Upgrading Strategies for Managing Nematode Pests on Profitable Crops
Abstract
:1. Introduction
2. Sound Sampling and Extraction Methods as Prerequisites for the Strategies
2.1. Avoiding Common Defects in Classical Sampling and Extraction Methods
2.2. Expanding High Throughputs of Nematode Sampling, Extraction, Identification, and Counting
3. Proper Gene Pools and Scales Used to Determine Host Susceptibility/Resistance
4. Bridging the Gap between Current and Novel Strategies for PPN Management
4.1. Upgrading PPN Control via Boosting and Adjusting Agricultural Production Scales
4.1.1. Exploring Further Nematicidal Compounds
4.1.2. Harnessing Biotechnology to Comply with Ecological and Biological Factors
4.1.3. Adjusted Agricultural Practices and Techniques
4.2. Bridging the Global North–South Divide for Accessing Extensive PPN Management Plans
4.2.1. Integral Perspectives and Partnerships for New Technologies
4.2.2. Expansion of Effective Decision Support Tools and Decision Support Systems
4.3. Harmonization of Nematicidal Operations and Their Novel Targets
5. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Coyne, D.L.; Cortada, L.; Dalzell, J.J.; Claudius-Cole, A.O.; Haukeland, S.; Luambano, N.; Talwana, H. Plant-parasitic nematodes and food security in sub-Saharan Africa. Annu. Rev. Phytopathol. 2018, 56, 381–403. [Google Scholar] [CrossRef] [PubMed]
- Abd-Elgawad, M.M.M.; Askary, T.H. Impact of phytonematodes on agriculture economy. In Biocontrol Agents of Phytonematodes; Askary, T.H., Martinelli, P.R.P., Eds.; CABI: Wallingford, UK, 2015; pp. 3–49. [Google Scholar]
- Bernard, G.C.; Egnin, M.; Bonsi, C. The impact of plant-parasitic nematodes on agriculture and methods of control. In Nematology; IntechOpen: London, UK, 2017. [Google Scholar]
- Mesa-Valle, C.M.; Garrido-Cardenas, J.A.; Cebrian-Carmona, J.; Talavera Francisco Manzano-Agugliaro, M. Global research on plant nematodes. Agronomy 2020, 10, 1148. [Google Scholar] [CrossRef]
- Hada, A.; Singh, D.; Papolu, P.K.; Banakar, P.; Raj, A.; Rao, U. Host-mediated RNAi for simultaneous silencing of different functional groups of genes in Meloidogyne incognita using fusion cassettes in Nicotiana tabacum. Plant Cell Rep. 2021, 40, 2287–2302. [Google Scholar] [CrossRef] [PubMed]
- Somasekhar, N.; Prasad, J.S. Plant–nematode interactions: Consequences of climate change. In Crop Stress and Its Management: Perspectives and Strategies; Venkateswarlu, B., Shanker, A.K., Shanker, C., Maheswari, M., Eds.; Springer: Dordrecht, The Netherlands, 2012; pp. 547–564. [Google Scholar]
- Hama, J.R.; Fomsgaard, I.S.; Topalović, O.; Vestergård, M. Root uptake of cereal benzoxazinoids grants resistance to root-knot nematode invasion in white clover. Plant Physiol. Biochem. 2024, 210, 108636. [Google Scholar] [CrossRef] [PubMed]
- Abd-Elgawad, M.M.M. Optimizing safe approaches to manage plant-parasitic nematodes. Plants 2021, 10, 1911. [Google Scholar] [CrossRef] [PubMed]
- Duncan, L.W.; Phillips, M.S. Sampling root-knot nematodes. In Root-Knot Nematodes; Perry, R.N., Moens, M., Starr, J.L., Eds.; CABI: St. Albans, UK, 2009; pp. 275–300. [Google Scholar]
- Abd-Elgawad, M.M.M. Optimizing sampling and extraction methods for plant-parasitic and entomopathogenic nematodes. Plants 2021, 10, 629. [Google Scholar] [CrossRef] [PubMed]
- Abd-Elgawad, M.M. Accuracy and precision of phytonematode sampling plans. Agric. Eng. Int. CIGR J. 2017, 19, 6–15. [Google Scholar]
- Holladay, B.H.; Willett, D.S.; Stelinski, L.L. High throughput nematode counting with automated image processing. BioControl 2016, 61, 177–183. [Google Scholar] [CrossRef]
- Dritsoulas, A.; Duncan, L.W. Optimizing for taxonomic coverage: A comparison of methods to recover mesofauna from soil. J. Nematol. 2020, 52, 1–9. [Google Scholar] [CrossRef]
- Been, T.H.; Schomaker, C.H. Distribution patterns and sampling. In Plant Nematology, 2nd ed.; Perry, R.N., Moens, M., Eds.; CABI: Wallingford, UK, 2013; pp. 331–358. [Google Scholar]
