hemolysis was 1.9% and the percentage of AHDF cell viability 70% | [40] |
Psd1 | Ergosterol GlcCer | - | + e No cell growth was observed at 10 × MIC (200 μM) | + e Partial eradication of biofilm | Not toxic at a concentration of up to 50 μM to PBMCs, Beas-2B, HEK-293, R8, HSP, and CHO cells | [60,61,70,79,80] |
Psd2 | PS GlcCer cardiolipin PI(3)P PI(5)P ergosterol sulfatide POPC | - | - | - | No hemolysis up to 50 μM | [62] |
PvD1 | GlcCer | - | - | - | No hemolysis up to 30 μM, not toxic to HUVEC up to 100 μM; at 100 μM, the percentage of MCF 10A cell viability was 35–50% | [56,81,82,83] |
Defensin-d2 (So-D2) | - | Antagonism with defensin-like bacteriocin actifensin from Actinomyces ruminicola | + f BIC50 7.5–15 µg/mL | - | At 128 × MIC (985 µg/mL), the percentage of hemolysis was 2.89% | [65] |
D-lp1 | - | - | C. auris biofilms | At MIC and MFC, the percentage of hemolysis was 9.55% and 14.72%, respectively. At MIC, cytotoxic activity to Caco-2 was absent | [68,84] | |
+ g BIC90 780 µg/mL | + g BEC90 1560 µg/mL |
Defensin | Cell Lines/ Organisms | Concentration | Effects | Method Used | References |
---|---|---|---|---|---|
EgK5 (synthetic peptide) | Lewis rat ovalbumin-specific CD4+ TEM cells transduced with GFP | 0.1–100 nM | Suppression of antigen-driven TEM cell proliferation | Incorporation of [3H] thymidine with consequent β-scintillation counting | [106] |
Collagen-induced arthritis and ovalbumin-induced dermatitis in Lewis rats | 0.1 mg/kg | Reduction in clinical scores in collagen-induced arthritis, reduced ear thickness, and immune infiltration in ovalbumin-induced dermatitis | X-ray, hematoxylineosin staining | ||
γ-Thionin (Capsicum chinense) | bMECs | 0.005–5 μg/mL | Up-regulation of TLR2 mRNA expression and membrane abundance of TLR2; increase in NO production; increased expression of genes coding TNFα, IL-1β, and IL-10 | Real-time PCR, flow cytometry analysis, ELISA assay, Griess test | [107,108] |
0.1 μg/mL | Reduction in p38, ERK1/2, and Akt phosphorylation state; increase in JNK activity; activation of E2F-1, EGR, CBF, AP-1, MEF, and NF-1 and other transcription factors; decreased activity of histone demethylases | ||||
bMECs upon the Staphylococcus aureus infection | 1 μg/mL | Reduction in S. aureus internalization into bMECs by 50% | Gentamicin protection assays, real-time PCR, flow cytometry analysis, ELISA assay, Griess test, tranSignal Protein/DNA array I | ||
0.005–5 μg/mL | Up-regulation of TLR2 membrane abundance; decrease in NO production; increased expression of genes coding TNFα, IL-1β, IL-6, and IL-8/CXCL8; increase in DEFB1 secretion | ||||
0.1 μg/mL | Increase in p38 phosphorylation state and decrease in ERK1/2 and JNK activity; activation of protein kinase Akt; increased activity of histone demethylases | ||||
0.1 μg/mL | Activation of transcriptional factors of inflammatory response, highlighting EGR, E2F-1, AP-1, and MEF, which were turned off by S. aureus | ||||
Lc-def | Monocytes | 4 µM | Increase in the production of both pro- and anti-inflammatory cytokines (IFNα2, IL-12, IL-6, IL-1RA, IL-10, and IL-13), chemokines (MIG, MIP-1, and MCP-3), and growth factors (G-CSF, EGF, and PDGF) | Real-time PCR, the multiplex xMAP assay | [49] |
Macrophages | Increase in the production of inflammatory chemokines MIG, MCP-1, and MIP-1 | ||||
CD4+ FoxP3+ T cells (Tregs) | Induction of the production of pro-inflammatory cytokines, chemokines, and growth factors (IL-17F, GM-CSF, IFN-γ, TNF-α, MCP-1, MIP-1, and IP-10), IL-6, and only one anti-inflammatory, IL-10 | ||||
moDCs, CD4+ T-helper, and CD8+ T cytotoxic cells | The absence of significant changes in cytokine profiles | ||||
Caco-2-polarized monolayer | Insignificant changes in cytokine profiles; induction of expression of genes coding IL-1, IL-8/CXCL8, and HBD2 | ||||