- Stetina, S.R.; McGawley, E.C.; Russin, J.S. Extraction of root-associated Meloidogyne incognita and Rotylenchulus reniformis. J. Nematol. 1997, 29, 209–215. [Google Scholar]
- Julio, V.A.; Freitas, L.G.; Coelho, J.L.C.; Muscardi, D.C.; Ferraz, S. Extraction of Meloidogyne javanica females from tomato roots through maceration with fungal enzymes. Nematol. Bras. 2003, 27, 75–80. [Google Scholar]
- Barker, K.R.; Imbriani, J.L. Nematode advisory programs—Status and prospects. Plant Dis. 1984, 68, 735–741. [Google Scholar]
- Ferris, H.; Mullens, T.A.; Food, K.E. Stability and characteristics of spatial description parameters for nematode populations. J. Nematol. 1990, 22, 427–439. [Google Scholar] [PubMed]
- Duncan, L.W. Current options for nematode management. Ann. Rev. Phytopathol. 1991, 29, 469–490. [Google Scholar] [CrossRef] [PubMed]
- Been, T.H.; Schomaker, C.H. Development and evaluation of sampling methods for fields with infestation foci of potato cyst nematodes (Globodera rostochiensis and G. pallida). Phytopathology 2000, 90, 647–656. [Google Scholar] [CrossRef]
- Campos-Herrera, R.; Johnson, E.; El-Borai, F.; Stuart, R.; Graham, J.; Duncan, L. Long-term stability of entomopathogenic nematode spatial patterns in soil as measured by sentinel insects and real-time PCR assays. Ann. Appl. Biol. 2011, 158, 55–68. [Google Scholar] [CrossRef]
- Stirling, G.R.; Pattison, A.B. Beyond chemical dependency for managing plant-parasitic nematodes: Examples from the banana, pineapple and vegetable industries of tropical and subtropical Australia. Australas. Plant Pathol. 2008, 37, 254–267. [Google Scholar] [CrossRef]
- Campos-Herrera, R.; Stuart, R.J.; Pathak, E.; EL-Borai, F.E.; Duncan, L.W. Temporal patterns of entomopathogenic nematodes in Florida citrus orchards: Evidence of natural regulation by microorganisms and nematode competitors. Soil Biol. Biochem. 2019, 128, 193–204. [Google Scholar] [CrossRef]
- Dritsoulas, A.; Campos-Herrera, R.; Blanco-Pérez, R.; Duncan, L.W. Comparing high throughput sequencing and real time qPCR for characterizing entomopathogenic nematode biogeography. Soil Biol. Biochem. 2020, 145, 107793. [Google Scholar] [CrossRef]
- Dritsoulas, A.; El-Borai, F.E.; Shehata, I.E.; Hammam, M.M.; El-Ashry, R.M.; Mohamed, M.M.; Abd-Elgawad, M.M.; Duncan, L.W. Reclaimed desert habitats favor entomopathogenic nematode and microarthropod abundance compared to ancient farmlands in the Nile Basin. J. Nematol. 2021, 53, 1–13. [Google Scholar] [CrossRef]
- Timper, P. Conserving and enhancing biological control of nematodes. J. Nematol. 2014, 46, 75–89. [Google Scholar]
- Ruiz, M.; Vo, A.D.; Becker, J.O.; Roose, M.L. Real-time PCR to phenotype resistance to the citrus nematode Tylenchulus semipenetrans Cobb. Plants 2023, 12, 2543. [Google Scholar] [CrossRef]
- Abd-Elgawad, M.M.M. Nematode spatial distribution in the service of biological pest control. Egypt. J. Biol. Pest Control 2024, 34, 3. [Google Scholar] [CrossRef]
- Gorny, A.M.; Hay, F.S.; Esker, P.; Pethybridge, S.J. Spatial and spatiotemporal analysis of Meloidogyne hapla and Pratylenchus penetrans populations in commercial potato fields in New York, USA. Nematology 2020, 23, 139–151. [Google Scholar] [CrossRef]
- Abd-Elgawad, M.M.M. A new rating scale for screening plant genotypes against root-knot and reniform nematodes. Anz Schadlingskde Pflanzenschutz Umweltschutz/J. Pest Sci. 1991, 64, 37–39. [Google Scholar] [CrossRef]
- Abd-Elgawad, M.M.M. Optimizing biological control agents for controlling nematodes of tomato in Egypt. Egypt. J. Biol. Pest Control 2020, 30, 58. [Google Scholar] [CrossRef]
- Abd-Elgawad, M.M.M. Biological control agents in the integrated nematode management of pepper in Egypt. Egypt. J. Biol. Pest Control 2020, 30, 70. [Google Scholar] [CrossRef]
- Ndeve, N.D.; Matthews, W.C.; Santos, J.R.P.; Huynh, B.L.; Roberts, P.A. Broad-based root-knot nematode resistance identified in cowpea gene-pool two. J. Nematol. 2018, 50, 545–558. [Google Scholar] [CrossRef]
- Abd-Elgawad, M.M.M. Biological control agents in the integrated nematode management of potato in Egypt. Egypt. J. Biol. Pest Control 2020, 30, 121. [Google Scholar] [CrossRef]
- Baltensperger, D.D.; Quesenberry, K.H.; Dunn, R.A.; Abd-Elgawad, M.M. Root-knot nematode interaction with berseem clover and other temperate forage legumes. Crop Sci. 1985, 25, 848–851. [Google Scholar] [CrossRef]
- Banihashemian, S.N.; Jamali, S.; Golmohammadi, M.; Noorizadeh, S.; Atighi, M.R. Reaction of commercial cultivars of kiwifruit to infection by root-knot nematode and its biocontrol using endophytic bacteria. J. Nematol. 2023, 55, 10165–10455. [Google Scholar] [CrossRef]
- Fullana, A.M.; Expόsito, A.; Escudero, N.; Cunquero, M.; Loza-Alvarez, P.; Giné, A.; Sorribas, F.J. Crop rotation with Meloidogyne-resistant germplasm is useful to manage and revert the (a)virulent populations of Mi1.2 gene and reduce yield losses. Front. Plant Sci. 2023, 14, 1133095. [Google Scholar] [CrossRef]
- Phani, V.; Gowda, M.T.; Dutta, T.K. Grafting vegetable crops to manage plant-parasitic nematodes: A review. J. Pest Sci. 2023, 96, 539–560. [Google Scholar] [CrossRef]
- Abd-Elgawad, M.M.M. Understanding molecular plant–nematode interactions to develop alternative approaches for nematode control. Plants 2022, 11, 2141. [Google Scholar] [CrossRef]
- Khan, A.; Chen, S.; Fatima, S.; Ahamad, L.; Siddiqui, M.A. Biotechnological tools to elucidate the mechanism of plant and nematode interactions. Plants 2023, 12, 2387. [Google Scholar] [CrossRef]
- Faria, J.M.S.; Barbosa, P.; Vieira, P.; Vicente, C.S.L.; Figueiredo, A.C.; Mota, M. Phytochemicals as biopesticides against the pinewood nematode Bursaphelenchus xylophilus: A review on essential oils and their volatiles. Plants 2021, 10, 2614. [Google Scholar] [CrossRef]
- Starr, J.L.; Bridge, J.; Cook, R. Resistance to Plant-Parasitic Nematodes: History, Current Use and Future Potential; CABI: Wallingford, UK, 2002; 256p. [Google Scholar] [CrossRef]
- Taylor, A.L.; Sasser, J.N. (Eds.) Biology, Identification and Control of Root-Knot Nematodes (Meloidogyne Species); North Carolina State University Press: Raleigh, NC, USA, 1978; 111p. [Google Scholar]
- Sasser, J.N.; Carter, C.C.; Hartman, K.M. (Eds.) Standardization of Host Suitability Studies and Reporting of Resistance to Root-Knot Nematodes; North Carolina State University and United States Agency for International Development: Raleigh, NC, USA, 1984; 7p. [Google Scholar]
- Gohar, I.M.A.; Alyamani, A.; Shafi, M.E.; Mohamed, E.A.E.; Ghareeb, R.Y.; Desoky, E.M.; Hasan, M.E.; Zaitoun, A.F.; Abdelsalam, N.R.; El-Tarabily, K.A.; et al. A quantitative and qualitative assessment of sugar beet genotype resistance to root-knot nematode, Meloidogyne incognita. Front. Plant Sci. 2023, 13, 966377. [Google Scholar] [CrossRef]
- Abd-Elgawad, M.M.M. Plant-parasitic nematodes and their biocontrol agents: Current status and future vistas. In Management of Phytonematodes: Recent Advances and Future Challenges; Ansari, R.A., Rizvi, R., Mahmood, I., Eds.; Springer Nature Singapore Pte Ltd.: Singapore, 2020; pp. 171–204. Available online: https://www.springer.com/gp/book/9789811540868 (accessed on 1 May 2024).
- Umetsu, N.; Shirai, Y. Development of novel pesticides in the 21st century. J. Pestic. Sci. 2020, 45, 54–74. [Google Scholar] [CrossRef]
- Chen, J.; Li, Q.X.; Song, B. Chemical Nematicides: Recent research progress and outlook. J. Agric. Food Chem. 2020, 68, 12175–12188. [Google Scholar] [CrossRef]
- Nnamdi, C.; Hajihassani, A. Effect of different rates, application timing, and combination of non-fumigant nematicides in control of Meloidogyne incognita in watermelon in plasticulture. Plant Health Prog. 2023, 24, 375–379. [Google Scholar] [CrossRef]
- Wang, Y.; Luo, X.; Chen, Y.; Peng, J.; Yi, C.; Chen, J. Recent research progress of heterocyclic nematicidal active compounds: A review. J. Heterocycl. Chem. 2023, 60, 1287. [Google Scholar] [CrossRef]