Psd1 | Murine lung metastatic melanoma model | 1 mg/kg | Psd1 does not only inhibit the formation of lung metastasis nodules in a murine model in vivo, but also decreases the number of inflammatory cells in lung tissues | Histological analysis | [80] |
Caco-2-polarized monolayer | 2 µM | Psd1 is able to pass through the Caco-2 cell monolayer | Trans-epithelial transport assay, using FITC-labelled Psd1 | [79] | |
Insignificant changes in cytokine profiles; increase in the production of IL-6, IL-8/CXCL8, and IP-10; induction of expression of genes coding IL-1β, IL-8/CXCL8, and HBD2 | Real-time PCR, the multiplex xMAP assay | ||||
Caco-2-polarized monolayer upon the Candida albicans infection | Insignificant changes in cytokine profiles; induction of expression of genes coding IL-1β, IL-8/CXCL8, and HBD2; increase in the production of IL-6 | ||||
Monocytes and moDCs (almost the same action) | Increases the production of pro-inflammatory (TNFα, IL-8/CXCL8, IL-12, IL-15, IP-10, MCP-1, MCP-3, MIG, MIP-1α, MIP-1β, and GM-CSF) anti-inflammatory (IL-5, IL-10, G-CSF, and IL-1RA) cytokines and chemokines, as well as cytokines with ambiguous action (IL-6 and IL-27) | ||||
Caco-2/moDCs co-culture | Insignificant induction of an immune response; a slight decrease in the production of IL-1β, IL-6, and MIG/CXCL9 | ||||
Caco-2/monocytes co-culture | Insignificant induction of an immune response; increase in the production of IL-2, IL-10, MDC, and IL-17 | ||||
Caco-2/moDCs co-culture upon the Candida albicans infection | Switching the immune response and mainly negating the stimulatory effects of pathogenic yeasts; inhibiting the production of TNFα, IL-6, IL-8/CXCL8, IL-12, IL-27, G-CSF, GM-CSF, and MIPs, induced by C. albicans | ||||
Caco-2/monocytes co-culture upon the Candida albicans infection | Switching the immune response and mainly negating the inhibitory effects of pathogenic yeasts; inducing the production of IL-8/CXCL8, IL-12, TNFα, G-CSF, and GM-CSF, inhibited by C. albicans | ||||
PaDef (Persea americana) and γ-thionin | BUVEC and EA.hy926 | 5 ng/mL | Interferes with the vascular endothelial growth factor (VEGF) pathway, inhibiting processes related to angiogenesis in endothelial cells, such as proliferation, migration, and tube formation | Trypan blue dye, MTT assay, wound healing assay, matrigel induction | [109] |
Ppdef1 | Human nail model | 10 mg/mL | Ppdef1 penetrates more effectively than such drugs as terbinafine and eficanazole | nail penetration assay, RP-HPLC | [66] |
SolyC (synthetic peptide) | THP-1 | 50 μg/mL | No visible effects | ELISA assay, Griess test | [110] |
THP-1 stimulated with lipopolysaccharide | Promote anti-inflammatory effect by decreasing TNF-α and IFN-γ levels, as well as the production of NO2− |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Finkina, E.I.; Shevchenko, O.V.; Fateeva, S.I.; Tagaev, A.A.; Ovchinnikova, T.V. Antifungal Plant Defensins as an Alternative Tool to Combat Candidiasis. Plants 2024, 13, 1499. https://doi.org/10.3390/plants13111499
Finkina EI, Shevchenko OV, Fateeva SI, Tagaev AA, Ovchinnikova TV. Antifungal Plant Defensins as an Alternative Tool to Combat Candidiasis. Plants. 2024; 13(11):1499. https://doi.org/10.3390/plants13111499
Chicago/Turabian StyleFinkina, Ekaterina I., Olga V. Shevchenko, Serafima I. Fateeva, Andrey A. Tagaev, and Tatiana V. Ovchinnikova. 2024. "Antifungal Plant Defensins as an Alternative Tool to Combat Candidiasis" Plants 13, no. 11: 1499. https://doi.org/10.3390/plants13111499
APA StyleFinkina, E. I., Shevchenko, O. V., Fateeva, S. I., Tagaev, A. A., & Ovchinnikova, T. V. (2024). Antifungal Plant Defensins as an Alternative Tool to Combat Candidiasis. Plants, 13(11), 1499. https://doi.org/10.3390/plants13111499