- Sikora, R.A.; Molendijk, L.P.G.; Desaeger, J. Integrated nematode management and crop health: Future challenges and opportunities. In Integrated Nematode Management: State-of-the-Art and Visions for the Future; Sikora, R.A., Desaeger, J., Molendijk, L.P.G., Eds.; CAB International: Wallingford, UK, 2022; pp. 3–10. [Google Scholar]
- Hammam, M.M.A.; Abd-El-Khair, H.; El-Nagdi, W.M.A.; Abd-Elgawad, M.M.M. Can Agricultural practices in strawberry fields induce plant–nematode interaction towards Meloidogyne-suppressive soils? Life 2022, 12, 1572. [Google Scholar] [CrossRef] [PubMed]
- D’Addabbo, T.; Ladurner, E.; Troccoli, A. Nematicidal activity of a garlic extract formulation against the grapevine nematode Xiphinema index. Plants 2023, 12, 739. [Google Scholar] [CrossRef] [PubMed]
- Abd-Elgawad, M.M.M. Exploiting plant-phytonematode interactions to upgrade safe and effective nematode control. Life 2022, 12, 1916. [Google Scholar] [CrossRef]
- Burns, A.R.; Baker, R.J.; Kitner, M.; Knox, J.; Cooke, B.; Volpatti, J.R.; Vaidya, A.S.; Puumala, E.; Palmeira, B.M.; Redman, E.M.; et al. Selective control of parasitic nematodes using bioactivated nematicides. Nature 2023, 618, 102–109. [Google Scholar] [CrossRef] [PubMed]
- Abd-Elgawad, M.M.M.; Kour, F.F.H.; Montasser, S.A.; Hammam, M.M.A. Distribution and losses of Tylenchulus semipenetrans in citrus orchards on reclaimed land in Egypt. Nematology 2016, 18, 1141–1150. [Google Scholar] [CrossRef]
- Chitwood, D.J. Nematicides. In Encyclopedia of Agrochemicals; Plimmer, J.R., Ed.; JohnWiley & Sons: New York, NY, USA, 2003; Volume 3, pp. 1104–1115. [Google Scholar]
- Gaberthüel, M.; Slaats, B.; Goll, M. What does it take to develop a nematicide today and for the future? In Integrated Nematode Management: State-of-the-Art and Visions for the Future; Sikora, R.A., Desaeger, J., Molendijk, L.P.G., Eds.; CAB International: Wallingford, UK, 2022; pp. 439–445. [Google Scholar]
- Wilson, M.J.; Jackson, T.A. Progress in the commercialization of bionematicides. BioControl 2013, 58, 715–722. [Google Scholar] [CrossRef]
- Burns, A.R.; Luciani, G.M.; Musso, G.; Bagg, R.; Yeo, M.; Zhang, Y.; Rajendran, L.; Glavin, J.; Hunter, R.; Redman, E.; et al. Caenorhabditis elegans is a useful model for anthelmintic discovery. Nat. Commun. 2015, 6, 7485. [Google Scholar] [CrossRef] [PubMed]
- You, L.; Wu, D.; Zhang, R.; Wang, D.; Fu, Z.Q. Bioactivated and selective: A promising new family of nematicides with a novel mode of action. Mol. Plant 2023, 16, 1106–1108. [Google Scholar] [CrossRef]
- Ortiz de Montellano, P.R. Cytochrome P450-activated prodrugs. Future Med. Chem. 2013, 5, 213–228. [Google Scholar] [CrossRef]
- Abd-Elgawad, M.M.M. Challenges in field application of biopesticides for successful crop pest management. In Pest Management: Methods, Applications and Challenges; Askary, T., Ed.; Nova Science Publishers, Inc.: New York, NY, USA, 2022; pp. 331–366. [Google Scholar] [CrossRef]
- Catani, L.; Manachini, B.; Grassi, E.; Guidi, L.; Semprucci, F. Essential oils as nematicides in plant protection—A review. Plants 2023, 12, 1418. [Google Scholar] [CrossRef]
- Keren-Zur, M.; Antonov, J.; Bercovitz, A.; Feldman, K.; Husid, A.; Kenan, G.; Markov, N.; Rebhun, M. Bacillus firmus formulations for the safe control of root-knot nematodes. Proc. Brighton Crop Prot. Pests Dis. 2000, 2, 47–52. [Google Scholar]
- Mendoza, A.R.; Kiewnick, S.; Sikora, R.A. In vitro activity of Bacillus firmus against the burrowing nematode Radopholus similis, the root-knot nematode Meloidogyne incognita and the stem nematode Ditylenchus dipsaci. Biocontrol Sci. Technol. 2008, 18, 377–389. [Google Scholar] [CrossRef]
- Stirling, G.R. Opportunities for Research on Pasteuria, a Potentially Useful Biocontrol Agent of Plant-Parasitic Nematodes. Plant and Soil Nematodes, 2023, Fact Sheet PSN 008. Available online: https://www.appsnet.org/nematodes/pdf/PSN%20061%20Future%20research%20on%20Pasteuria.pdf (accessed on 5 May 2024).
- Abd-Elgawad, M.M.M.; Askary, T.H. Fungal and bacterial nematicides in integrated nematode management strategies. Egypt. J. Biol. Pest Control 2018, 28, 74. [Google Scholar] [CrossRef]
- Sasanelli, N.; Konrat, A.; Migunova, V.; Toderas, I.; Iurcu-Straistaru, E.; Rusu, S.; Bivol, A.; Andoni, C.; Veronico, P. Review on control methods against plant parasitic nematodes applied in southern member states (C Zone) of the European Union. Agriculture 2021, 11, 602. [Google Scholar] [CrossRef]
- Guzmán-Guzmán, P.; Kumar, A.; de los Santos-Villalobos, S.; Parra-Cota, F.I.; Orozco-Mosqueda, M.d.C.; Fadiji, A.E.; Hyder, S.; Babalola, O.O.; Santoyo, G. Trichoderma species: Our best fungal allies in the biocontrol of plant diseases—A review. Plants 2023, 12, 432. [Google Scholar] [CrossRef]
- Migunova, V.D.; Sasanelli, N. Bacteria as biocontrol tool against phytoparasitic nematodes. Plants 2021, 10, 389. [Google Scholar] [CrossRef]
- Sayre, R.M.; Wergin, W.P.; Schmldt, J.M.; Starr, M.P. Pasteuria nishizawae sp. nov., a mycelial and endospore-forming bacterium parasitic on cyst nematodes of genera Heterodera and Globodera. Res. Microbiol. 1991, 142, 551–564. [Google Scholar] [CrossRef]
- Noel, G.R.; Atibalentja, N.; Bauer, S.J. Suppression of Heterodera glycines in a soybean field artificially infested with Pasteuria nishizawae. Nematropica 2010, 40, 41–52. [Google Scholar]
- Starr, M.P.; Sayre, R.M. Pasteuria thornei sp. nov. and Pasteuria penetrans sensu stricto emend., mycelial and endospore-forming bacteria parasitic, respectively, on plant-parasitic nematodes of the genera Pratylenchus and Meloidogyne. Ann. de l’Institut Pasteur Microbiol. 1988, 139, 11–31. [Google Scholar] [CrossRef]
- Subedi, P.; Gattoni, K.; Liu, W.; Lawrence, K.S.; Park, S.-W. Current utility of plant growth-promoting rhizobacteria as biological control agents towards plant-parasitic nematodes. Plants 2020, 9, 1167. [Google Scholar] [CrossRef]
- Dimock, M.B. Live microbial bionematicides. In Proceedings of the IR-4 Western Region Biopesticide Training Workshop, Fort Collins, CO, USA, 25–26 April 2017. [Google Scholar]
- Abd-Elgawad, M.M.M. Pasteuria species for nematodes management in organic farms. In Sustainable Management of Nematodes in Agriculture, Vol.2: Role of Microbes-Assisted Strategies. Sustainability in Plant and Crop Protection 19; Chaudhary, K.K., Meghvansi, M.K., Siddiqui, S., Eds.; Springer Int. Publ.: Cham, Switzerland, 2024; pp. 265–296. [Google Scholar] [CrossRef]
- NEMguar®-ABIM. Available online: https://www.abim.ch/fileadmin/abim/documents/presentations2012/ABIM_2012_3_Ladurner_Edith.pdf (accessed on 22 June 2023).
- Chatterji, T.; Keerthi, K.; Gates, K.S. Generation of reactive oxygen species by a persulfide (BnSSH). Bioorg. Med. Chem. Lett. 2005, 15, 3921–3924. [Google Scholar] [CrossRef]
- Anwar, A.; Groom, M.; Arbach, M.; Hamilton, C.J. How to turn the chemistry of garlic into a ‘botanical’ pesticide. In Recent Advances in Redox Active Plant and Microbial Products; Jacob, C., Kirsch, G., Slusarenko, A., Winyard, P.G., Burkholz, T., Eds.; Springer: Dordrecht, The Netherlands, 2014; pp. 323–341. [Google Scholar]
- Enaime, G.; Dababat, S.; Wichern, M.; Lübken, M. Olive mill wastes: From wastes to resources. Environ. Sci. Pollut. Res. Int. 2024, 31, 20853–20880. [Google Scholar] [CrossRef]
- Helder, J.; Heuer, H. Let’s be inclusive—The time of looking at individual plant parasit. In Integrated Nematode Management: STATE-of-the-Art and Visions for the Future; Sikora, R.A., Desaeger, J., Molendijk, L.P.G., Eds.; CAB Int.: Wallingford, UK, 2022; pp. 403–407. [Google Scholar]
- Hodson, A.K.; Celayir, T.; Quiroz Alonso, A. A Real-Time PCR assay to detect and quantify root-knot nematodes from soil extracts. Plant Dis. 2023, 107, 2169–2176. [Google Scholar] [CrossRef] [PubMed]
- Dritsoulas, A.; Wu, S.-Y.; Regmi, H.; Duncan, L.W. Arthropod community responses reveal potential predators and prey of entomopathogenic nematodes in a citrus orchard. Agronomy 2022, 12, 2502. [Google Scholar] [CrossRef]
- Yang, Y.M.; Pei, L.I.U.; Li, H.M.; Huan, P.E.N.G.; Xia, D.U.; Ye, D.O.N.G.; Hu, X.Q. Study on PCR rapid molecular detection technique of Meloidogyne vitis. J. Integr. Agric. 2022, 21, 3408–3416. [Google Scholar] [CrossRef]
- Anderson, S.D.; Gleason, C.A. A molecular beacon real-time polymerase chain reaction assay for the identification of M. chitwoodi, M. fallax, and M. minor. Front. Plant Sci. 2023, 14, 1096239. Available online: https://www.frontiersin.org/articles/10.3389/fpls.2023.1096239 (accessed on 5 May 2024). [CrossRef]
- Wu, S.-Y.; El-Borai, F.E.; Graham, J.H.; Duncan, L.W. Geospatial relationships between native entomopathogenic nematodes and Fusarium solani in a Florida citrus orchard. Appl. Soil Ecol. 2019, 140, 108–114. [Google Scholar] [CrossRef]
- Campos-Herrera, R.; Pathak, E.; El-Borai, F.E.; Schumann, A.; Abd-Elgawad, M.M.M.; Duncan, L.W. New citriculture system suppresses native and augmented entomopathogenic nematodes. Biol. Control 2013, 66, 183–194. [Google Scholar] [CrossRef]
- Abd-Elgawad, M.M.M.; Askary, T.H. Factors affecting success of biological agents used in controlling plant-parasitic nematodes. Egypt. J. Biol. Pest Control 2020, 30, 17. [Google Scholar] [CrossRef]
- Sikora, R.A.; Roberts, P.A. Management practices: An overview of integrated nematode management technologies. In PLANTPARASITIC Nematodes in Subtropical and Tropical Agriculture; Sikora, R.A., Coyne, D., Hallmann, J., Timper, P., Eds.; CAB Int.: Wallingford, UK, 2018; pp. 795–838. [Google Scholar]
- Duncan, L.W.; Stuart, R.J.; El-Borai, F.E.; Campos-Herrera, R.; Pathak, E.; Giurcanu, M.; Graham, J.H. Modifying orchard planting sites conserves entomopathogenic nematodes, reduces weevil herbivory and increases citrus tree growth, survival and fruit yield. Biol. Control 2013, 64, 26–36. [Google Scholar] [CrossRef]
- Nielsen, A.L.; Spence, K.O.; Nakatani, J.; Lewis, E.E. Effect of soil salinity on entomopathogenic nematode survival and behaviour. Nematology 2011, 3, 859–867. [Google Scholar] [CrossRef]
- Hussaini, S.S. Entomopathogenic nematodes: Ecology, diversity and geographical distribution. In Biocontrol Agents: Entomopathogenic and Slug Parasitic Nematodes; Abd-Elgawad, M.M.M., Askary, T.H., Coupland, J., Eds.; CAB Int.: Wallingford, UK, 2017; pp. 88–142. [Google Scholar]
- Abd-Elgawad, M.M.M. Disease complexes involving multiple nematodes. In Nematode Disease Complexes in Agricultural Crops; Khan, M.R., Ed.; CAB Int.: Wallingford, UK, 2024; in press. [Google Scholar]
- Elmer, W.; White, J.C. The future of nanotechnology in plant pathology. Annu. Rev. Phytopathol. 2018, 56, 111–1133. [Google Scholar] [CrossRef]
- Caparco, A.A.; González-Gamboa, I.; Hays, S.S.; Pokorski, J.K.; Steinmetz, N.F. Nanoparticles made from plant viruses could be farmers’ new ally in pest control. Nano Lett. 2023, 23, 5785–5793. [Google Scholar] [CrossRef]
- Abd-Elgawad, M.M.M. Nanonematicides: Production, mechanisms, efficacy, opportunities and challenges. Nematology 2024, 26, 1–11. [Google Scholar] [CrossRef]
- Wesemael, W.M.L.; Visser, J. Lowering quality damage in open-field vegetables caused by Meloidogyne chitwoodi and M. fallax in the Low Countries. In Integrated Nematode Management: State-of-the-Art and Visions for the Future; Sikora, R.A., Desaeger, J., Molendijk, L.P.G., Eds.; CAB Int.: Wallingford, UK, 2022; pp. 304–309. [Google Scholar]
- Siddique, S.; Akker, S.E. Nematode management through genome editing. In Integrated Nematode Management: State-of-the-Art and Visions for the Future; Sikora, R.A., Desaeger, J., Molendijk, L.P.G., Eds.; CAB Int.: Wallingford, UK, 2022; pp. 408–413. [Google Scholar]
- Talavera-Rubia, M.; Verdejo-Lucas, S. Integrated management of root-knot nematodes for cucurbit crops in Southern Europe. In Integrated Nematode Management: State-of-the-Art and Visions for the Future; Sikora, R.A., Desaeger, J., Molendijk, L.P.G., Eds.; CAB Int.: Wallingford, UK, 2022; pp. 270–276. [Google Scholar]
- Sikora, R.A.; Desaeger, J.; Molendijk, L.P.G. (Eds.) Integrated Nematode Management: State-of-the-Art and Visions for the Future; CAB Int.: Wallingford, UK, 2022; 498p. [Google Scholar]
- Abd-Elgawad, M.M.M. Spatial distribution of nematodes to improve their sampling and management decision. Pakistan J. Nematol. 2023, 41, 144–152. [Google Scholar] [CrossRef]
- Noling, J.W. Sting nematode management in Florida strawberry. In Integrated Nematode Management: State-of-the-Art and Visions for the Future; Sikora, R.A., Desaeger, J., Molendijk, L.P.G., Eds.; CAB Int.: Wallingford, UK, 2022; pp. 182–191. [Google Scholar]
- Gandariasbeitia, M.; López-Pérez, J.A.; Juaristi, B.; Abaunza, L.; Larregla, S. Biodisinfestation with agricultural by-products developed long-term suppressive soils against Meloidogyne incognita in lettuce crop. Front. Sustain. Food Syst. 2021, 5, 663248. [Google Scholar] [CrossRef]
- Ueki, A.; Kaku, N.; Ueki, K. Role of anaerobic bacteria in biological soil disinfestation for elimination of soil-borne plant pathogens in agriculture. Appl. Microbiol. Biotechnol. 2018, 102, 6309–6318. [Google Scholar] [CrossRef]
- Shao, H.; Zhang, P.; Peng, D.; Huang, W.; Kong, L.-A.; Li, C.; Liu, E.; Peng, H. Current advances in the identification of plant nematode diseases: From lab assays to in-field diagnostics. Front. Plant Sci. 2023, 14, 1106784. [Google Scholar] [CrossRef]
- EPA. Aldicarb; Cancellation Order for Amendments to Terminate Usesfed; Regist; EPA: Washington, DC, USA, 2012. [Google Scholar]
- EPA. Carbofuran; Product Cancellation Orderfed; Regist; EPA: Washington, DC, USA, 2009. [Google Scholar]
- Abd-Elgawad, M.M.M. Towards optimization of entomopathogenic nematodes for more service in the biological control of insect pests. Egypt. J. Biol. Pest Control. 2019, 29, 77. [Google Scholar] [CrossRef]
- Nissan, N.; Hooker, J.; Arezza, E.; Dick, K.; Golshani, A.; Mimee, B.; Cober, E.; Green, J.; Samanfar, B. Large-scale data mining pipeline for identifying novel soybean genes involved in resistance against the soybean cyst nematode. Front. Bioinform. 2023, 3, 1199675. [Google Scholar] [CrossRef]
- Topalović, O.; Hussain, M.; Heuer, H. Plants and associated soil microbiota cooperatively suppress plant-parasitic nematodes. Front. Microbiol. 2020, 11, 313. [Google Scholar] [CrossRef]
- Campos-Herrera, R.; Ali, J.G.; Diaz, B.M.; Duncan, L.W. Analyzing spatial patterns linked to the ecology of herbivores and their natural enemies in the soil. Front. Plant Sci. 2013, 4, 378. [Google Scholar] [CrossRef]
- Ansari, R.A. Revolutionizing nematode management: Nanomaterials as a promising approach for managing economically important plant-parasitic nematodes—Current knowledge and future challenges. In Nanotechnology in Plant Disease Management; Ansari, R.A. Taylor & Francis: London, UK, 2024; in press. [Google Scholar]
- Gupta, I.; Singh, R.; Muthusamy, S.; Sharma, M.; Grewal, K.; Singh, H.P.; Batish, D.R. Plant essential oils as biopesticides: Applications, mechanisms, innovations, and constraints. Plants 2023, 12, 2916. [Google Scholar] [CrossRef]
- Ibrahim, H.M.M.; Ahmad, E.M.; Martínez-Medina, A.; Aly, M.A.M. Effective approaches to study the plant-root knot nematode interaction. Plant Physiol. Biochem. 2019, 141, 332–342. [Google Scholar] [CrossRef]
- Shen, M.; Liu, S.; Jiang, C.; Zhang, T.; Chen, W. Recent advances in stimuli-response mechanisms of nano-enabled controlled-release fertilizers and pesticides. Eco-Environ. Health 2023, 2, 161–175. [Google Scholar] [CrossRef]
- Xiao, D.; Wu, H.; Zhang, Y.; Kang, J.; Dong, A.; Liang, W. Advances in stimuli-responsive systems for pesticides delivery: Recent efforts and future outlook. J. Control. Release 2022, 352, 288–312. [Google Scholar] [CrossRef]
- Silva, J.C.P.; Campos, V.P.; Barros, A.F.; Pedroso, L.A.; Silva, M.F.; Souza, J.T.; Pedroso, M.P.; Medeiros, F.H.V. Performance of volatiles emitted from different plant species against juveniles and eggs of Meloidogyne incognita. Crop Protect. 2019, 116, 196–203. [Google Scholar] [CrossRef]
- Silva, J.C.P.; Campos, V.P.; Barros, A.F.; Pedroso, L.A.; Terra, W.C.; Lopez, L.E.; Souza, J.T. Plant volatiles reduce the viability of the root-knot nematode Meloidogyne incognita either directly or when retained in water. Plant Dis. 2018, 112, 2170–2179. [Google Scholar] [CrossRef]
- Molendijk, L.P.G.; Sikora, R.A. Decision support systems in integrated nematode management: The need for a holistic approach. In Integrated nematode Management: State-of-the-Art and Visions for the Future; Sikora, R.A., Desaeger, J., Molendijk, L.P.G., Eds.; CAB Int.: Wallingford, UK, 2022; pp. 428–438. [Google Scholar]
- Van Evert, F.; Been, T.; Booij, J.; Kempenaar, C.; Kessel, G.; Molendijk, L. Akkerweb: A platform for precision farming data, science, and practice. In Proceedings of the 14th International Conference on Precision Agriculture, Montreal, QC, Canada, 24 June 2018. [Google Scholar]
- Been, T.H.; Schomaker, C.H.; Molendijk, L.P.G. NemaDecide: A decision support system for the management of potato cyst nematodes. In Potato in Progress Science Meets Practice; Haverkort, A.J., Struik, P.C., Eds.; Wageningen Academic Publishers: Wageningen, The Netherlands, 2005; pp. 143–155. [Google Scholar]
- Camacho, M.J.; Albuquerque, D.C.; Inácio, M.L.; Martins, V.C.; Mota, M.; Freitas, P.P.; de Andrade, E. FTA-LAMP based biosensor for a rapid in-field detection of Globodera pallida—The pale potato cyst nematode. Front. Bioeng. Biotechnol. 2024, 12, 1337879. [Google Scholar] [CrossRef]
- Galvez-Llompart, M.; Zanni, R.; Vela-Corcía, D.; Polonio, Á.; Perez-Gimenez, F.; Martínez-Cruz, J.; Romero, D.; Fernández-Ortuño, D.; Pérez-García, A.; Galvez, J. Rational design of a potential new nematicide targeting chitin deacetylase. J. Agric. Food Chem. 2024, 72, 2482–2491. [Google Scholar] [CrossRef] [PubMed]
- Sharp, R.G. A review of the applications of chitin and its derivatives in agriculture to modify plant-microbial interactions and improve crop yields. Agronomy 2013, 3, 757–793. [Google Scholar] [CrossRef]
- Gong, J.; Du, H.; Sun, Y. Collaboration among governments, pesticide operators, and farmers in regulating pesticide operations for agricultural product safety. Agriculture 2023, 13, 2288. [Google Scholar] [CrossRef]
- Zasada, I.A.; Halbrendt, J.M.; Kokalis-Burelle, N.; LaMondia, J.; McKenry, M.V.; Noling, J.W. Managing nematodes without methyl bromide. Annu. Rev. Phytopathol. 2010, 48, 311–328. [Google Scholar] [CrossRef]
- Verdejo-Lucas, S.; McKenry, M.V. Management of the citrus nematode, Tylenchulus semipenetrans. J. Nematol. 2004, 36, 424–432. [Google Scholar]
- Afzal, A.; Mukhtar, T. Revolutionizing nematode management to achieve global food security goals—An overview. Heliyon 2024, 10, e25325. [Google Scholar] [CrossRef]
- Agarwal, S.; Curran, Z.C.; Yu, G.; Mishra, S.; Baniya, A.; Bogale, M.; Hughes, K.; Salichs, O.; Zare, A.; Jiang, Z.; et al. Plant parasitic nematode identification in complex samples with deep learning. J. Nematol. 2023, 55, 20230045. [Google Scholar] [CrossRef]
- Habteweld, A.; Kantor, M.; Kantor, C.; Handoo, Z. Understanding the dynamic interactions of root-knot nematodes and their host: Role of plant growth promoting bacteria and abiotic factors. Front. Plant Sci. 2024, 15, 1377453. [Google Scholar] [CrossRef]
Pasteuria Species (Product Name) | Company (Country) | Target Nematodes | Modes of Action | References |
---|---|---|---|---|
Pasteuria penetrans (Econem) | Nematech (Japan) | Meloidogyne spp. | Root invasion is diminished with the sterilized nematode host due to the spores attaching to nematode juveniles. | [67] |
Pasteuria nishizawae (Clariva PN) | Syngenta (Brazil) | Globodera spp., Heterodera spp. | Bacteria adhere to the cuticle of juveniles to parasitize on them and thus decrease nematode feeding/reproduction. | [72,73] |
Pasteuria thornei | NA | Pratylenchus spp. | Bacteria attach to the nematodes during migratory stages and parasitize them, reducing their feeding/reproduction. | [74,75] |
Pasteuria sp. Ph3 (Naviva ST) | Syngenta (USA) | Rotylenchulus reniformis | Inhibits R. reniformis in cotton, soybean, vegetables, cucurbits, and floriculture | [76] |
Pasteuria usgae Bl1 + Pasteuria sp. Ph3 (NewPro) | Syngenta (USA) | Species of Hoplolaimus and Belonolaimus | Inhibits species of Hoplolaimus and Belonolaimus in turf (Bermudagrass and St. Augustine grass) | [76] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abd-Elgawad, M.M.M. Upgrading Strategies for Managing Nematode Pests on Profitable Crops. Plants 2024, 13, 1558. https://doi.org/10.3390/plants13111558
Abd-Elgawad MMM. Upgrading Strategies for Managing Nematode Pests on Profitable Crops. Plants. 2024; 13(11):1558. https://doi.org/10.3390/plants13111558
Chicago/Turabian StyleAbd-Elgawad, Mahfouz M. M. 2024. "Upgrading Strategies for Managing Nematode Pests on Profitable Crops" Plants 13, no. 11: 1558. https://doi.org/10.3390/plants13111558
APA StyleAbd-Elgawad, M. M. M. (2024). Upgrading Strategies for Managing Nematode Pests on Profitable Crops. Plants, 13(11), 1558. https://doi.org/10.3390/plants13111558